乙酸、非酯化脂肪酸、生长激素和催乳素调控奶牛肝细胞脂代谢的信号机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳脂是牛奶的重要营养成分,乳脂的合成受到机体神经内分泌激素、细胞因子和营养代谢信号等的调节。肝脏是奶牛机体分配调节乳脂前体物的重要组织器官,奶牛泌乳期间,肝脏在神经内分泌激素、细胞因子和营养代谢信号的作用下,将乳腺外组织的营养物质优先流向乳腺,用于乳脂等营养物质的合成,发挥能量迁移作用。生长激素(Growth hormone,GH)和催乳素(Prolactin,PRL)是调节奶牛乳脂合成的重要激素;此外,近几年也研究发现乳脂前体物乙酸和非酯化脂肪酸(Non-esterified fatty acids,NEFAs)等营养代谢信号也可作为信号分子影响肝脏脂代谢基因的表达。所以明确GH、PRL、乙酸和NEFAs调节奶牛肝脏脂代谢的信号机制对人工干预提高乳脂有重要理论意义。所以本研究利用体外培养奶牛肝细胞,研究GH、PRL、乙酸和NEFAs调控奶牛肝细胞脂代谢的信号传导通路。
     乙酸激活奶牛肝细胞腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)信号通路,调节肝细胞脂代谢。乙酸进入肝细胞后代谢成乙酰辅酶A,消耗肝细胞内ATP,使AMP/ATP比值增加,增加AMPKα的磷酸化,促进过氧化物酶体增殖物激活受体(Peroxisome proliferator-activated receptor α,PPARα)的表达和转录活性,进而上调脂氧化关键酶基因的表达;激活的AMPKα抑制固醇调节元件结合蛋白(Sterol regulatory element-binding protein1c,SREBP-1c)和碳水化合物反应元件结合蛋白(Carbohydrate responsive element-bindingprotein,ChREBP)的表达和转录活性,下调脂合成关键酶基因的表达;同时激活的AMPKα抑制乙酰辅酶A羧化酶(Acetyl-CoA carboxylase1,ACC1)活性,促进肉碱酯酰转移酶1(Carnitine palmitoyltransferase1,CPT1)活性。表明乙酸激活奶牛肝细胞AMPK信号通路,促进脂氧化,降低脂合成,使肝细胞内甘油三酯(Triglyceride,TG)含量降低,减少肝脂蓄积。
     NEFAs调控奶牛肝细胞脂代谢的AMPK信号机制。NEFAs通过上调肝脏激酶B1(Liver kinase B1,LKB1)的蛋白表达,增加AMPKα磷酸化水平,促进PPARα的表达和转录活性,另一方面NEFAs以配体激活物的形式独立于AMPKα直接激活PPARα,上调脂氧化基因表达。激活的AMPKα抑制SREBP-1c和ChREBP的表达和转录活性,下调脂合成基因的表达。同时激活的AMPKα抑制ACC1酶活性,增加CPT-1酶活性。NEFAs激活肝细胞AMPK信号通路,增加脂氧化作用,抑制脂合成作用。
     GH激活肝细胞Janus激酶-信号转导子和转录激活子(Janus kinase2--transcription factor signal transducer and activator of transcription5,JAK2-STAT5)通路,STAT5磷酸化水平增加,促进肝细胞胰岛素样生长因子1(Insulin-like growth factor,IGF-1)的表达、合成和分泌。IGF-1以自分泌和旁分泌的形式激活磷脂酰肌醇3-激酶蛋白激酶B(Phosphatidyl inositol3-kinase-protein kinase B,PI3K-Akt)信号通路,促进SREBP-1c表达和转录活性,增强肝细胞的TG的合成和转运,为乳脂合成提供更多的乳脂前体物。此外GH激活JAK2-STAT5通路,STAT5磷酸化水平增加,抑制PPARα活性,降低肝细胞脂氧化作用。
     PRL激活肝细胞PI3K-Akt信号通路,促进SREBP-1c表达和转录活性,上调肝细胞脂合成和转运基因的表达,促进肝细胞TG合成和输出,为乳脂合成提供更多的乳脂前体物。
     根据以上结果显示,乳脂前体物乙酸和NEFAs促进肝细胞脂氧化,降低脂合成,减少肝脂蓄积;GH和PRL促进肝细胞脂合成和转运,为乳脂合成提供更多的乳脂前体物。
Milk fat is an important nutrient composition in milk. The synthesis of milk fat isregulated by neuroendocrine hormone, cytokines, and nutrition metabolic signals suchas milk fat precursors. Liver is the main organ for regulating and assigning milk fatprecursors. Liver transports the nutrition to breast for milk fat synthesis under theregulation of neuroendocrine hormone, cytokines, and nutrition metabolic signals indairy cows of lactation period. Growth hormone (GH) and prolactin (PRL) is the mostimportant hormone for the regulation of milk fat synthesis in dairy cows. Furthermore,several studies demonstrated that the acetic acid and non-esterified fatty acids(NEFAs) act as signaling molecules to regulate the expression of lipid metabolismgenes in the liver. Therefore, the objective of the present experiment was toinvestigate the signaling mechanism of GH, PRL, acetic acid and NEFAs on thehepatic lipid metabolism in the bovine hepatocytes cultured in vitro, which shouldprovide valuable information to improve the content of milk fat in dairy cows.
