陕北黄土高原土壤水库动态特征的评价与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原土壤水分状况是制约该区生态恢复的关键,也是维持农业持续发展的决定性因素。本文以延安市宝塔区的高坡村、淳化县泥河沟流域和米脂县泉家沟流域为观测区,通过对不同土地利用方式下土壤水分的定位监测,采用定量与定性、模型模拟与实测对比相结合的方法,系统分析了陕北黄土高原土壤水库的特征,取得了以下主要结论:黄土高原深厚的土层,使得土壤水库具有巨大的库容,但受到降水入渗补给的影响,经常呈现出有库无水的状态。受土壤含水量变化及测量误差的影响,实测各层土壤含水量呈现波动变化,以层土壤含水量波动变化最小值对应深度作为土壤水库的调节深度,陕北黄土高原阳坡果园和阳坡刺槐林土壤水库的调节深度最小,阴坡草地和农地土壤水库调节深度最大,其余坡向和土地利用类型土壤调节深度介于此二者之间;土壤水库的调节能力以阴坡农地和荒草地最大,为1194.96mm,阳坡果园和刺槐林最小为597.48mm,其他坡向和土地利用类型介于此二者之间。
     受地带性、土地利用、坡位、坡向、土地利用年限和土地利用强度等多种因素的影响,坡面土壤水库呈现不同的蓄水特征。在地带性方面,由南向北,土壤储水量明显减少;在土地利用方面,农地和荒草地土壤储水量明显高于果园和刺槐林地;在坡向上,阳坡、半阳坡明显低于阴坡和半阴坡;同一坡向,坡上部含水量低于坡中部低于坡下部;土地利用年限增加,储水量降低,刺槐林16龄林地,200cm以下土壤明显干化;同时植被密度也直接影响着土壤储水量,随密度增加,储水量降低。
     土壤水库储水量受降水、蒸发等因素的影响,在年内和年际间呈现波动变化;应用时间序列理论,果园、刺槐林、草地和农地土壤水库储水量趋势项均值分别为250.16mm、295.02 mm、284.75 mm和355.86 mm;土壤水库季节项变化规律与土壤水库储水量动态变化规律均为:秋冬季土壤水分缓慢累积阶段、春末夏初土壤水分强烈消耗阶段和夏季土壤水分波动阶段;土壤水库调节着区域降水与蒸散耗水,年内为上半年供给植物生长耗水,储水减少,下半年接受降雨入渗补给,蓄存降水;年际间2003年和2005年土壤水库得到降水入渗补充,储水量增加,2002年、2004年和2006年土壤水分消耗,实测果园、刺槐林、草地和农地土壤水库最大调节量分别达到245.38mm、328.18mm、284.78mm和261.62mm。
     根据植物从土壤中吸取水分的难易程度,将土壤水分划分为无效水、难效水、中效水、易效水和饱和水。坡面果园、刺槐林、农地和荒草地土壤水分的有效性由南向北递减,表现为淳化大于延安大于米脂;在不同坡向上,土壤水分有效性表现为阳坡最差、阴坡最好,半阴坡、半阳坡和峁顶介于二者之间。年内土壤水分的有效性与季节同步,1月土壤水分整体较高,随土壤水分的蒸散消耗,有效性逐渐降低,难效水范围逐步扩大,6月份表层0~40cm呈现无效水,后期受降水补给影响,土壤水分有效性得到一定恢复。以各层土壤中根系所占份额作为权重,求得各种土地利用类型土壤水分生态位,各种土地利用类型土壤水分生态位适宜度在淳化最高,米脂最低,延安介于二者之间;在各坡向间土壤水分生态位适宜度阳坡最低、阴坡最高,半阴坡、半阳坡和峁顶介于二者之间;在不同土地利用中,以农地土壤水分生态位适宜度最高,刺槐林较高,草地和果园相对较低,各种土地利用土壤水分生态位适宜度在7月达到最低,随后降雨入渗补给,其土壤水分生态位有了一定提高;坡面刺槐林林龄越长,土壤水分生态位适宜度越低,林木的生长受到一定的限制;林分密度越大,土壤水分生态位适宜度越低。
     应用线形扰动理论,构建土壤水库储出水量线形扰动模型,将降水量和参考作物蒸散量的随机项作为输入,模拟土壤储水量的随机项,叠加土壤水库储水量的趋势项和周期项,构成土壤水库储水量对降水和蒸发的响应;根据降雨、参考作物蒸散量与土壤水库储水量间的互相关关系,确定出土壤水库线形扰动模型各输入的记忆长度为12个时段,即6个月。经验证线性扰动模型可较好的描述土壤水库储水量。利用模型对2006年土壤水库储水量进行预测,经分析模型预测精度除个别时段误差稍大外,其余时段模型模拟值与实测值间偏差很小,模型可较好的预测土壤水库储水量变化。
Soil moisture condition is the key which restricts the ecological restoration of the area ,and is also the determinate factor which maintains the sustainable development of agriculture in Loess Plateau. Gaopo village in Baota District in Yan’an, Nihegou Watershed in Chun’hua and Quanjiagou Watershed in Mi’zhi are taken as the area of coverage in this paper. Through position monitoring soil moisture in different land utilization, the character of soil reservoir is analyzed systematically in Loess plateau in northern Shaanxi Province by using the methods of fixed quantity and fixed quality and combination of model simulation and observation comparison. The conclusions are obtained as follows:
     Submerged soils in Loess plateau, which bring a huge storage capacity into the soil reservoir, are usually in anhydrous condition due to the effect of precipitation infiltration and supply. The change of measured soil moisture content of each layer is fluctuant as it’s affected by the soil moisture content change and inaccuracy of measurement. When the depth that corresponds to the minimum of the soil moisture content fluctuant change is taken as the adjusting depth, the adjusting depth of soil reservoir in sunny slope orchard and sunny slope locust in Northern Shaanxi Province is the least, the shady grassland and farmland is the largest, and the soil adjusting depth of the other slope aspects and land utilizations is intervenient. The modulability of soil reservoir in shady slope farmland and wild grassland is the largest, that is 1194.96mm, the sunny slope orchard and locust is the least, that is 597.48mm, and the modulability of the other slope aspect and land utilization is between them.
