基于概率模型的故障诊断及在航天器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
执行未来深空探测任务的航天器,需要具备在无人工干预条件下自主进行状态监测与故障诊断的能力。本文从信息处理的角度,研究了航天器自主故障诊断中的信号估计、故障检测及诊断推理问题。此外,结合航天器典型组成结构,探讨了故障诊断系统的实现方式。
     针对单维测量信号,在只有传感器输出数据且无冗余条件下,研究了基于经验模态分解的信号估计方法。通过分析已有基于经验模态分解信号估计方法的不足,提出一种评价信号成分的能量指标,进而基于此指标提出了一种估计信号的模态分量区间能量方法。针对典型信号,通过不同参数设定条件下的大量仿真实验,验证了模态分量区间能量信号估计方法的有效性。
     针对单传感器测量数据的故障检测问题,研究了基于概率分布模型的故障检测方法。将本文提出的模态分量区间能量信号估计方法与贝叶斯推理相结合,基于高斯混合模型建立无故障测量信号的概率分布模型,并将其作为基准通过置信界检测突变与缓变故障。通过针对航天器电源系统的仿真实验,验证了故障检测方法的可行性。
     针对包含未知噪声的非线性动态系统的状态与输出估计问题,研究了基于Dirichlet过程混合模型的信号估计方法。在高斯分布假设条件下,针对包含未知噪声的非线性系统,提出一种在线估计系统状态与输出的DPM-EKF滤波器。针对包含未知噪声的非线性系统的输出估计仿真实验结果表明,DPM-EKF滤波器的估计结果明显优于EKF滤波器的估计结果。
     针对包含未知过程噪声的非线性系统的故障诊断问题,研究了基于Shiryayev序列概率比的故障检测与隔离方法。在故障量大小未知条件下,提出一种结合Shiryayev序列概率比与预测分布的在线故障检测与隔离方法。在本文提出的故障检测与隔离方法中,首先应用DPM-EKF滤波器,在线计算噪声未知条件下非线性系统的输出残差,进而对于未知的故障参数,基于预测分布迭代计算Shiryayev序列概率比。通过航天器姿态确定系统的传感器故障仿真实验,验证了故障检测与隔离方法的有效性。
     针对具有切换运行模态的混杂系统故障隔离问题,研究了基于有向因子图的故障隔离方法。对于带有切换行为的混杂系统,通过分析贝叶斯网络在故障因果性建模能力上的不足,提出了一种基于混合键合图及因果路径分析建立有向因子图诊断模型,并基于最大后验概率隔离故障的方法。在航天器电源系统的仿真实验中,根据混合键合图构建的有向因子图诊断模型,以及依据最大后验概率准则得到的诊断结果验证了故障隔离方法的有效性。
     针对以总线为中心的航天器电气连接结构,提出一种递阶化的故障诊断系统结构,其在电气连接上作为总线上的独立功能设备,在诊断方式上则对航天器不同功能层次应用不同的方法。依据航天器系统所包含的典型设备与组成方式,基于递阶化的故障诊断系统结构,设计并实现了包含故障诊断模块,部件模拟器以及外部终端的航天器仿真验证系统,测试结果验证了递阶化故障诊断系统结构的可行性。
The scientific tasks performed in deep space require the spacecraft with thecapacity of self health monitoring and self fault diagnosis. From the informationprocessing point of view, the signal estimation, fault detection, fault isolation andinference problem are studied in this thesis. Besides, this thesis makes furtherdiscussion about the implementation of fault diagnosis system based on typicalspacecraft system configuration.
     For univariate measurement signal, based on empirical mode decompositionmethod, the signal estimation problem is studied in condition with non-redundancyoutput sensor data. Through analyzing the defects of existing signal estimation methodsbased on emprirical mode decomposition, an evaluation criteria based on signal energyand a signal estimation method based on zero crossovers of intrisic mode fuction areproposed. Two different synthetic signals are simulated under different settings, thesimulation results illustrate that the presented energy based signal estimation techniquecan improve signal-to-noise ratio of the synthetic signals obviously. Based on univariatemeasurement signal and probabilistic distribution model, the fault detection problem isstudied. The univariate measurement signal without fault is used to constructprobabilistic distribution model based on Gaussian mixture model, and the probabilisticdistribution model is applied to detection abrupt and incipient fault based on confidencebound. Bus voltage signal in spacecraft power system is simulated to validate thefeasibility of the proposed fault detection method.
     Based on Dirichlet process mixture model, the estimation problem of state andoutput with unknown noise interference in dynamic system is studied. To reduce theunknown noise interference and get accurate state and output estimation, the Dirichletprocess mixture model is adopted to model the noise. The DPM-EKF filter is proposedto estimate the state of nonlinear system with unknown noise. The simulation resultsshow that the signal-to-noise ratio of state estimation can be improved obviously.
     Based on Shiryayev sequential probability ratio, the fault diagnosis problem fornonlinear dynamic systems is studied. The online fault detection and isolation algorithmwith unknown fault magnitude is presented based on Shiryayev sequential probabilityratio and posterior predictive distribution. The fault diagnosis task for spacecraft attitudedetermine system can be accomplished through combining the output estimation and theproposed fault detection and isolation algorithm. Through simulation of abrupt fault inangular rate sensor and angular position sensor, the diagnositic results demonstrate thevalidity of the proposed approach.
     By using probabilistic inference in fault diagnosis, the probability of fault causecan be deduced from probabilistic graph model, the impact of uncertainty existed indiagnosis model can also be mitigated. The insufficiency of Bayesian network inmodeling the independence is analyzed through instances. The directed factor graph isproposed to serve as diagnosis model for representing the fault propagation relationswithin the spacecraft components. For spacecraft with switching operational mode, theapproach for setting up diagnosis model based on directed factor graph is proposedthrough using causal paths between basic elements of hybrid bond graph. In simulationexperiment, a diagnosis model based on directed factor graph is built up base on hybridbond graph of spacecraft power system, and the fault injection is performed in one of itsoperational modes. The effectiveness of the proposed method is supported by the resultof fault diagnosis based on maximum a posteriori criterion.