     Acetic acid regulates the lipid metabolism through AMP-activated protein kinase(AMPK) signaling pathway. Acetic acid is metabolized to acetyl-CoA in hepatocytes withthe consumption of ATP. An elevated AMP/ATP ratio increases the phosphorylation andactivity of AMPKα. Activated AMPKα increases the expression and transcriptional activityof peroxisome proliferator-activated receptor α (PPARα), thereby increasing the expression oflipolytic genes. Furthermore, activated AMPKα inhibits the expression and transcriptionalactivity of sterol regulatory element-binding protein1c (SREBP-1c) and carbohydrateresponsive element-binding protein (ChREBP), thereby reducing the expression of lipogenicgenes. In addition, activated AMPKα directly phosphorylate acetyl-CoA carboxylase1(ACC1) and inhibit its activity, and indirectly increase carnitine palmitoyltransferase1(CPT-1) activity. Consequently, acetic acid activates AMPKα signaling pathway, whichincreases lipolysis and decreases lipid synthesis in bovine hepatocytes, thereby reducing hepatic fat accumulation in dairy cows.
     NEFAs regulate the lipid metabolism through AMPK signaling pathway. NEFAsactivate AMPKα through increasing the expression of liver kinase B1. Activated AMPKαincreases the expression and transcriptional activity of PPARα. NEFAs also activate PPARαindependent of AMPKα in a ligand manner. Activated PPARα increases the expression oflipolytic genes. Activated AMPKα inhibits the expression and transcriptional activity ofSREBP-1c and ChREBP, thereby reducing the expression of the lipogenic genes. In addition,activated AMPKα directly phosphorylate ACC1and inhibit its activity, and indirectly increaseCPT1activity. Consequently, NEFAs increase lipid oxidization and inhibit lipid synthesis inbovine hepatocytes to produce more ATP.
     GH activates Janus kinase2-transcription factor signal transducer and activatorof transcription5(JAK2-STAT5) signaling pathway to promote the synthesis andsecretion of insulin-like growth factor (IGF-1). IGF-1activates phosphatidyl inositol3-kinase-protein kinase B (PI3K-Akt) signaling pathway, which increases theexpression and transcriptional activity of SREBP-1c, thereby increasing lipid synthsisand transportion in bovine hepatocytes. The synthesized TG is used for the syntheis ofmilk fat. Furthermore, GH activates JAK2-STAT5signaling pathway, which inhibitsthe expression and transcriptional activity of PPARα, thereby decreasing lipidoxidation in bovine hepatocytes.
     PRL activates PI3K-Akt signaling pathway, which increases the expression andtranscriptional activity of SREBP-1c. Activated SREBP-1c increases the expression of lipidsynthsis and transportion genes, which promotes the synthesis and transportion of TG inbovine hepatocytes, thereby providing more precursors for the milk fat synthsis.
     In summary, acetic acid and NEFAs increase lipid oxidation and decrease lipidsynthesis in bovine hepatocytes, which reduces fat accumation. GH and PRL increaselipid synthsis and transportion in bovine hepatocytes, thereby providing more milk fatprecursors for milk fat synthesis.
引文
[1]胡宝森.影响奶牛乳脂合成的因素分析[J].山东畜牧兽医,2010,012):71-2.
    [2] MASHEK D, GRUMMER R. Effects of long chain fatty acids on lipid andglucose metabolism in monolayer cultures of bovine hepatocytes [J]. Journal ofdairy science,2003,86(7):2390-6.
    [3] BEAVEN S W, TONTONOZ P. Nuclear receptors in lipid metabolism: targetingthe heart of dyslipidemia [J]. Annu Rev Med,2006,57(313-29.
    [4] TOWLER M C, HARDIE D G. AMP-activated protein kinase in metaboliccontrol and insulin signaling [J]. Circulation research,2007,100(3):328-41.
    [5] XU C, WANG Z, ZHANG R-H, et al. Effect of NEFA and glucose levels onCPT-I mRNA expression and translation in cultured bovine hepatocytes [J]. TheJournal of veterinary medical science/the Japanese Society of Veterinary Science,2011,73(1):97.
    [6] PITT R, VAN KESSEL J, FOX D, et al. Prediction of ruminal volatile fattyacids and pH within the net carbohydrate and protein system [J]. Journal ofanimal science,1996,74(1):226-44.
    [7] WANG X, LI X, ZHAO C, et al. Correlation between composition of thebacterial community and concentration of volatile fatty acids in the rumenduring the transition period and ketosis in dairy cows [J]. Applied andenvironmental microbiology,2012,78(7):2386-92.
    [8] GRANT R, COLENBRANDER V, MERTENS D. Milk fat depression in dairycows: role of particle size of alfalfa hay [J]. Journal of dairy science,1990,73(7):1823-33.
    [9]荀文娟,刘强,张延利.两种常见乙酸盐在畜牧生产中的应用[J].饲料博览:技术版,2008,1):35-8.
    [10]李有观.饲料成分与牛奶质量的关系[J].饲料研究,2000,7(36-7.
    [11]王吉峰,王加启,李树聪, et al.不同日粮对奶牛瘤胃发酵模式及泌乳性能的影响[J].畜牧兽医学报,2005,36(6):569-73.
    [12] KHORASANI G, KENNELLY J. Influence of carbohydrate source and bufferon rumen fermentation characteristics, milk yield, and milk composition inlate-lactation Holstein cows [J]. Journal of dairy science,2001,84(7):1707-16.
    [13] LLAMAS-LAMAS G, COMBS D. Effect of forage to concentrate ratio andintake level on utilization of early vegetative alfalfa silage by dairy cows [J].Journal of dairy science,1991,74(2):526-36.
    [14] CAD RNIGA-VALI O C, GRUMMER R R, ARMENTANO L E, et al. Effectsof fatty acids and hormones on fatty acid metabolism and gluconeogenesis inbovine hepatocytes [J]. Journal of dairy science,1997,80(4):646-56.
    [15] VAN DORLAND H, SADRI H, MOREL I, et al. Coordinated gene expressionin adipose tissue and liver differs between cows with high or low NEFAconcentrations in early lactation [J]. Journal of Animal Physiology and AnimalNutrition,2012,96(1):137-47.