     Domatic soil reservoir have different character as it is affected by multifactor such as zonation, land utilization, slope location, slope aspect, the length of land use and land-use density ect. In zonation aspect, soil water storage grows downwards obviously from the south to the north. In land-use aspect, soil water storage in farmland and wild grassland is obviously higher than that in orchard and locust. In slope aspect, sunny and semisunny slope are obviously lower than shady and semishady slope. In the same slope aspect, water content in the upper is lower than the middle and the abdominal. Soil gets dry obviously under the 200cm soil layer in the locust with the age of 16 along with the length of land use being increasing and water storage was being decreasing. At the mean time, the vegetation density also affects the soil water storage directly. Water storage decreases with the dengsity increasing.
     Soil reservoir storage is affected by the factor such as precipitation, evaporation and so on , which presents fluctuant change annually and interannually. With the time series theory application, soil reservoir capacity tendency mean value in orchard, locust, grassland and farmland are 250.16mm, 95.02mm, 84.75mm and 55.86mm respectively. The discipline of soil reservoir seasonal change is that: soil moisture is in the phase of slow cumulating in autumn and winter, in the phase of strong consumption in late spring and early summer, and in the phase of fluctuant change in summer. Soil reservoir is adjusting precipitation and evapotranspiration, showing that water storage, which provides plants for their growth consumption, decreases in the first part of year, and that it is supplied by infiltration in the second part of year, storage precipitation. Soil reservoir gets supply from the infiltration in 2003 and 2005, which makes the water storage increasing. Soil moisture is consumed in 2002, 2004 and 2006 when the measured soil reservoir maximum regulated quantities in orchard, locust, grassland and farmland are 245.38mm, 328.18mm, 284.78mm and 261.62mm respectively.
     Soil moisture is divided into unavailable water, difficult available water, middle available water, readily available water, and saturation water, according to the difficulty level of plants drinking in moisture from the soil. The validity of soil moisture in domatic orchard, locust, farmland and wild grassland recedes into the north, that is Chun’hua > Yan’an >Mi’zhi. In different slope aspects, It’s showed that the validity of soil moisture registers in sunny slope is the worst, shady slope the best, and semishady, semisunny slope and hilly top is between them.