     The electrical connection patterns of on-board computer centric structure and buscentric structure are studied based on typical spacecraft configuration. For spacecraftwith bus centric connection pattern, fault diagnosis system with hierarchical structure isproposed. The fault diagnosis system acts as a separated device to be connected into thesystem bus, and carry out different fault diagnosis algorithm within different hierarchy.Based on math model and hierarchical structure, a spacecraft fault diagnosis simulationand verification system, which contains fault diagnosis emulator, actuator emulator,sensor emulator, etc., is designed and constructed through software and hardwaresimulation. The feasibility of the hierarchical structure of fault diagnosis system iscorroborated through hardware-in-the-loop simulation.
引文
[1] Truszkowski W, Hinchey M, Rash J, et al. Autonomous and Autonomic Systems:A Paradigm for Future Space Exploration Missions[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part C:Applications and Reviews,2006,36(3):279-291.
    [2] Rouff C, Hinchey M, Rash J, et al. Autonomicity of NASA Missions[C]//ParasharM, Kephart J. Proceedings Second International Conference on AutonomicComputing. Seattle, Washington, USA: IEEE,2005:387–388.
    [3]林来兴.1990-2001年航天器制导,导航与控制系统故障分析研究[J].国际太空,2004(5):9-13.
    [4] Tafazoli M. A Study of On-Orbit Spacecraft Failures[J]. Acta Astronautica,2009,64(2-3):195-205.
    [5] Reiter R. A Theory of Diagnosis From First Principles[J]. Artificial Intelligence,1987,32(1):57-95.
    [6] Beard R V. Failure Accommodation in Linear Systems throughSelf-Reorganization[R]. Cambridge, MIT: Man Vehicle Laboratory, MassachusettsInstitute of Technology,1971:61-217.
    [7] Mehra R K, Peschon J. An Innovations Approach to Fault Detection and Diagnosisin Dynamic Systems[J]. Automatica,1971,7(5):637-640.
    [8] De Kleer J, Williams B C. Diagnosing Multiple Faults[J]. Artificial Intelligence,1987,32(1):97-130.
    [9] De Kleer J, Mackworth A K, Reiter R. Characterizing Diagnoses and Systems[J].Artificial Intelligence,1992,56(2-3):197-222.
    [10] Willsky A S. A Survey of Design Methods for Failure Detection in DynamicSystems[J]. Automatica,1976,12(6):601-611.
    [11] Frank P M. Fault Diagnosis in Dynamic Systems Using Analytical andKnowledge-Based Redundancy-A Survey and Some New Results[J]. Automatica,1990,26(3):459-474.
    [12] Gertler J. Analytical Redundancy Methods in Fault Detection andIsolation[C]//Isermann R.1th IFAC Symposium Safeprocess. Baden-Baden,Germany: Elsevier,1991:9-21.
    [13] Gentil S, Montmain J, Combastel C. Combining FDI and AI Approaches WithinCausal-Model-Based Diagnosis[J]. IEEE Transactions on Systems, Man, andCybernetics, Part B: Cybernetics,2004,34(5):2207-2221.
    [14] Cordier M, Dague P, Levy F, et al. Conflicts Versus Analytical RedundancyRelations: A Comparative Analysis of the Model Based Diagnosis Approach Fromthe Artificial Intelligence and Automatic Control Perspectives[J]. IEEETransactions on Systems, Man and Cybernetics, Part B: Cybernetics,2004,34(5):2163-2177.
    [15] Isermann R, Ballé P. Trends in the Application of Model-Based Fault Detectionand Diagnosis of Technical Processes[J]. Control Engineering Practice,1997,5(5):709-719.
    [16] Isermann R. Model-Based Fault-Detection and Diagnosis-Status andApplications[J]. Annual Reviews in Control,2005,29(1):71-85.
    [17] Venkatasubramanian V, Rengaswamy R, Kavuri S N. A Review of Process FaultDetection and Diagnosis Part II: Qualitative Models and Search Strategies[J].Computers and Chemical Engineering,2003,27(3):313-326.
    [18] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A Review of Process FaultDetection and Diagnosis Part I: Quantitative Model-Based Methods[J]. Computersand Chemical Engineering,2003,27(3):293-311.
    [19] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A Review of Process FaultDetection and Diagnosis Part III: Process History Based Methods[J]. Computersand Chemical Engineering,2003,27(3):327-346.
    [20] Isermann R. Fault-Diagnosis Applications, Model-Based Condition Monitoring:Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems[M].Berlin/Heidelberg, Germany: Springer,2011:11-44.
    [21] Hwang I, Kim S, Kim Y, et al. A Survey of Fault Detection, Isolation, andReconfiguration Methods[J]. IEEE Transactions on Control Systems Technology,2010,18(3):636-653.
    [22] Isermann R. Supervision, Fault-Detection and Fault-Diagnosis Methods-AnIntroduction[J]. Control Engineering Practice,1997,5(5):639-652.
    [23] Patton R, Chen J. Observer-based Fault Detection and Isolation: Robustness andApplications[J]. Control Engineering Practice,1997,5(5):671-682.
    [24] Frank P, Ding X. Survey of Robust Residual Generation and Evaluation Methodsin Observer-based Fault Detection Systems[J]. Journal of process control,1997,7(6):403-424.
    [25] Frank P. On-line Fault Detection in Uncertain Nonlinear Systems UsingDiagnostic Observers: A Survey[J]. International journal of systems science,1994,25(12):2129-2154.
    [26] Ding X, Guo L, Jeinsch T. A Characterization of Parity Space and Its Applicationto Robust Fault Detection[J]. IEEE Transactions on Automatic Control,1999,44(2):337-343.
    [27] Simani S, Patton R J. Fault Diagnosis of An Industrial Gas Turbine Prototypeusing A System Identification Approach[J]. Control Engineering Practice,2008,16(7):769-786.
    [28] Zogg D, Shafai E, Geering H. Fault Diagnosis for Heat Pumps with ParameterIdentification and Clustering[J]. Control Engineering Practice,2006,14(12):1435-1444.
    [29] Simani S. Fault Diagnosis of A Simulated Industrial Gas Turbine via IdentificationApproach[J]. International Journal of Adaptive Control and Signal Processing,2007,21(4):326-353.
    [30] Simani S. Identification and Fault Diagnosis of A Simulated Model of an IndustrialGas Turbine[J]. IEEE Transactions on Industrial Informatics,2005,1(3):202-216.
    [31] Basseville M, Abdelghani M, Benveniste A. Subspace-based Fault DetectionAlgorithms for Vibration Monitoring[J]. Automatica,2000,36(1):101-109.