    [16] GRUMMER R R, BERTICS S J, LACOUNT D W, et al. Estrogen induction offatty liver in dairy cattle [J]. Journal of dairy science,1990,73(6):1537-43.
    [17]王吉峰,王加启.奶牛营养代谢对乳脂合成调控机制的研究进展[J].中国畜牧兽医,2003,30(2):6-10.
    [18] PALMQUIST D, SCHANBACHER F. Dietary fat composition influences fattyacid composition of milk fat globule membrane in lactating cows [J]. Lipids,1991,26(9):718-22.
    [19]熊本海,卢德勋.瘤胃乙酸与丙酸摩尔比例的改变对瘤胃发酵及血液指标的影响[J].畜牧兽医学报,2002,33(6):537-43.
    [20] KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expressionof genes for fatty acid oxidation enzymes in liver to suppress body fataccumulation [J]. Journal of agricultural and food chemistry,2009,57(13):5982-6.
    [21] YAMASHITA H, FUJISAWA K, ITO E, et al. Improvement of obesity andglucose tolerance by acetate in Type2diabetic Otsuka Long-Evans TokushimaFatty (OLETF) rats [J]. Bioscience, biotechnology, and biochemistry,2007,71(5):1236-43.
    [22] CARLING D. The AMP-activated protein kinase cascade–a unifying system forenergy control [J]. Trends in biochemical sciences,2004,29(1):18-24.
    [23] KEMP B, STAPLETON D, CAMPBELL D, et al. AMP-activated protein kinase,super metabolic regulator [J]. Biochemical Society Transactions,2003,31(162-8.
    [24] HARDIE D G. Minireview: the AMP-activated protein kinase cascade: the keysensor of cellular energy status [J]. Endocrinology,2003,144(12):5179-83.
    [25] GAIDHU M P, FEDIUC S, ANTHONY N M, et al. Prolonged AICAR-inducedAMP-kinase activation promotes energy dissipation in white adipocytes: novelmechanisms integrating HSL and ATGL [J]. Journal of lipid research,2009,50(4):704-15.
    [26] HURLEY R L, ANDERSON K A, FRANZONE J M, et al. TheCa2+/calmodulin-dependent protein kinase kinases are AMP-activated proteinkinase kinases [J]. Journal of Biological Chemistry,2005,280(32):29060-6.
    [27] SAKAMOTO K, MCCARTHY A, SMITH D, et al. Deficiency of LKB1inskeletal muscle prevents AMPK activation and glucose uptake duringcontraction [J]. The EMBO journal,2005,24(10):1810-20.
    [28] SHAW R J, LAMIA K A, VASQUEZ D, et al. The kinase LKB1mediatesglucose homeostasis in liver and therapeutic effects of metformin [J]. ScienceSignaling,2005,310(5754):1642.
    [29] LONG Y C, ZIERATH J R. AMP-activated protein kinase signaling inmetabolic regulation [J]. Journal of Clinical Investigation,2006,116(7):1776.
    [30] ANDREELLI F, FORETZ M, KNAUF C, et al. Liver adenosinemonophosphate-activated kinase-α2catalytic subunit is a key target for thecontrol of hepatic glucose production by adiponectin and leptin but not insulin[J]. Endocrinology,2006,147(5):2432-41.
    [31] FORETZ M, ANCELLIN N, ANDREELLI F, et al. Short-term overexpressionof a constitutively active form of AMP-activated protein kinase in the liver leadsto mild hypoglycemia and fatty liver [J]. Diabetes,2005,54(5):1331-9.
    [32] BRONNER M, HERTZ R, BAR-TANA J. Kinase-independent transcriptionalco-activation of peroxisome proliferator-activated receptor α by AMP-activatedprotein kinase [J]. Biochemical Journal,2004,384(Pt2):295.
    [33] LI Y, XU S, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibitsSREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-inducedinsulin-resistant mice [J]. Cell metabolism,2011,13(4):376-88.
    [34] KAWAGUCHI T, OSATOMI K, YAMASHITA H, et al. Mechanism for FattyAcid “Sparing” Effect on Glucose-induced Transcription REGULATION OFCARBOHYDRATE-RESPONSIVE ELEMENT-BINDING PROTEIN BYAMP-ACTIVATED PROTEIN KINASE [J]. Journal of Biological Chemistry,2002,277(6):3829-35.
    [35] UYEDA K, REPA J J. Carbohydrate response element binding protein, ChREBP,a transcription factor coupling hepatic glucose utilization and lipid synthesis [J].Cell metabolism,2006,4(2):107-10.
    [36] PEETERS A, BAES M. Role of PPARα in Hepatic Carbohydrate Metabolism[J]. PPAR research,2010,2010(
    [37] EVERETT L, GALLI A, CRABB D. The role of hepatic peroxisomeproliferator‐activated receptors (PPARs) in health and disease [J]. Liver,2000,20(3):191-9.
    [38] LAKE B G. Mechanisms of hepatocarcinogenicity of peroxisome-proliferatingdrugs and chemicals [J]. Annual Review of Pharmacology and Toxicology,1995,35(1):483-507.
    [39] KUROSAKI E, NAKANO R, SHIMAYA A, et al. Differential effects of YM440a hypoglycemic agent on binding to a peroxisome proliferator-activated receptorgamma and its transactivation [J]. Biochemical pharmacology,2003,65(5):795.
    [40] SAKAKIBARA S, YAMAUCHI T, OSHIMA Y, et al. Acetic acid activateshepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice [J].Biochemical and biophysical research communications,2006,344(2):597-604.
    [41] GOSMAIN Y, DIF N, BERBE V, et al. Regulation of SREBP-1expression andtranscriptional action on HKII and FAS genes during fasting and refeeding in rattissues [J]. Journal of lipid research,2005,46(4):697-705.