     Annul soil moisture keeps in step with the season, showing that soil moisture is high integrally in Jan. and validity decreases gradually with the evapotranspiration of soil moisture, and that soil moisture in the 0-40 surface layer is unavailable water in Jun. and validity of soil moisture is recovered in a certain extent for the effect of precipitation supplement. Econiche of soil moisture of different land use type is obtained by taking portion of root in each soil layer as weight, which shows that in different land use types, soil moisture niche fitness in Chun’hua is the highest, Mi’zhi the lowest and Yan’an between them, and that in different slope aspects, soil moisture niche fitness in sunny slope is the lowest, shady slope the highest and semishady, semisunny slope and hilly top between them, and that in deferent land utilization, soil moisture niche fitness in farmland is the highest, locust higher, grassland and orchard lower and that soil moisture niche fitness of all land utilizations reaches the lowest in July, after which soil moisture econiche gets a raise due to the infiltration supplement, and that the longer age of domatic locust is, the lower soil moisture niche fitness is, which restricts the growth of wood in a certain extent and that the larger the density of forest is, the lower soil moisture niche fitness is.
     With the application of linear disturbing theory, soil reservoir water yield linear disturbing model is built, taking the random value of precipitation and referenced crop evapotranspiration as output , simulating the random value of soil water storage, adding the tendency and periods of soil reservoir water storage and forming the response of soil reservoir water storage to precipitation and evaporation, and make sure that each memory length of soil reservoir linear disturbing model is 12 periods of time, namely six months. Empirical linear disturbing model can describe, soil reservoir water storage very well. Soil reservoir water storage in 2006 is predicted by using the model which can predict the change of soil reservoir water storage very well, for the deviation between simulated value and measured value in other periods is very small through analyzing the forecast precision of the model, except for in individual period when the error is largish.
引文
[1] 唐克丽等.中国水土保持[M ]. 北京:科学出版社,2004
    [2] 王佑民.黄土高原沟壑区综合治理及其效益研究[M ]. 北京:中国林业出版社, 1990.
    [3] 苏人琼.黄土高原水资源问题及对策[M].北京:中国科学技术出版社,1990,16-17
    [4] 程积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京:中国林业出版社,2002:24-35
    [5] 杨文治,邵明安.黄土高原土壤水分研究[M] .北京:科学出版社,2000:214-249
    [6] 薛 亮.中国节水农业理论与实践[M] .北京:中国农业出版社,2002.3
    [7] 朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理的关键[J].科学对社会的影响。2001,(1):26-31
    [8] 朱显谟.重建土壤水库是黄土高原治本之道[J]。科技与社会,2006,21(4):320-324
    [9] 朱显谟.试论黄土高原的生态环境与“土壤水库”[J].第四纪研究,2000,20(6):514-520
    [10] 刘贤赵,黄明斌.照渭北旱塬苹果园土壤水分环境效应[J]. 果树学报,2002,19(2):75-78
    [11] 王健,吴发启,孟秦倩.黄土高原丘陵沟壑区坡面果园的土壤水分特征分析[J].西北林学院学报,2006,21(5):65-68,108
    [12] 樊军,胡波.黄土高原果业发展对区域环境的影响与对策[J].中国农学通报,2005,21(11):355-359
    [13] 黄明斌,李新民,李玉山.黄土区渭北旱原苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-13
    [14] 马孝义,王文娥,康绍忠等.陕北、渭北苹果降水产量关系与补灌时期初步研究[J].中国农业气象,2002,23(1):25-28.
    [15] 王力,邵明安,侯庆春,等.延安试区人工刺槐林地的土壤干层分析.西北植物学报,2001,21(1):101~106.