    [32] Basseville M, Benveniste A, Goursat M, et al. Subspace-Based Algorithms forStructural Identification, Damage Detection, and Sensor Data Fusion[J/OL].EURASIP Journal on Advances in Signal Processing,2007:069136[2012-03-01].http://asp.eurasipjournals.com/content/2007/1/069136.
    [33] Ding S, Zhang P, Naik A, et al. Subspace Method Aided Data-driven Design ofFault Detection and Isolation Systems[J]. Journal of Process Control,2009,19(9):1496-1510.
    [34] Naik A S, Yin S, Ding S X, et al. Recursive Identification Algorithms to DesignFault Detection Systems[J]. Journal of Process Control,2010,20(8):957-965.
    [35] dos Santos D A, Yoneyama T. A Bayesian Solution to the Multiple CompositeHypothesis Testing for Fault Diagnosis in Dynamic Systems[J]. Automatica,2011,47(1):158-163.
    [36] Basseville M. Model-Based Statistical Signal Processing and Decision TheoreticApproaches to Monitoring[C]//Staroswiecki M, Wu N E.5th IFAC/IMACSSymposium on Fault Detection, Supervision and Safety of Technical Processes-SAFEPROCESS’03. Washington, USA: Elsevier,2003:1-12.
    [37] Pirmoradi F, Sassani F, de Silva C. Fault Detection and Diagnosis in a SpacecraftAttitude Determination System[J]. Acta Astronautica,2009,65(5-6):710-729.
    [38] Basseville M, Benveniste A, Zhang Q. Towards the Handling of Uncertainties inStatistical FDI[C]//Bittanti S, Cenedese A, Zampieri S. Proceedings of the18thIFAC World Congress. Milano, Italy: Elsevier,2011,18:13203-13208.
    [39] Ding S. Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms,and Tools[M]. Berlin/Heidelberg, Germany: Springer Verlag,2008:281-310.
    [40] Cheng H, Tikkala V M, Zakharov A, et al. Application of the Enhanced DynamicCausal Digraph Method on a Three-Layer Board Machine[J]. IEEE Transactionson Control Systems Technology,2011,19(3):644-655.
    [41] Cheng H, Nikus M, J ms-Jounela S L. Fault Diagnosis of The Paper MachineShort Circulation Process Using Novel Dynamic Causal Digraph Reasoning[J].Journal of Process Control,2008,18(7-8):676-691.
    [42] Zhao-qian Z, Chong-guang W, Bei-ke Z, et al. SDG Multiple Fault Diagnosis byReal-time Inverse Inference[J]. Reliability Engineering&System Safety,2005,87(2):173-189.
    [43] Vedam H, Venkatasubramanian V. PCA-SDG based process monitoring and faultdiagnosis[J]. Control Engineering Practice,1999,7(7):903-917.
    [44] Cheng S R, Lin B, Hsu B M, et al. Fault-tree Analysis for Liquefied Natural GasTerminal Emergency Shutdown System[J]. Expert Systems with Applications,2009,36(9):11918–11924.
    [45] Rao K D, Gopika V, Rao V S, et al. Dynamic Fault Tree Analysis using MonteCarlo Simulation in Probabilistic Safety Assessment[J]. Reliability Engineering& System Safety,2009,94(4):872-883.
    [46] Joe Qin S. Statistical Process Monitoring: Basics and Beyond[J]. Journal ofChemometrics,2003,17(8-9):480-502.
    [47] Alcala C F, Qin S J. Analysis and Generalization of Fault Diagnosis Methods forProcess Monitoring[J]. Journal of Process Control,2011,21(3):322-330.
    [48] Qin S J. Survey on Data-driven Industrial Process Monitoring and Diagnosis[J].Annual Reviews in Control,2012,36(2):220-234.
    [49] Leonhardt S, Ayoubi M. Methods of Fault Diagnosis[J]. Control EngineeringPractice,1997,5(5):683-692.
    [50] Yelamos I, Escudero G, Graells M, et al. Fault Diagnosis based on Support VectorMachines and Systematic Comparison to Existing Approaches[C]//Marquardt W,Pantelides C.16th European Symposium on Computer Aided Process Engineeringand9th International Symposium on Process Systems Engineering.Garmisch-Partenkirchen, Germany: Elsevier,2006:1209-1214.
    [51] Mahadevan S, Shah S. Fault Detection and Diagnosis in Process Data UsingOne-class Support Vector Machines[J]. Journal of Process Control,2009,19(10):1627-1639.
    [52] Yélamos I, Escudero G, Graells M, et al. Performance Assessment of A NovelFault Diagnosis System based on Support Vector Machines[J]. Computers&Chemical Engineering,2009,33(1):244-255.
    [53] Kruger U, Kumar S, Littler T. Improved Principal Component Monitoring Usingthe Local Approach[J]. Automatica,2007,43(9):1532-1542.
    [54] Li G, Qin S, Ji Y, et al. Reconstruction based Fault Prognosis for ContinuousProcesses[J]. Control Engineering Practice,2010,18(10):1211-1219.
    [55] Tharrault Y, Mourot G, Ragot J, et al. Fault Detection and Isolation with RobustPrincipal Component Analysis[J]. International Journal of Applied Mathematicsand Computer Science,2008,18(4):42-442.
    [56] Ge Z, Song Z. Robust Monitoring and Fault Reconstruction Based on VariationalInference Component Analysis[J]. Journal of Process Control,2011,21(4):462-474.
    [57] Lee J M, Qin S J, Lee I B. Fault Detection and Diagnosis Based on ModifiedIndependent Component Analysis[J]. AIChE Journal,2006,52(10):3501-3514.
    [58] Ge Z, Xie L, Kruger U, et al. Sensor Fault Identification and Isolation forMultivariate Non-gaussian Processes[J]. Journal of Process Control,2009,19(10):1707-1715.
    [59] Kim D, Lee I. Process Monitoring based on Probabilistic PCA[J]. Chemometricsand intelligent laboratory systems,2003,67(2):109-123.
    [60] Chen T, Sun Y. Probabilistic Contribution Analysis for Statistical ProcessMonitoring: A Missing Variable Approach[J]. Control Engineering Practice,2009,17(4):469-477.
    [61] Xie X, Shi H. Dynamic Multimode Process Modeling and Monitoring UsingAdaptive Gaussian Mixture Models[J]. Industrial&Engineering ChemistryResearch,2012,51(15):5497-5505.