    [42] FERRE P, FOUFELLE F. Hepatic steatosis: a role for de novo lipogenesis andthe transcription factor SREBP‐1c [J]. Diabetes, Obesity and Metabolism,2010,12(83-92.
    [43] FERRE P, FOUFELLE F. SREBP-1c transcription factor and lipid homeostasis:clinical perspective [J]. Hormone Research in Paediatrics,2007,68(2):72-82.
    [44] SHIMANO H, SHIMOMURA I, HAMMER R E, et al. Elevated levels ofSREBP-2and cholesterol synthesis in livers of mice homozygous for a targeteddisruption of the SREBP-1gene [J]. Journal of Clinical Investigation,1997,100(8):2115.
    [45] CHAKRAVARTY K, LEAHY P, BECARD D, et al. Sterol regulatoryelement-binding protein-1c mimics the negative effect of insulin onphosphoenolpyruvate carboxykinase (GTP) gene transcription [J]. Journal ofBiological Chemistry,2001,276(37):34816-23.
    [46] LIANG G, YANG J, HORTON J D, et al. Diminished hepatic response tofasting/refeeding and liver X receptor agonists in mice with selective deficiencyof sterol regulatory element-binding protein-1c [J]. Journal of BiologicalChemistry,2002,277(11):9520-8.
    [47] IIZUKA K, BRUICK R K, LIANG G, et al. Deficiency of carbohydrateresponse element-binding protein (ChREBP) reduces lipogenesis as well asglycolysis [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2004,101(19):7281-6.
    [48] DENTIN R, BENHAMED F, HAINAULT I, et al. Liver-specific inhibition ofChREBP improves hepatic steatosis and insulin resistance in ob/ob mice [J].Diabetes,2006,55(8):2159-70.
    [49] ZHANG B B, ZHOU G, LI C. AMPK: an emerging drug target for diabetes andthe metabolic syndrome [J]. Cell metabolism,2009,9(5):407-16.
    [50] WINDER W, HARDIE D. Inactivation of acetyl-CoA carboxylase andactivation of AMP-activated protein kinase in muscle during exercise [J].American Journal of Physiology-Endocrinology And Metabolism,1996,270(2):E299-E304.
    [51] FRIGGENS N, NEWBOLD J. Towards a biological basis for predicting nutrientpartitioning: the dairy cow as an example [J]. ANIMAL-CAMBRIDGEUNIVERSITY PRESS-,2007,1(1):87.
    [52] BOBE G, YOUNG J, BEITZ D. Invited Review: Pathology, Etiology,Prevention, and Treatment of Fatty Liver in Dairy Cows [J]. Journal of dairyscience,2004,87(10):3105-24.
    [53] CAMERON R, DYK P, HERDT T, et al. Dry cow diet, management, and energybalance as risk factors for displaced abomasum in high producing dairy herds [J].Journal of dairy science,1998,81(1):132-9.
    [54] JORRITSMA R, JORRITSMA H, SCHUKKEN Y, et al. Prevalence andindicators of post partum fatty infiltration of the liver in nine commercial dairyherds in The Netherlands [J]. Livestock Production Science,2001,68(1):53-60.
    [55] HACHENBERG S, WEINKAUF C, HISS S, et al. Evaluation of classificationmodes potentially suitable to identify metabolic stress in healthy dairy cowsduring the peripartal period [J]. Journal of animal science,2007,85(8):1923-32.
    [56] LI X, LI X, BAI G, et al. Effects of non-esterified fatty acids on thegluconeogenesis in bovine hepatocytes [J]. Molecular and cellular biochemistry,2012,359(1):385-8.
    [57] SUCHANKOVA G, TEKLE M, SAHA A K, et al. Dietary polyunsaturated fattyacids enhance hepatic AMP-activated protein kinase activity in rats [J].Biochemical and biophysical research communications,2005,326(4):851-8.
    [58] JUMP D B, BOTOLIN D, WANG Y, et al. Docosahexaenoic acid (DHA) andhepatic gene transcription [J]. Chemistry and physics of lipids,2008,153(1):3-13.
    [59] PAN D A, MATER M K, THELEN A P, et al. Evidence against the peroxisomeproliferator-activated receptor α (PPARα) as the mediator for polyunsaturatedfatty acid suppression of hepatic L-pyruvate kinase gene transcription [J].Journal of lipid research,2000,41(5):742-51.
    [60] PAWAR A, JUMP D B. Unsaturated fatty acid regulation of peroxisomeproliferator-activated receptor α activity in rat primary hepatoctes [J]. Journal ofBiological Chemistry,2003,278(38):35931-9.
    [61] ALLMANN D W, GIBSON D M. Fatty acid synthesis during early linoleic aciddeficiency in the mouse [J]. Journal of lipid research,1965,6(1):51-62.
    [62] MATER M K, THELEN A P, PAN D A, et al. Sterol response element-bindingprotein1c (SREBP1c) is involved in the polyunsaturated fatty acid suppressionof hepatic S14gene transcription [J]. Journal of Biological Chemistry,1999,274(46):32725-32.
    [63] JUMP D B, CLARKE S D. Regulation of gene expression by dietary fat [J].Annual review of nutrition,1999,19(1):63-90.
    [64] DOBRZYN A, DOBRZYN P, MIYAZAKI M, et al. Polyunsaturated fatty acidsdo not activate AMP-activated protein kinase in mouse tissues [J]. Biochemicaland biophysical research communications,2005,332(3):892-6.
    [65] HANNAH V C, OU J, LUONG A, et al. Unsaturated fatty acids down-regulatesrebp isoforms1a and1c by two mechanisms in HEK-293cells [J]. Journal ofBiological Chemistry,2001,276(6):4365-72.
    [66] JUMP D B. Fatty acid regulation of gene transcription [J]. Critical reviews inclinical laboratory sciences,2004,41(1):41-78.