    [16] 梁音,史学正,史德明.从长江上游地区水土流失及“土壤水库容”分析 1998 洪水[J].中国水土保持,1998, (11):32~34
    [17] 霍云鹏,闫中平.黑龙江省土壤水资源和土壤水库[J].东北林学院学报.1992, 6:114-121
    [18] 李玉山.土壤水库的功能和作用[J].水土保持通报. 1983, 5: 27-30
    [19] 郭凤台.土壤水库及其调控[J].华北水利水电学院学报.1996, 6:72-80
    [20] 齐樵等.东北北部黑土水分状况之研究[J].土壤学报.1979, 16(4) :329-331
    [21] R. J 汉克斯等著;杨清秀等译.应用土壤物理[M]:水利电力出版社.1984
    [22] 曾大林.对当代林业水土保持作用的几点认识[J].中国水土保持. 2000,6:25-27
    [23] 黄荣珍; 岳永杰; 李凤; 谢锦升; 杨玉盛; 不同类型森林水库调水特性研究[J].水土保持学报,2008,22(1)::154-158
    [24] 孙仕军,丁跃元,曹波,田园.平原井灌区土壤水库调蓄能力分析[J]. 自然资源学报,2002,17(1):42-47
    [25] 李代琼,吴钦孝,刘克俭.宁南沙棘、柠条蒸腾与土壤水分动态研究[J].中国水土保持,1990,(6):29-45
    [26] 马玉玺,杨文治,韩仕峰.黄土高原刺槐林生长动态[J].水土保持学报,1990,4(2):27-32
    [27] 穆兴民,陈国良.半干旱黄土丘陵区春小麦生长的水分生态效应[J].水土保持研究,1996,3(1):86-90
    [28] 邹厚远,鲁子瑜,刘克俭.沙打旺种群对土壤水分的影响及其调节[J].生态学杂志,1991,10(3):15-17
    [29] 孙仕军,丁跃元,田园等.典型井灌区农田土壤和地下水库调蓄汛雨径流的研究[J].水科学进展.2001,12(2):190 一 195
    [30] 谷玉环.改革耕整技术建立土壤水库[J].农业机械化论坛.1998. 2:20-21
    [31] 徐同人.土壤水库——根坯暗沟[J].中国水土保持.1993, 7:35-37
    [32] 崔启武,边履刚,史继德等.林冠对降水的截留作用[J].林业科学,1980,16 (2):141-146
    [33] Hoermann G.Calculation and simulation of wind controlled canopy interception of a beach forest in Northern Germany[J].Agricultural and Forest Meteorology,1996,79:131-148.
    [34] 周晓峰,李庆夏,金永岩.帽儿山、凉水森林水分循环的研究[A].中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.21-22.
    [35] 马履一.国内外土壤水分研究现状与进展.世界林业研究[J],1997, 9 (3):14-19
    [36] Mein G. R, Larson C. L, Moderling in filtration during a steady rain Resource Res, 1973, 9:384-394
    [37] 张光辉,邵明安,用土壤物理特性推求 Green-Ampt 入渗模型中吸力参数 sf[J].土壤学报,2000,37(4):553-557
    [38] Barry D A, Infiltration under ponded conditions:An explicit predictive infiltration,Soil Sci,1995,160(1):8-17
    [39] Helalia A M,The relation between soil infiltration and effective porosity in different soils, Agricultural Water Management,1993,24:39-47
    [40] Edwards W.M, Norton L.D and Redmond C.E, Characterizing macropres thataffect infiltration into nontilled soil, Soil Society of America Journal,1989,132:233-239
    [41] Brutsaert W. Evaporation into the atmosphere [M]. D. Reidel Publ.Co., Dordrecht, Holland, 1982.
    [42] Monteith J L. Environment Control of Plant Growth (L. T. Evans, ed.)[M]. Academic Press, New York, 1963, 95-112.
    [43] 朱仲元.干旱半干旱地区天然植被蒸散发模型与植被需水量研究[D].内蒙古农业大学博士学位论文.2005
    [44] 吴钦孝,杨文治 黄土高原植被建设与持续发展[M].北京:科学出版社 1998
    [45] 刘昌明,刘彩堂 黄土区土壤水分动态及其降雨产流的关系.地理集刊,1980: 60-72
    [46] 黄荣珍.不同林地类型土壤水库特性的初步研究[D].福建农林大学,硕士论文,2002
    [47] 焦峰.基于 GIS 的黄土丘陵区土壤水库蓄水数量特征及其生态供水潜力评价[D] .中国科学院研究生院博士学位论文,2006.