    [62] Serradilla J, Shi J, Morris A. Fault Detection based on Gaussian Process LatentVariable Models[J]. Chemometrics and Intelligent Laboratory Systems,2011,109(1):9-21.
    [63] Yu J, Qin S J. Multimode Process Monitoring with Bayesian Inference-basedFinite Gaussian Mixture Models[J]. AIChE Journal,2008,54(7):1811-1829.
    [64] Yu J. A Particle Filter Driven Dynamic Gaussian Mixture Model Approach forComplex Process Monitoring and Fault Diagnosis[J]. Journal of Process Control,2012,22(4):778-788.
    [65] Alcala C, Qin S. Reconstruction-based Contribution for Process Monitoring[J].Automatica,2009,45(7):1593-1600.
    [66] Alcala C F, Qin S J. Analysis and Generalization of Fault Diagnosis Methods forProcess Monitoring[J]. Journal of Process Control,2011,21(3):322-330.
    [67] He Q, Wang J. Fault Detection Using the K-nearest Neighbor Rule forSemiconductor Manufacturing Processes[J]. Semiconductor Manufacturing, IEEETransactions on,2007,20(4):345-354.
    [68] Verdier G, Ferreira A, et al. Adaptive Mahalanobis Distance and k-NearestNeighbor Rule for Fault Detection in Semiconductor Manufacturing[J]. IEEETransactions on Semiconductor Manufacturing,2011,24(1):59-68.
    [69] Bo C, Qiao X, Zhang G, et al. An Integrated Method of Independent ComponentAnalysis and Support Vector Machines for Industry Distillation ProcessMonitoring[J]. Journal of Process Control,2010,20(10):1133-1140.
    [70] Hsu C C, Chen M C, Chen L S. Intelligent ICA-SVM Fault Detector forNon-gaussian Multivariate Process Monitoring[J]. Expert Systems withApplications,2010,37(4):3264-3273.
    [71] Hsu C C, Chen M C, Chen L S. Integrating Independent Component Analysis andSupport Vector Machine for Multivariate Process Monitoring[J]. Computers&Industrial Engineering,2010,59(1):145-156.
    [72] Zhang Y. Enhanced Statistical Analysis of Nonlinear Processes using KPCA,KICA and SVM[J]. Chemical Engineering Science,2009,64(5):801-811.
    [73] Ding S X, Zhang P, Jeinsch T, et al. A Survey of the Application of BasicData-Driven and Model-Based Methods in Process Monitoring and FaultDiagnosis[C]//Bittanti S, Cenedese A, Zampieri S. Proceedings of the18th IFACWorld Congress. Milano, Italy: Elsevier,2011,18:12380-12388.
    [74] Yin S, Ding S X, Abandan Sari A H, et al. Data-driven Monitoring for StochasticSystems and Its Application on Batch Process[J]. International Journal of SystemsScience,2012,43(11):1-11.
    [75] Yin S, Ding S X, Haghani A, et al. A Comparison Study of Basic Data-driven FaultDiagnosis and Process Monitoring Methods on the Benchmark Tennessee EastmanProcess[J]. Journal of Process Control,2012,22(9):1-15.
    [76]江耿丰,邢琰,王南华.利用特征结构指定隔离卫星滚动偏航陀螺故障的新方法[J].宇航学报,2007,28:557-561.
    [77] Venkateswaran N, Siva M S, Goel P S. Analytical Redundancy Based FaultDetection of Gyroscopes in Spacecraft Applications[J]. Acta Astronautica,2002,50(9):535–545.
    [78]邢琰,魏春岭.基于四元数估计角速率的陀螺故障定位[J].宇航学报,2003,24(4):410-413.
    [79]张云,王培垣.基于星敏感器角速度估计的陀螺故障诊断[J].航天控制,2004,22(3):93-96.
    [80]邢琰,吴宏鑫.一种红外地球敏感器和陀螺的故障隔离方法[J].计算技术与自动化,2003,22(2):74-76.
    [81]吴丽娜,张迎春.离散小波变换在卫星姿控系统故障诊断中的应用[J].仪器仪表学报,2008,27(6):407-409.
    [82] Li Z, Liu G, Zhang R, et al. Fault Detection, Identification and Reconstruction forGyroscope in Satellite Based on Independent Component Analysis[J]. ActaAstronautica,2011,68(7-8):1015-1023.
    [83]王小丽,倪茂林.基于自适应观测器的非线性系统故障诊断[J].空间控制技术与应用,2008,34(4):33-37.
    [84]安若铭,张帆,吴月忠,等.基于动态观测器的多故障诊断技术的应用研究[J].航天控制,2009,27(4):88-91.
    [85] Williamson W R, Speyer J L, Dang V T, et al. Fault Detection and Isolation forDeep Space Satellites[J]. Journal of guidance, control, and dynamics,2009,32(5):1570-1584.
    [86]王剑非,姜斌,冒泽慧.基于LSSVM的卫星姿态控制系统故障诊断[J].控制工程,2008,15(3):334-341.
    [87] Wu Q, Saif M. Repetitive Learning Observer Based Actuator Fault Detection,Isolation, and Estimation with Application to a Satellite Attitude ControlSystem[C]//Judd R, Bushnell L G, Abramovitch D, et al. Proceedings of2007American Control Conference. New York City, USA: IEEE,2007:414-419.
    [88] Wu Q, Saif M. A Neural-Fuzzy Sliding Mode Observer for Robust FaultDiagnosis[C]//Hoo K A, Chowdhury F, Abramovitch D. Proceedings of2009American Control Conference. St. Louis, Missouri, USA: IEEE,2009:4982-4987.
    [89] Jiang T, Khorasani K, Tafazoli S. Parameter Estimation-Based Fault Detection,Isolation and Recovery for Nonlinear Satellite Models[J]. IEEE Transactions onControl Systems Technology,2008,16(4):799-808.
    [90]刘洪刚,吴建军,陈启智.基于模型知识的液体火箭发动机故障诊断方法研究[J].宇航学报,2002,23(2):41-43.
    [91]龙兵,姜兴渭,宋政吉.基于多信号模型航天器多故障诊断技术研究[J].宇航学报,2004,25(5):591-594.
    [92]宋其江,徐敏强,王日新.基于模糊SDG模型的航天器故障诊断方法研究[J].宇航学报,2009,29(6):2073-2077.