    [67] OU J, TU H, SHAN B, et al. Unsaturated fatty acids inhibit transcription of thesterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizingligand-dependent activation of the LXR [J]. Proceedings of the NationalAcademy of Sciences,2001,98(11):6027-32.
    [68] TOWLE H C. Glucose as a regulator of eukaryotic gene transcription [J]. Trendsin Endocrinology&Metabolism,2005,16(10):489-94.
    [69] DENTIN R, BENHAMED F, PEGORIER J, et al. Polyunsaturated fatty acidssuppress glycolytic and lipogenic genes through the inhibition of ChREBPnuclear protein translocation [J]. Journal of Clinical Investigation,2005,115(10):2843.
    [70] LI P, LI X, FU S, et al. Alterations of fatty acid β-oxidation capability in theliver of ketotic cows [J]. Journal of dairy science,2012,95(4):1759-66.
    [71] RHOADS M, MEYER J, KOLATH S, et al. Growth hormone receptor,insulin-like growth factor (IGF)-1, and IGF-binding protein-2expression in thereproductive tissues of early postpartum dairy cows [J]. Journal of dairy science,2008,91(5):1802-13.
    [72] MACRINA A, KAUF A, KENSINGER R. Effect of bovine somatotropinadministration during induction of lactation in15-month-old heifers onproduction and health [J]. Journal of dairy science,2011,94(9):4566-73.
    [73] MACRINA A, TOZER P, KENSINGER R. Induced lactation in pubertal heifers:Efficacy, response to bovine somatotropin, and profitability [J]. Journal of dairyscience,2011,94(3):1355-64.
    [74]季昀,庞学燕,田青, et al.生长激素和胰岛素样生长因子I对奶牛乳蛋白合成关键激酶及调节因子mRNA表达量的影响[J].动物营养学报,2013,25(1):198-207.
    [75]潘龙,卜登攀,孙鹏, et al.生长激素轴的组成及其对奶牛泌乳的调控[J].中国畜牧兽医,1):125-30.
    [76] VIJAYAKUMAR A, NOVOSYADLYY R, WU Y, et al. Biological effects ofgrowth hormone on carbohydrate and lipid metabolism [J]. Growth Hormone&IGF Research,2010,20(1):1-7.
    [77] MULLEN M, LYNCH C, WATERS S, et al. Single nucleotide polymorphismsin the growth hormone and insulin-like growth factor-1genes are associatedwith milk production, body condition score and fertility traits in dairy cows [J].Genetics and Molecular Research,2011,10(3):1819-30.
    [78] ELESWARAPU S, GE X, WANG Y, et al. Growth hormone-activated STAT5may indirectly stimulate IGF-I gene transcription through HNF-3γ [J].Molecular Endocrinology,2009,23(12):2026-37.
    [79] DAVIS S, GLUCKMAN P, HART I, et al. Effects of injecting growth hormoneor thyroxine on milk production and blood plasma concentrations of insulin-likegrowth factors I and II in dairy cows [J]. Journal of endocrinology,1987,114(1):17-24.
    [80] SCHIRRA H J, ANDERSON C G, WILSON W J, et al. Altered metabolism ofgrowth hormone receptor mutant mice: a combined NMR metabonomics andmicroarray study [J]. PloS one,2008,3(7): e2764.
    [81]张明哲,叶丹,张志和, et al.生长激素受体及其介导的信号转导[J].细胞生物学杂志,2005,27(1):49-52.
    [82] UDY G B, TOWERS R P, SNELL R G, et al. Requirement of STAT5b for sexualdimorphism of body growth rates and liver gene expression [J]. Proceedings ofthe National Academy of Sciences,1997,94(14):7239-44.
    [83] MALLETTE F A, GAUMONT-LECLERC M-F, FERBEYRE G. The DNAdamage signaling pathway is a critical mediator of oncogene-inducedsenescence [J]. Genes&development,2007,21(1):43-8.
    [84] HOLLOWAY M G, CUI Y, LAZ E V, et al. Loss of sexually dimorphic livergene expression upon hepatocyte-specific deletion of Stat5a-Stat5b locus [J].Endocrinology,2007,148(5):1977-86.
    [85] BARCLAY J L, NELSON C N, ISHIKAWA M, et al. GH-dependent STAT5signaling plays an important role in hepatic lipid metabolism [J]. Endocrinology,2011,152(1):181-92.
    [86] CHIA D J, VARCO-MERTH B, ROTWEIN P. Dispersed chromosomalStat5b-binding elements mediate growth hormone-activated insulin-like growthfactor-I gene transcription [J]. Journal of Biological Chemistry,2010,285(23):17636-47.
    [87] EHRET G B, REICHENBACH P, SCHINDLER U, et al. DNA BindingSpecificity of Different STAT Proteins COMPARISON OF IN VITROSPECIFICITY WITH NATURAL TARGET SITES [J]. Journal of BiologicalChemistry,2001,276(9):6675-88.
    [88] BAIK M, YU J H, HENNIGHAUSEN L. Growth hormone–STAT5regulationof growth, hepatocellular carcinoma, and liver metabolism [J]. Annals of theNew York Academy of Sciences,2011,1229(1):29-37.
    [89] FAN Y, MENON R K, COHEN P, et al. Liver-specific deletion of the growthhormone receptor reveals essential role of growth hormone signaling in hepaticlipid metabolism [J]. Journal of Biological Chemistry,2009,284(30):19937-44.
    [90]邢海权,闫梦菲.胰岛素样生长因子IGF-1的研究进展[J].畜禽业,2011,8):36-7.
    [91] KLEINBERG D L, FELDMAN M, RUAN W. IGF-I: an essential factor interminal end bud formation and ductal morphogenesis [J]. Journal of mammarygland biology and neoplasia,2000,5(1):7-17.