    [48] 靳孟贵,张人权,Ian Simmer 等.土壤水资源评价的研究[J].水利学报,1999,8:30-34
    [49] VEIH MEYER E J.The Availability of soil moisture to plants:results of empirical experiments with fruit trees[J]. Soil Science,1972,114(4):268-294
    [50] 刘增文,王佑民.人土油松林蒸腾耗水及林地土壤水分动态特征的研究[J].水土保持通报,1990,10(6): 78-84
    [51] 张小泉,张清华,毕树峰.太行山北部幼林地土壤水分的研究[J].林业科学,1994,30(3):193-199
    [52] 王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效性状况[J].林业科学,1999,(2):l-11
    [53] 吴文强,李吉跃,张志明等.北京西山地区人工林土壤水分特性的研究[J].北京林业大学学报,2002, 24(4):51-55
    [54] 周泽福,刘致远,张光灿.黄土丘陵区金矮生苹果园土壤水分有效性及生产力分级[J].林业科学研究,2005,18(1):10-15
    [55] 杨文治,余存祖.黄土高原区域治理与评价.北京,科学出版社 P347-398,1992
    [56] 杨文治,赵沛伦,张启元.不同湿度条件下土壤水分的蒸发性能和移动规律,1981 土壤学报 18 (1)24-37
    [57] 杨文治,马玉玺,韩仕峰.黄土高原地区造林土壤水分生态分区研究,水土保持学报,1994,8(1):1-9
    [58] 杨文治,韩仕峰.黄土丘陵区人工林草地土壤水分动态环境.中科院西北水土保持研究所集刊,1985 第 2 集。
    [59] 陈昌毓.从水分平衡看河西走廊东部植树造林适生程度.气象,1985 11 (12 ): 20-23
    [60] 周凌云,陈志雄,李卫民.土壤水资源合理利用潜力评价[J].土壤通报,2003,34(1):15-18
    [61] 李自珍,黄子琛.沙坡头地区人工林植物的水分生态位适宜度分析[J].西北植物学报,1995,15(5):97-101
    [62] 李文龙,李自珍,王刚,施维林.沙坡头地区人工固沙植物水分利用及其生态位适宜度过程数值模拟分析[J].西北植物学报,2004,24(6):1012-1017
    [63] 蒋定生 黄土高原水土流失与治理模式[M] 北京:中国水利水电出版社,1997:198-206
    [64] 张仁陟,李小刚,胡 华,等.甘肃黄土地区农田土壤水分变异规律研究[J] 土壤侵蚀与水土保持学报,1998,4(4):53-59
    [65] 贾志清,宋桂萍,李清河,等.宁南山区典型流域土壤水分动态变化规律研究[J] 北京林业大学学报,1997,19(3):15-20
    [66] 王 军,傅伯杰 黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J] 地理学报,2001,55(1):84-91
    [67] 邱 扬,傅伯杰,王 军,等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J] 生态学报,2000,20(5):741-747
    [68] 傅伯杰,杨志坚,王 仰,等.黄土丘陵坡地土壤水分空间分布数学模型[J] 中国科学(D辑),2001,31(3):185-191.
    [69] 余优森,林日暖,邓振镛,等.人工草地土壤水分周年变化规律的研究[J] 土壤学报,1992,29(2):175-182
    [70] 张兴昌,卢宗凡 坡地水平沟耕作的土壤水分动态及增产机理研究[J] 水土保持学报,1993,7(3):58-66
    [71] 康绍忠.土壤水分动态的随机模拟研究[J] 土壤学报,1990,27(1):17-24
    [72] 卢玉邦.土壤水分预报模型的研究[J] 土壤学报,1989,26(1):51-56
    [73] 罗 毅,雷志栋,杨诗秀.一个预测作物根系层储水量动态变化的概念性随机模型[J].水利学报,2000,(8):80-83
    [74] 周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟[J].水利学报,1991,(9):32-36
    [75] 任 理,李春友,李韵珠.层状粘性土壤水分动态新模型的应用[J].中国农业大学学报,1998,3(1):57-62
    [76] 姚德良,邱克俭,冀 伟,等.在植物耗水条件下土壤水分动态的数值模拟[J] 土壤学报,1993,30(1):111-116
    [77] 王绍辉,任 理,张福墁.日光温室黄瓜栽培条件下土壤水分动态的数值模拟[J] 农业工程学报,2000,16(4):110-114
    [78] 李细元,陈国良 人工草地土壤水系统动力学模型与过耗恢复预测[J] 水土保持研究,1996,3(1):166-178
    [79] 黄冠华,沈荣开 大尺度非饱和土壤水分运动的随机模型及有效参数的结构分析[J] 水利学报,1997,(11):39-48
    [80] 王百田.干旱半干旱地区集流造林工程设计[J].水土保持学报,1993,7(3):60-66
    [81] 魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40
    [82] 李凯荣,赵晓光.刺槐人工林地土壤水分下渗研究[J].西北林学院学报,1998,13(2):26-29.