    [93]毛万标,李尚福.基于图论模型的运载火箭漏电故障诊断方法[J].宇航学报,2007,27(B12):166-169.
    [94] Holsti N, Paakko M. Towards Advanced FDIR Components[C]//Schürmann B,Sawaya-Lacoste H. Proceedings of2001Data Systems in Aerospace. Nice, France:ESA Publications,2001:2-8.
    [95] Guiotto A, Martelli A, Paccagnini C. SMART-FDIR: Use of Artificial Intelligencein the Implementation of a Satellite FDIR[C/CD]//Harris R A. Proceedings ofDASIA2003(ESA SP-532). Prague, Czech Republic: ESA Publications,2003:Published on CD., p.71.1.
    [96] Johnson S. Introduction to System Health Engineering and Management inAerospace[C]//Uckun S, Hess A. Proceedings of the First International Forum onIntegrated System Health Engineering and Management in Aerospace. Napa,California, USA: NASA,2005:234-239.
    [97] Bernard D, Dorais G, Fry C, et al. Design of the Remote Agent Experiment forSpacecraft Autonomy[C]//Profet R A, Woerner D F. Proceedings of1998IEEEAerospace Conference. Snowmass at Aspen, Colorado, USA: IEEE,1998,2:259-281.
    [98] Garcia-Galan C, Duncavage D, Olofinboba O. ISS As a Testbed for AdvancedHealth Management and Automation Technologies[C]//Woerner D. Proceedings of2006IEEE Aerospace Conference. Big Sky, MT, USA: IEEE,2006:17-34.
    [99] JPL. Deep Space1Technology Demonstrator[EB/OL]. California, USA: NASA,1998[2012-03-1]. http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001986.html.
    [100]GSFC. Earth Observing-1[EB/OL]. Greenbelt, Maryland, USA: NASA,2000[2012-03-1]. http://eo1.gsfc.nasa.gov/.
    [101]Graven P, Kolcio K, Plam Y, et al. Implementation of a Plug-and-Play AttitudeDetermination and Control System On PnPSAt[C]//Woerner D.2009Aerospaceconference. New York City, New York, USA: IEEE,2009:1-13.
    [102]ESA. Proba-1Charting Earth’S Radiation Belts for a Decade[EB/OL]. Paris,France: ESA,2011[2012-03-1]. http://www.esa.int/esaMI/Proba_web_site/-SEMX52TWLUG_1.html.
    [103]ESA. About Proba-2[EB/OL]. Paris, France: ESA,2010[2012-03-1]. http://-www.esa.int/esaMI/Proba/SEMJJ5ZVNUF_0.html.
    [104]GSFC. FASTSAT Mission Update[EB/OL]. Greenbelt, Maryland, USA: NASA,2010[2012-03-1]. http://www.nasa.gov/mission_pages/sunearth/news/-fastsat-update.html.
    [105]ARC. O/OREOS Nanosatellite[EB/OL]. Moffett Field, CA, USA: NASA,2010[2012-03-1]. http://www.nasa.gov/mission_pages/smallsats/ooreos/main/.
    [106]邢琰,吴宏鑫,王晓磊,等.航天器故障诊断与容错控制技术综述[J].宇航学报,2003,24(3):221-226.
    [107]姜连祥,李华旺,杨根庆,等.航天器自主故障诊断技术研究进展[J].宇航学报,2009,40(4):1320-1326.
    [108]Shim D, Yang C. Optimal Configuration of Redundant Inertial Sensors forNavigation and FDI Performance[J]. Sensors,2010,10(7):6497-6512.
    [109]Guerrier S, Waegli A, Skaloud J, et al. Fault Detection and Isolation in MultipleMEMS-IMUs Configurations[J]. IEEE Transactions on Aerospace and ElectronicSystems,2012,48(3):2015-2031.
    [110]Hong H, Liang M. Separation of Fault Features from a Single-channel MechanicalSignal Mixture using Wavelet Decomposition[J]. Mechanical systems and signalprocessing,2007,21(5):2025-2040.
    [111]Lima M A, Cerqueira A S, Coury D V, et al. A Novel Method for Power QualityMultiple Disturbance Decomposition based on Independent ComponentAnalysis[J]. International Journal of Electrical Power&Energy Systems,2012,42(1):593-604.
    [112]Vidal R, Rezende P. Classification of Single and Multiple Disturbances in ElectricSignals[J/OL]. EURASIP Journal on Advances in Signal Processing,2007:056918[2012-03-01]. http://asp.eurasipjournals.com/content/2007/1/056918.
    [113]Ren L, Xu Z, Yan X. Single-Sensor Incipient Fault Detection[J]. IEEE SensorsJournal,2011,11(9):2102-2107.
    [114]Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and theHilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J].Proceedings of the Royal Society of London. Series A: Mathematical, Physical andEngineering Sciences,1998,454(1971):903-995.
    [115]Flandrin P, Goncalves P, Rilling G. Detrending and Denoising with EmpiricalMode Decompositions[C]//Mecklenbrauker W. Proceedings of the12th EuropeanSignal Processing Conference. Vienna, Austria: EUSIP,2004:1581-1584.
    [116]Flandrin P, Goncalues P, Rilling G. EMD Equivalent Filter Banks, FromInterpretation to Applications[M]//Huang N E, Shen S S P. Hilbert-HuangTransform and Its Applications. Singapore: World Scientific Press,2005:57-74.
    [117]Flandrin P, Goncalves P. Empirical Mode Decompositions As Data-DrivenWavelet-Like Expansions[J]. International Journal of Wavelets Multiresolutionand Information Processing,2005,2(4):477-496.
    [118]Andrade A O, Nasuto S, Kyberd P, et al. EMG Signal Filtering Based OnEmpirical Mode Decomposition[J]. Biomedical Signal Processing and Control,2006,1(1):44–55.
    [119]Boudraa A O, Cexus J C. EMD-Based Signal Filtering[J]. IEEE Transactions onInstrumentation and Measurement,2007,56(6):2196-2202.
    [120]Boudraa A, Cexus J C. Denoising Via Empirical ModeDecomposition[C]//Aboutajdine D, Mitra S K, Najim M. Second InternationalSymposium on Communications, Control and Signal Processing. Marrakech,Morocco: IEEE/EURASIP,2006:1-4.
    [121]Kopsinis Y, McLaughlin S. Development of EMD-Based Denoising MethodsInspired by Wavelet Thresholding[J]. IEEE Transactions on Signal Processing,2009,57(4):1351-1362.