    [92] LANNA D P, HOUSEKNECHT K L, HARRIS D M, et al. Effect ofsomatotropin treatment on lipogenesis, lipolysis, and related cellularmechanisms in adipose tissue of lactating cows [J]. Journal of dairy science,1995,78(8):1703-12.
    [93] BINELLI M, VANDERKOOI W, CHAPIN L, et al. Comparison of growthhormone-releasing factor and somatotropin: Body growth and lactation ofprimiparous cows [J]. Journal of dairy science,1995,78(10):2129-39.
    [94] ARITO M, HORIBA T, HACHIMURA S, et al. Growth factor-inducedphosphorylation of sterol regulatory element-binding proteins inhibitssumoylation, thereby stimulating the expression of their target genes, lowdensity lipoprotein uptake, and lipid synthesis [J]. Journal of BiologicalChemistry,2008,283(22):15224-31.
    [95] SMITH T M, GILLILAND K, CLAWSON G A, et al. IGF-1induces SREBP-1expression and lipogenesis in SEB-1sebocytes via activation of thephosphoinositide3-kinase/Akt pathway [J]. Journal of InvestigativeDermatology,2007,128(5):1286-93.
    [96] PORSTMANN T, GRIFFITHS B, CHUNG Y-L, et al. PKB/Akt inducestranscription of enzymes involved in cholesterol and fatty acid biosynthesis viaactivation of SREBP [J]. Oncogene,2005,24(43):6465-81.
    [97] CHANG Y, WANG J, LU X, et al. KGF induces lipogenic genes through a PI3Kand JNK/SREBP-1pathway in H292cells [J]. Journal of lipid research,2005,46(12):2624-35.
    [98] ENGELMAN J A, LUO J, CANTLEY L C. The evolution ofphosphatidylinositol3-kinases as regulators of growth and metabolism [J].Nature Reviews Genetics,2006,7(8):606-19.
    [99] LIU P, CHENG H, ROBERTS T M, et al. Targeting the phosphoinositide3-kinase pathway in cancer [J]. Nature Reviews Drug Discovery,2009,8(8):627-44.
    [100] BI L, OKABE I, BERNARD D J, et al. Early embryonic lethality in micedeficient in the p110catalytic subunit of PI3-kinase [J]. Mammalian genome,2002,13(3):169-72.
    [101] TAKAHASHI K, MURAKAMI M, YAMANAKA S. Role of thephosphoinositide3-kinase pathway in mouse embryonic stem (ES) cells [J].Biochemical Society Transactions,2005,33(1522-5.
    [102] FOUKAS L C, CLARET M, PEARCE W, et al. Critical role for the p110αphosphoinositide-3-OH kinase in growth and metabolic regulation [J]. Nature,2006,441(7091):366-70.
    [103] JIA S, LIU Z, ZHANG S, et al. Essential roles of PI (3) K–p110&bgr; in cellgrowth, metabolism and tumorigenesis [J]. Nature,2008,454(7205):776-9.
    [104] WOODGETT J R. Recent advances in the protein kinase B signaling pathway[J]. Current opinion in cell biology,2005,17(2):150-7.
    [105] CHO H, MU J, KIM J K, et al. Insulin resistance and a diabetes mellitus-likesyndrome in mice lacking the protein kinase Akt2(PKBbeta)[J]. ScienceSignalling,2001,292(5522):1728.
    [106] GEORGE S, ROCHFORD J J, WOLFRUM C, et al. A family with severeinsulin resistance and diabetes due to a mutation in AKT2[J]. ScienceSignalling,2004,304(5675):1325.
    [107] SMITH T M, CONG Z, GILLILAND K L, et al. Insulin-like growth factor-1induces lipid production in human SEB-1sebocytes via sterol responseelement-binding protein-1[J]. Journal of Investigative Dermatology,2006,126(6):1226-32.
    [108] LUO D-X, PENG X-H, XIONG Y, et al. Dual role of insulin-like growthfactor-1in acetyl-CoA carboxylase-alpha activity in human colon cancer cellsHCT-8: downregulating its expression and phosphorylation [J]. Molecular andcellular biochemistry,2011,357(1):255-62.
    [109] FRICK F, LIND N D, AM EN C, et al. Interaction between growth hormoneand insulin in the regulation of lipoprotein metabolism in the rat [J]. AmericanJournal of Physiology-Endocrinology And Metabolism,2002,283(5):E1023-E31.
    [110] AM EN C, LIND N D, LARSSON B-M, et al. Effects of gender and GHsecretory pattern on sterol regulatory element-binding protein-1c and its targetgenes in rat liver [J]. American Journal of Physiology-Endocrinology AndMetabolism,2004,287(6): E1039-E48.
    [111] LJUNGBERG A, LIND N D, AM EN C, et al. Importance of PPARα for theeffects of growth hormone on hepatic lipid and lipoprotein metabolism [J].Growth Hormone&IGF Research,2007,17(2):154-64.
    [112] OLSSON B, BOHLOOLY-Y M, FITZGERALD S M, et al. Bovine growthhormone transgenic mice are resistant to diet-induced obesity but develophyperphagia, dyslipidemia, and diabetes on a high-fat diet [J]. Endocrinology,2005,146(2):920-30.
    [113] WANG Z, MASTERNAK M M, AL-REGAIEY K A, et al. Adipocytokines andthe regulation of lipid metabolism in growth hormone transgenic andcalorie-restricted mice [J]. Endocrinology,2007,148(6):2845-53.
    [114] JALOULI M, CARLSSON L, AM EN C, et al. Sex difference in hepaticperoxisome proliferator-activated receptor α expression: influence of pituitaryand gonadal hormones [J]. Endocrinology,2003,144(1):101-9.
    [115]佟慧丽,高学军,李庆章, et al.胰岛素,催乳素对奶山羊乳腺上皮细胞泌乳功能的影响[J].畜牧兽医学报,2008,39(6):721-5.