    [83] 李洪建,王孟本,柴宝峰.刺槐林地土壤水分的周年变化特征[J].水土保持学报,1999,5(6):6-10
    [84] 魏天兴,余新晓,朱金兆,等.黄土区防护林主要造林树种水分供需关系研究[J].应用生态学报,2001,12(2):185-189
    [85] 魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].水土保持学报,1999,15(4):45-51
    [86] 岳永杰. 福建省主要森林水库特性与动态[D].福建农林大学,硕士论文,2003
    [87] 袁作新主编.流域水文模型[M]. 北京:水利电力出版社,1988
    [88] 王国庆,王云璋.产汇流及产输沙数学模型研究综述[J].西北水资源与水工程,1998,9(3):27-31
    [89] Vijay P. Singh 著.赵卫民,戴东,王玲译.Hydrologic Systems Rainfall-Runoff Modeling 水文系统降雨径流模拟[M].郑州:黄河水利出版社,1999:1-50
    [90] F.Habets, J. Noulhan et al. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area,Part I: Model and database [J] .J.Hydrol,1999,217
    [91] 王志建.宝塔土地[M].西安:西安地图出版社,1999:7~15
    [92] 吴发启,张玉斌,佘雕,等.黄土高原南部土壤水分环境效应研究[J].水土保持研究,2003,10(4):128-130
    [93] 何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化[J].山地学报 2 003,21(2):149~156
    [94] 中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M]. 北京:科学出版社,1978: 114-118
    [95] 陕西省土壤普查办公室,郭兆元.陕西土壤[M].北京:科学出版社,1992:308-312
    [96] 杨维西.试论我国北方地区人工植被的土壤干化问题.林业科学,1996,32(1):78~84
    [97] Horton R E. An approach toward a physical interpretation of infiltration capacity[J]. Soil Sci,Soc Am Proc,1940,3:399-417
    [98] 刘俊民,余新晓.水文与水资源学[M] .北京:中国林业出版社,1999:148-149
    [99] 康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994.
    [100] Allen R G, Pereira L S, Raes D, Smith M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirement[M]. Rome: Food and Agriculture Organization of the United Nations,1998.
    [101] Irmak, A Irmak, R G Allen, J W Jones. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates [J]. Journal of Irrigation and Drainage Engineering,ASCE,129(5):336 347.
    [102] Allen R G, Pereira L,S, Raes D, Smith M. Crop Evapotranspiration. FAO Irrigation and Drainage Paper 24, Rome, 1998.
    [103] 卢玲,李新,黄春林,Frank Veroustraete. 中国西部植被水分利用效率的时空特征分析[J]. 冰川冻土,2007,29(5):778-784
    [104] Peter J,Brockwell, Richard A,等著.时间序列的理论与方法[M].田铮,译.高等教育出版社,2005:2-56
    [105] 陈海滨,刘淑明,党坤良,安锋. 黄土高原沟壑区林地土壤水分特征的研究(Ⅱ)——土壤水分有效性及其亏缺状况的分析[J]. 西北林学院学报,2004,19(1):5~8
    [106] 韩仕峰,李玉山等. 黄土高原地区土壤水分区域动态特征[J],水土保持研究,1989,(1)
    [107] 李玉山. 黄土高原地区土壤水分循环特征及其对陆地水分循环的影响[J]. 生态学报,1983,3(2):91~100.
    [108] 李凯荣,王佑民.黄土塬区刺槐人工林地土壤水分特征[M].黄土高原沟壑区综合治理及其效益研究.1990.北京
    [109] 杨建伟,梁宗锁,韩蕊莲等.不同土壤水分下刺槐和油松的生理特征[J]. 植物资源与环境学报,2004,13(3): 12-17
    [110] 王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征[J].应用生态学报,2004,15(3):436-422
    [111] 李军; 陈兵; 李小芳; 赵玉娟等. 黄土高原不同植被类型区人工林地深层土壤干燥化效应[J].生态学报,2008,28(4):1430-1445
    [112] 赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(1):37-39.
    [113] Doorenbos J and Kassam AH.1979 ,Yield response to water.Irrig.Drain. Pap.33,FAO,Rome
    [114] Doorenbos J and Pruitt WO.1977, Guidelines for predicting crop water requirements.FAO Irrigation and Drainage Paper 24, Rome
    [115] Jesen M E, Wright J L and Pratt B J.1971.Estimating soil moisture depletion from climate, crop and soil data.Trans of the ASAE , 14:954~959

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700