    [122]Kopsinis Y, McLaughlin S. Empirical Mode Decomposition Based DenoisingTechniques[C]//Haykin S, Theodoridis S. IAPR Workshop on CognitiveInformation Processing. Santorini, Greece: EURASIP,2008:42-47.
    [123]Lehmann E L, Casella G. Theory of Point Estimation[M].2nd. New York, USA:Springer Verlag,1998:88-89.
    [124]Wu Z, Huang N E. A Study of the Characteristics of White Noise Using theEmpirical Mode Decomposition Method[J]. Proceedings of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences,2004,460(2046):1597-1611.
    [125]Wu Z, Huang N E. Statistical Significance Test of Intrinsic ModeFunctions[M]//Huang N E, Shen S S P. Hilbert-Huang Transform and ItsApplications. Singapore: World Scientific Press,2005:107-127.
    [126]Fraley C, Raftery A E. Model-Based Clustering, Discriminant Analysis, andDensity Estimation[J]. Journal of the American Statistical Association,2002,97(458):611-631.
    [127]Thissen U, Swierenga H, de Weijer A P, et al. Multivariate Statistical ProcessControl using Mixture Modelling[J]. Journal of Chemometrics,2005,19(1):23-31.
    [128]Chen T, Morris J, Martin E. Probability Density Estimation via an InfiniteGaussian Mixture Model: Application to Statistical Process Monitoring[J]. Journalof the Royal Statistical Society: Series C (Applied Statistics),2006,55(5):699-715.
    [129]Rasmussen C E. The Infinite Gaussian Mixture Model[C]//Solla S, Leen T, MullerK R. Advances in Neural Information Processing Systems12. Denver, Colorado,USA: MIT Press,2000:554-560.
    [130]Jaakkola T S, Jordan M I. Bayesian Parameter Estimation Via VariationalMethods[J]. Statistics and Computing,2000,10(1):25-37.
    [131]曲从善,路廷镇,谭营.一种改进型经验模态分解及其在信号消噪中的应用[J].自动化学报,2010,36(1):67-73.
    [132]Kim S Y, Castet J F, Saleh J H. Spacecraft Electrical Power Subsystem: FailureBehavior, Reliability, and Multi-State Failure Analyses[J]. Reliability Engineeringand System Safety,2012,98(1):55-65.
    [133]Haga R A, Saleh J H. Epidemiology of Satellite Anomalies and Failures: ASubsystem-Centric Approach[J]. Acta Astronautica,2011,69(7-8):676-690.
    [134]Ulrich S, Veilleux J, Landry Corbin F. Power System Design of ESMO[J]. ActaAstronautica,2009,64(2-3):244-255.
    [135]Lee J R, Cho B H, Kim S J, et al. Modeling and Simulation of Spacecraft PowerSystems[J]. IEEE Transactions on Aerospace and Electronic Systems,1988,24(3):295-304.
    [136]Colombo G, Grasselli U, De Luca A, et al. Satellite Power System Simulation[J].Acta astronautica,1997,40(1):41-50.
    [137]Nelms R M, Grigsby L L. Simulation of DC Spacecraft Power Systems[J]. IEEETransactions on Aerospace and Electronic Systems,1989,25(1):90-95.
    [138]Chenni R, Makhlouf M, Kerbache T, et al. A Detailed Modeling Method forPhotovoltaic Cells[J]. Energy,2007,32(9):1724-1730.
    [139]Liu S, Dougal R A. Dynamic Multiphysics Model for Solar Array[J]. IEEETransactions on Energy Conversion,2002,17(2):285-294.
    [140]Hill C A. Satellite Battery Technology-A Tutorial and Overview[J]. IEEEAerospace and Electronic Systems Magazine,2011,26(6):38-43.
    [141]Tremblay O, Dessaint L A. Experimental Validation of a Battery Dynamic Modelfor EV Applications[J]. World Electric Vehicle Journal,2009,3:1-10.
    [142]Gao L, Liu S, Dougal R. Dynamic Lithium-Ion Battery Model for SystemSimulation[J]. IEEE Transactions on Components and Packaging Technologies,2002,25(3):495-505.
    [143]Kiasi F, Prakash J, Shah S, et al. Fault Detection and Isolation of Benchmark WindTurbine Using the Likelihood Ratio Test[C]//Bittanti S, Cenedese A, Zampieri S.Proceedings of the18th IFAC World Congress. Milano, Italy: Elsevier,2011,18:7079-7085.
    [144]Li P, Kadirkamanathan V. Fault Detection and Isolation in Non-Linear StochasticSystems-Combined Adaptive Monte Carlo Filtering and Likelihood RatioApproach[J]. International Journal of Control,2004,77(12):1101-1114.
    [145]Li P, Kadirkamanathan V. Particle Filtering Based Likelihood Ratio Approach toFault Diagnosis in Nonlinear Stochastic Systems[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part C: Applications and Reviews,2001,31(3):337-343.
    [146]Kadirkamanathan V, Li P, Jaward M H, et al. Particle Filtering-Based FaultDetection in Non-Linear Stochastic Systems[J]. International Journal of SystemsScience,2002,33(4):259-265.
    [147]Alrowaie F, Gopaluni R, Kwok K. Fault Detection and Isolation in StochasticNon-linear State-space Models using Particle Filters[J]. Control EngineeringPractice,2012,20(10):1016-1032.
    [148]Yahya, Chetouani. Fault Detection by Using the Innovation Signal: Application toan Exothermic Reaction[J]. Chemical Engineering and Processing: ProcessIntensification,2004,43(12):1579-1585.
    [149]Xiong K, Chan C W, Zhang H Y. Unscented Kalman Filter for FaultDetection[C]//Zitek P. Proceedings of the16th IFAC World Congress. CzechRepublic: Elsevier,2005:113-118.
    [150]Xiong K, Chan C W, Zhang H Y. Detection of Satellite Attitude Sensor FaultsUsing the UKF[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(2):480-491.
    [151]Sepasi M, Sassani F. On-line Fault Diagnosis of Hydraulic Systems usingUnscented Kalman Filter[J]. International Journal of Control, Automation andSystems,2010,8(1):149-156.
    [152]Hajiyev C. Testing the Covariance Matrix of The Innovation Sequence withSensor/actuator Fault Detection Applications[J]. International Journal of AdaptiveControl and Signal Processing,2010,24(9):717-730.