    [116]郭彦斌,杨海玲,王慧.奶牛催乳素(PRL)及其受体(PRLR)基因研究进展[J].山东农业大学学报:自然科学版,2009,40(3):469-72.
    [117] BURGOS S, DAI M, CANT J. Nutrient availability and lactogenic hormonesregulate mammary protein synthesis through the mammalian target ofrapamycin signaling pathway [J]. Journal of dairy science,2010,93(1):153-61.
    [118] AISAKA K. Effects of prolactin on lipid metabolism (author's transl)][J]. NihonSanka Fujinka Gakkai zasshi,1982,34(5):559.
    [119] FREEMAN M E, KANYICSKA B, LERANT A, et al. Prolactin: structure,function, and regulation of secretion [J]. Physiological Reviews,2000,80(4):1523-631.
    [120] HU Z-Z, ZHUANG L, MENG J, et al. The Human Prolactin Receptor GeneStructure and Alternative Promoter Utilization: The Generic Promoter hPII and aNovel Human Promoter hPN [J]. Journal of Clinical Endocrinology&Metabolism,1999,84(3):1153-6.
    [121] BOLE-FEYSOT C, GOFFIN V, EDERY M, et al. Prolactin (PRL) and itsreceptor: actions, signal transduction pathways and phenotypes observed in PRLreceptor knockout mice [J]. Endocrine reviews,1998,19(3):225.
    [122]梅学华,曾雄.催乳素作用机制的研究进展[J].畜禽业,2008,4):16-9.
    [123]陈建晖,佟慧丽,李庆章, et al.胰岛素,催乳素和孕酮对奶牛乳腺上皮细胞泌乳功能的影响[J].中国奶牛,2008,8):9-13.
    [124] ZHONG L, PARMER T, ROBERTSON M, et al. Prolactin-mediated inhibitionof20α-hydroxysteroid dehydrogenase gene expression and the tyrosine kinasesystem [J]. Biochemical and biophysical research communications,1997,235(3):587-92.
    [125] BISHOP J D, NIEN W L, DAUPHINEE S M, et al. Prolactin activatesmammalian target-of-rapamycin through phosphatidylinositol3-kinase andstimulates phosphorylation of p70S6K and4E-binding protein-1in lymphomacells [J]. Journal of endocrinology,2006,190(2):307-12.
    [126] BINART N, HELLOCO C, ORMANDY C J, et al. Rescue of preimplantatoryegg development and embryo implantation in prolactin receptor-deficient miceafter progesterone administration [J]. Endocrinology,2000,141(7):2691-7.
    [127]张才,王利民,刘国文, et al.犊牛肝细胞的分离与原代培养[J].细胞生物学杂志,2007,29(6):880-4.
    [128] BRANDT J M, DJOUADI F, KELLY D P. Fatty acids activate transcription ofthe muscle carnitine palmitoyltransferase I gene in cardiac myocytes via theperoxisome proliferator-activated receptor α [J]. Journal of Biological Chemistry,1998,273(37):23786-92.
    [129] SCOTT J W, NORMAN D G, HAWLEY S A, et al. Protein kinase substraterecognition studied using the recombinant catalytic domain of AMP-activatedprotein kinase and a model substrate [J]. Journal of molecular biology,2002,317(2):309-23.
    [130] KOIVUNEN J, KIM J, LEE J, et al. Mutations in the LKB1tumour suppressorare frequently detected in tumours from Caucasian but not Asian lung cancerpatients [J]. British journal of cancer,2008,99(2):245-52.
    [131] KERSTEN S, SEYDOUX J, PETERS J M, et al. Peroxisomeproliferator-activated receptor alpha mediates the adaptive response to fasting[J]. J Clin Invest,1999,103(11):1489-98.
    [132] LEONE T C, WEINHEIMER C J, KELLY D P. A critical role for theperoxisome proliferator-activated receptor α (PPARα) in the cellular fastingresponse: the PPARα-null mouse as a model of fatty acid oxidation disorders [J].Proceedings of the National Academy of Sciences,1999,96(13):7473-8.
    [133]白鸽,许远靖,王冲, et al.乙酸和β-羟丁酸对体外培养牛肝细胞脂代谢部分关键酶表达的影响[J].中国兽医学报,2012,32(001):69-72.
    [134] NGUYEN P, LERAY V, DIEZ M, et al. Liver lipid metabolism [J]. Journal ofAnimal Physiology and Animal Nutrition,2008,92(3):272-83.
    [135]周露婷,章卫平.转录因子碳水化合物反应元件结合蛋白对肝脏糖脂代谢的调节作用[J].第二军医大学学报,2011,32(3):318-22.
    [136] SHIMOMURA I, BASHMAKOV Y, HORTON J D. Increased levels of nuclearSREBP-1c associated with fatty livers in two mouse models of diabetes mellitus[J]. Journal of Biological Chemistry,1999,274(42):30028-32.
    [137] DENTIN R, P GORIER J-P, BENHAMED F, et al. Hepatic glucokinase isrequired for the synergistic action of ChREBP and SREBP-1c on glycolytic andlipogenic gene expression [J]. Journal of Biological Chemistry,2004,279(19):20314-26.
    [138] EMERY R S, LIESMAN J S, HERDT T H. Metabolism of long chain fattyacids by ruminant liver [J]. The Journal of nutrition,1992,122(3Suppl):832.
    [139] HERDT T, WENSING T, HAAGSMAN H, et al. Hepatic triacylglycerolsynthesis during a period of fatty liver development in sheep [J]. Journal ofanimal science,1988,66(8):1997.
    [140] GOODYEAR L J. AMP-activated protein kinase: a critical signalingintermediary for exercise-stimulated glucose transport [J]. Exerc Sport Sci Rev,2000,28(3):113-6.