    [153]Hajiyev C, Okatan A. Innovation approach to detect the faults in multidimensionaldynamic systems[J]. Kybernetes,2010,39(1):127-139.
    [154]Ferguson T S. A Bayesian Analysis of Some Nonparametric Problems[J]. TheAnnals of Statistics,1973,1(2):209-230.
    [155]Teh Y W, Jordan M I. Hierarchical Bayesian Nonparametric Models withApplications[M]//Hjort N L, Holmes C, Müller P, et al. Bayesian Nonparametrics:Principles and Practice. Cambridge, UK: Cambridge University Press,2010:158-207.
    [156]Gelman A, Carlin J B, Stern H S, et al. Bayesian Data Analysis[M].2nd.Washington, D.C., USA: CHAPMAN&HALL/CRC,2003:8-9,42-43,582-583.
    [157]Ghosal S. The Dirichlet Process, Related Priors and PosteriorAsymptotics[M]//Hjort N L, Holmes C, Muller P, et al. Bayesian Nonparametrics:Principles and Practice. Cambridge, UK: Cambridge University Press,2010:39-80.
    [158]Blackwell D, MacQueen J B. Ferguson Distributions Via Polya Urn Schemes[J].The annals of statistics,1973,1(2):353-355.
    [159]Crassidis J L, Junkins J L. Optimal Estimation of Dynamic Systems[M].2nd. NewYork, USA: CRC,2011:270-273,144-149,184-191.
    [160]Alspach D, Sorenson H W. Nonlinear Bayesian Estimation Using Gaussian SumApproximations[J]. IEEE Transactions on Automatic Control,1972,17(4):439-448.
    [161]Terejanu G, Singla P, Singh T, et al. Adaptive Gaussian Sum Filter for NonlinearBayesian Estimation[J]. IEEE Transactions on Automatic Control,2011,56(9):2151-2156.
    [162]Horwood J T, Poore A B. Adaptive Gaussian Sum Filters for Space Surveillance[J].IEEE Transactions on Automatic Control,2011,56(8):1777-1790.
    [163]Antoniak C E. Mixtures of Dirichlet Processes with Applications to BayesianNonparametric Problems[J]. The annals of statistics,1974,6(2):1152-1174.
    [164]Liu J S. Monte Carlo Strategies in Scientific Computing[M]. New York, USA:Springer Verlag,2001:31-34.
    [165]Rubin D B. A Noniterative Sampling/Importance Resampling Alternative to theData Augmentation Algorithm for Creating a Few Imputations When the Fractionof Missing Information Is Modust: The SIR Algorithm (Discussion of Tanner andWong)[J]. Journal of the American Statistical Association,1987,82(398):543-546.
    [166]Smith A F M, Gelfand A E. Bayesian Statistics Without Tears: ASampling-Resampling Perspective[J]. American Statistician,1992,46(2):84-88.
    [167]Gordon N, Salmond D, Ewing C. Bayesian State Estimation for Tracking andGuidance Using the Bootstrap Filter[J]. Journal of guidance control and dynamics,1995,18(6):1434-1443.
    [168]Gordon N J, Salmond D J, Smith A F M. Novel Approach toNonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings-F: Radarand Signal Processing,1993,140(2):107-113.
    [169]Caron F, Davy M, Doucet A, et al. Bayesian Inference for Linear Dynamic Modelswith Dirichlet Process Mixtures[J]. IEEE Transactions on Signal Processing,2008,56(1):71-84.
    [170]Gustafsson F, Hendeby G. Some Relations Between Extended and UnscentedKalman Filters[J]. IEEE Transactions on Signal Processing,2012,60(2):545-555.
    [171]Basseville M, Nikiforov I V. Fault Isolation for Diagnosis: Nuisance Rejection andMultiple Hypotheses Testing[J]. Annual Reviews in Control,2002,26(2):189–202.
    [172]Ru J, Jilkov V, Rong Li X, et al. Detection of Target Maneuver Onset[J]. IEEETransactions on Aerospace and Electronic Systems,2009,45(2):536-554.
    [173]Durga P Malladi J L S. A Generalized Shiryayev Sequential Probability Ratio Testfor Change Detection and Isolation[J]. IEEE Transactions on Automatic Control,1999,44(8):1522-1534.
    [174]Nikiforov I. Discussion on “Quickest Detection Problems: Fifty Years Later” byAlbert N. Shiryaev[J]. Sequential Analysis,2010,29(4):420-424.
    [175]Snelson E, Ghahramani Z. Compact Approximations to Bayesian PredictiveDistributions[C]//Raedt L D, Wrobel S. Proceedings of the22nd internationalconference on Machine learning. Bonn, Germany: ACM,2005:840-847.
    [176]Sidi M J. Spacecraft Dynamics and Control: A Practical Engineering Approach[M].Cambridge, UK: Cambridge University Press,2001:100-111.
    [177]Mehra R. Approaches to Adaptive Filtering[J]. IEEE Transactions on AutomaticControl,1972,17(5):693-698.
    [178]Odelson B J, Rajamani M R, Rawlings J B. A New Autocovariance Least-SquaresMethod for Estimating Noise Covariances[J]. Automatica,2006,42(2):303-308.
    [179]Karasalo M, Hu X. An Optimization Approach to Adaptive Kalman Filtering[J].Automatica,2011,47(8):1785–1793.
    [180]Jang C W, Juang J C, Kung F C. Adaptive Fault Detection in Real-Time GPSPositioning[J]. IEE Proceedings-Radar, Sonar and Navigation,2000,147(5):254-258.
    [181]Li X, Bar-Shalom Y. A Recursive Multiple Model Approach to NoiseIdentification[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):671-684.
    [182]Wan E A, Nelson A T. Dual Extended Kalman Filter Methods[M]. Haykin S.Kalman Filtering and Neural Networks. New York, USA: John Wiley&Sons, Inc.,2002:123-173.
    [183]Jing L, ChongZhao H, Vadakkepat P. Process Noise Identification Based ParticleFilter: An Efficient Method to Track Highly Manoeuvring Targets[J]. IET SignalProcessing,2011,5(6):538-546.
    [184]Zhang Y, Li X. Detection and Diagnosis of Sensor and Actuator Failures UsingIMM Estimator[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1293-1313.
    [185]Izadian A, Khayyer P, Famouri P. Fault Diagnosis of Time-Varying ParameterSystems With Application in MEMS LCRS[J]. IEEE Transactions on IndustrialElectronics,2009,56(4):973-978.