    [141] GERVOIS P, TORRA I P, FRUCHART J-C, et al. Regulation of lipid andlipoprotein metabolism by PPAR activators [J]. Clinical Chemistry andLaboratory Medicine,2000,38(1):3-11.
    [142] PAWAR A, BOTOLIN D, MANGELSDORF D J, et al. The role of liver Xreceptor-α in the fatty acid regulation of hepatic gene expression [J]. Journal ofBiological Chemistry,2003,278(42):40736-43.
    [143] YAHAGI N, SHIMANO H, HASTY A H, et al. A crucial role of sterolregulatory element-binding protein-1in the regulation of lipogenic geneexpression by polyunsaturated fatty acids [J]. Journal of Biological Chemistry,1999,274(50):35840-4.
    [144] XU J, TERAN-GARCIA M, PARK J H, et al. Polyunsaturated fatty acidssuppress hepatic sterol regulatory element-binding protein-1expression byaccelerating transcript decay [J]. Journal of Biological Chemistry,2001,276(13):9800-7.
    [145] LUPU F, TERWILLIGER J D, LEE K, et al. Roles of growth hormone andinsulin-like growth factor1in mouse postnatal growth [J]. Developmentalbiology,2001,229(1):141-62.
    [146] SEJRSEN K, PURUP S, VESTERGAARD M, et al. High body weight gain andreduced bovine mammary growth: physiological basis and implications for milkyield potential [J]. Domestic Animal Endocrinology,2000,19(2):93-104.
    [147] SOS B C, HARRIS C, NORDSTROM S M, et al. Abrogation of growthhormone secretion rescues fatty liver in mice with hepatocyte-specific deletionof JAK2[J]. The Journal of clinical investigation,2011,121(4):1412.
    [148] CUI Y, HOSUI A, SUN R, et al. Loss of signal transducer and activator oftranscription5leads to hepatosteatosis and impaired liver regeneration [J].Hepatology,2007,46(2):504-13.
    [149] LIANG G, CLINE G W, MACICA C M. IGF‐1stimulates de novo fatty acidbiosynthesis by Schwann cells during myelination [J]. Glia,2007,55(6):632-41.
    [150] HIGUCHI N, KATO M, SHUNDO Y, et al. Liver X receptor in cooperationwith SREBP‐1c is a major lipid synthesis regulator in nonalcoholic fatty liverdisease [J]. Hepatology Research,2008,38(11):1122-9.
    [151] ENGELKING L J, KURIYAMA H, HAMMER R E, et al. Overexpression ofInsig-1in the livers of transgenic mice inhibits SREBP processing and reducesinsulin-stimulated lipogenesis [J]. Journal of Clinical Investigation,2004,113(8):1168-75.
    [152] CARLSEN J, CHRISTIANSEN K, GRUNNET N, et al. Involvement of PI3-kinase and activated ERK in facilitating insulin-stimulated triacylglycerolsynthesis in hepatocytes [J]. Cellular signalling,1999,11(10):713-7.
    [153] YAMADA J, SUGIYAMA H, TAMURA H, et al. HORMONALMODULATION OF PEROXISOMAL ENZYME INDUCTION CAUSED BYPEROXISOME PROLIFERATORS: SUPPRESSION BY GROWTH ANDTHYROID HORMONES IN CULTURED RAT HE PATOCYTES [J]. Archivesof biochemistry and biophysics,1994,315(2):555-7.
    [154] YAMADA J, SUGIYAMA H, WATANABE T, et al. Suppressive effect ofgrowth hormone on the expression of peroxisome proliferator-activated receptorin cultured rat hepatocytes [J]. Research communications in molecularpathology and pharmacology,1995,90(1):173.
    [155] ZHOU Y-C, WAXMAN D J. Cross-talk between janus kinase-signal transducerand activator of transcription (JAK-STAT) and peroxisome proliferator-activatedreceptor-α (PPARα) signaling pathways [J]. Journal of Biological Chemistry,1999,274(5):2672-81.
    [156] WAGNER K-U, RUI H. Jak2/Stat5signaling in mammogenesis, breast cancerinitiation and progression [J]. Journal of mammary gland biology and neoplasia,2008,13(1):93-103.
    [157] WEST K A, SIANNA CASTILLO S, DENNIS P A. Activation of the PI3K/Aktpathway and chemotherapeutic resistance [J]. Drug resistance updates,2002,5(6):234-48.
    [158]郭彦斌,杨海玲,王慧.奶牛催乳素(PRL)及其受体(PRLR)基因研究进展[J].山东农业大学学报(自然科学版),2009,3(033.
    [159] RILLEMA J A, BELL C A. Effect of prolactin on inositol uptake in mousemammary gland explants [J]. Endocrine,2007,31(1):27-32.
    [160] ROSEN J M, WYSZOMIERSKI S L, HADSELL D. Regulation of milk proteingene expression [J]. Annual review of nutrition,1999,19(1):407-36.
    [161] FLINT D, VERNON R. Effects of food restriction on the responses of themammary gland and adipose tissue to prolactin and growth hormone in thelactating rat [J]. Journal of endocrinology,1998,156(2):299-305.
    [162] QIAN L, LOPEZ V, SEO Y A, et al. Prolactin regulates ZNT2expressionthrough the JAK2/STAT5signaling pathway in mammary cells [J]. AmericanJournal of Physiology-Cell Physiology,2009,297(2): C369-C77.
    [163] SAKAI J, RAWSON R B, ESPENSHADE P J, et al. Molecular identification ofthe sterol-regulated luminal protease that cleaves SREBPs and controls lipidcomposition of animal cells [J]. Molecular cell,1998,2(4):505-14.
    [164] SCHEID M P, MARIGNANI P A, WOODGETT J R. Multiple phosphoinositide3-kinase-dependent steps in activation of protein kinase B [J]. Molecular andcellular biology,2002,22(17):6247-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700