    [186]Sarkka S, Nummenmaa A. Recursive Noise Adaptive Kalman Filtering byVariational Bayesian Approximations[J]. IEEE Transactions on Automatic Control,2009,54(3):596-600.
    [187]Li W, Jia Y. State Estimation for Jump Markov Linear Systems by VariationalBayesian Approximation[J]. IET Control Theory&Applications,2012,6(2):319-326.
    [188]Lerner U, Parr R, Koller D, et al. Bayesian Fault Detection and Diagnosis inDynamic Systems[C]//Kautz H A, Porter B W. Proceedings of the17th NationalConference on Artificial Intelligence. Austin, Texas, USA: AAAI Press/MIT Press,2000:531-537.
    [189]Chien C F, Chen S L, Lin Y S. Using Bayesian Network for Fault Location OnDistribution Feeder[J]. IEEE Transactions on Power Delivery,2002,17(3):785-793.
    [190]Yongli Z, Limin H, Jinling L. Bayesian Networks-Based Approach for PowerSystems Fault Diagnosis[J]. IEEE Transactions on Power Delivery,2006,21(2):634-639.
    [191]Verron S, Li J, Tiplica T. Fault Detection and Isolation of Faults in a MultivariateProcess with Bayesian Network[J]. Journal of Process Control,2010,20(8):902-911.
    [192]Frey B. Extending Factor Graphs so As to Unify Directed and UndirectedGraphical Models[C]//Meek C, Kjarulff U. Proceedings of the19th AnnualConference on Uncertainty in Artificial Intelligence. Acapulco, Mexico: MorganKaufmann,2003:257-265.
    [193]Sahin F, Yavuz M C, Arnavut Z, et al. Fault Diagnosis for Airplane Engines UsingBayesian Networks and Distributed Particle Swarm Optimization[J]. ParallelComputing,2007,33(2):124-143.
    [194]Krauthausen P, Hanebeck U D. Parameter Learning for Hybrid Bayesian Networkswith Gaussian Mixture and Dirac Mixture Conditional Densities[C]//Braatz R D.American Control Conference. Baltimore, Maryland, USA: IEEE,2010:480-485.
    [195]Charniak E. Bayesian Networks Without Tears.[J]. AI magazine,1991,12(4):50-63.
    [196]Pearl J, Russell S. Bayesian Networks[M]//Arbib M A. Handbook of Brain Theoryand Neural Networks. Cambridge, MA, USA: MIT Press,1998:149-153.
    [197]Pearl J, Russell S. Bayesian Networks[M]//Arbib M A. Handbook of Brain Theoryand Neural Networks,2nd edtion. Cambridge, MA, USA: MIT Press,2002:157-160.
    [198]Geiger D, Verma T, Pearl J. Identifying Independence in Bayesian Networks[J].Networks,1990,20(5):507-534.
    [199]Kschischang F, Frey B, Loeliger H. Factor Graphs and the Sum-ProductAlgorithm[J]. IEEE Transactions on Information Theory,2001,47(2):498-519.
    [200]Loeliger H A. An Introduction to Factor Graphs[J]. IEEE Signal ProcessingMagazine,2004,21(1):28-41.
    [201]Broenink J F. Introduction to Physical Systems Modeling with Bond Graphs[R].Enschede, Netherlands: University of Twente,1999:1-31.
    [202]Gawthrop P, Bevan G. Bond-Graph Modeling[J]. IEEE Control Systems Magazine,2007,27(2):24-45.
    [203]Borutzky W. Bond Graph Modelling and Simulation of Multidisciplinary Systems-An Introduction[J]. Simulation Modelling Practice and Theory,2009,17(1):3-21.
    [204]Breedveld P. Concept-Oriented Modeling of Dynamic Behavior[M]//Borutzky W.Bond Graph Modelling of Engineering Systems. London: Springer Verlag,2011:3-53.
    [205]Dijk J V, Breedveld P. Simulation of System Models Containing Zero-OrderCausal Paths-I: Classification of Zero-Order Causal Paths[J]. Journal of theFranklin Institute,1991,328(5-6):959-979.
    [206]Dijk J V, Breedveld P. Simulation of System Models Containing Zero-OrderCausal Paths-II: Numerical Implications of Class1Zero-Order Causal Paths[J].Journal of the Franklin Institute,1991,328(5-6):981-1004.
    [207]Mosterman P, Biswas G. A Theory of Discontinuities in Physical SystemModels[J]. Journal of the Franklin Institute,1998,335(3):401-439.
    [208]Roychoudhury I, Daigle M, Biswas G, et al. An Efficient Method for SimulatingComplex Systems with Switching Behaviors Using Hybrid Bond Graphs[J].Simulation News Europe,2008,18(3-4):5-13.
    [209]Mosterman P, Biswas G. Diagnosis of Continuous Valued Systems in TransientOperating Regions[J]. IEEE Transactions on Systems, Man and Cybernetics, PartA: Systems and Humans,1999,29(6):554-565.
    [210]Samantaray A, Medjaher K, Bouamama B O, et al. Diagnostic Bond Graphs forOnline Fault Detection and Isolation[J]. Simulation Modelling Practice and Theory,2006,14(3):237-262.
    [211]Samantaray A, Ghoshal S. Bicausal Bond Graphs for Supervision: From FaultDetection and Isolation to Fault Accommodation[J]. Journal of the FranklinInstitute,2008,345(1):1-28.
    [212]Low C B, Wang D, Arogeti S, et al. Causality Assignment and ModelApproximation for Hybrid Bond Graph: Fault Diagnosis Perspectives[J]. IEEETransactions on Automation Science and Engineering,2010,7(3):570-580.
    [213]Frey B J, Jojic N. A Comparison of Algorithms for Inference and Learning inProbabilistic Graphical Models[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(9):1392-1416.
    [214]Cook B, Walker P. Ethernet Over SpaceWire–Hardware Issues[J]. ActaAstronautica,2007,61(1):243-249.
    [215]Cook B, Walker P. Ethernet Over SpaceWire–Software Issues[J]. ActaAstronautica,2007,61(1):250-256.
    [216]Saito H, Sawai S, Sakai S, et al. A Series of Small Scientific Satellite with FlexibleStandard Bus[J]. Acta Astronautica,2009,65(9):1345-1359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700