三级串联人工快渗系统处理高氨氮生活污水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前人工快渗系统主要应用于处理常规生活污水和微污染河水等方面,但利用人工快渗系统技术处理高氨氮生活污水的研究较少。本文通过室内试验,对采用三级串联人工快渗系统处理学校学生生活区高氨氮生活污水的污染物去除效果、复氧效率、堵塞问题以及外加碳源脱氮效果进行了研究,取得如下成果:
     三级串联人工快渗系统正常运行时COD、氨氮的出水浓度均能满足《城镇污水处理厂污染物综合排放标准》(GB18918-2002)一级A标准。COD、氨氮和总氮的平均去除率分别是79.65%、94.47%和47.38%,较常规人工快渗系统分别提高了6%、3%和21%,对总氮去除效果明显提升。COD、氨氮主要在一级子系统阶段得到去除,总氮主要在三级子系统阶段去除。三级串联人工快渗系统内好氧细菌、硝酸细菌、亚硝酸细菌和反硝化细菌总数明显高于常规人工快渗系统,COD的去除率与好氧细菌、活性生物膜的重量相关性系数较高。氨氮的去除率与氨化细菌,硝酸细菌,亚硝酸细菌之间的相关性极显著。总氮的去除率与反硝化细菌、真菌的相关性较高,与放线菌关系也较密切。三级子系统内反硝化细菌数量增多是总氮去除率增加的主要原因,C/N较低是影响总氮去除率提高的限制因素。
     三级串联人工快渗系统沿程溶解氧在一、二级子系统阶段逐渐升高,在二级子系统末端达到最大,然后三级子系统阶段逐渐减小,整体复氧效果明显。三级串联人工快渗系统出水时间间隔较常规快渗系统明显缩短。正常运行时三级串联人工快渗系统的渗流速度是常规人工快渗系统的2~5倍,最大相差近10倍,渗流速度的提高是延缓人工快渗系统堵塞的重要原因。通过几何模型计算本系统中生物膜最大厚度在60μm-150μm之间。
     外加碳源实验结果显示,添加玉米芯后人工快渗系统TN去除效果明显增加。温度在25-33℃,pH在7.5左右时脱氮效果最佳,TN平均去除率为76.3%,较没有添加碳源前提高近30%。玉米芯实验前后扫描电镜结果显示,表面被微生物所降解,同时发现了杆菌和球菌等反硝化菌群,玉米芯主体结构没有松散,起到了很好的载体作用。
     本实验条件下三级串联人工快渗系统最佳的运行参数为:水力负荷1.0m/d,湿干比为1:5,水力负荷周期为4h。
Constructed Rapid Infiltration (CRI) system is applied to treating the conventional domestic sewage and micro-polluted river water etc. nowadays. However, there are few studies on high ammonia wastewater. This study researched the removal of pollutant,efficient of oxygen recovery,the problem of clog and effect of removing nitrogen by adding carbon resource by using CRI on high ammonia wastewater of students' living area in a university, the main achievements were as follows:
     The concentration COD and ammonia nitrogen could meet the standardⅠ—A of“Discharge standard of pollutants for municipal wastewater treatment plant(GB 18918-2002)”, during the operation of three step series of constructed rapid infiltration system. The removal rates of COD, ammonia nitrogen and total nitrogen were 79.65%, 94.47% and 47.38% respectively. These rates were increased by 6%, 3% and 21%, compared with conventional CRI system respectively. The effect of removing total nitrogen results was improved significantly. COD and ammonia nitrogen were removed mainly in the first step, and total nitrogen was removed mainly in the third step. The total numbers of aerobic bacteria, nitrate oxidizing bacteria, nitrite oxidizing bacteria and denitrifying bacteria in three step series of constructed rapid infiltration system were higher than in conventional constructed rapid infiltration system significantly. The coefficient of the removal rate of COD and aerobic bacteria and the active biomass was high. The removal rate of ammonia nitrogen and ammonium oxidizing bacteria, nitrate oxidizing bacteria and nitrite oxidizing bacteria correlated significantly. The removal rate of total nitrogen and denitrifying bacteria, fungi and actinomycetes correlated significantly. The main reason for increase of removal rate of total nitrogen in this three step series of system was the increase of number of denitrifying bacteria. The constraint on the increase of the removal rate of total nitrogen was the low ratio of C / N.
     Concentration of DO increased gradually from first step to second step and then decreased in this three step series of system. It reached maximum at the end of the second step. The effect of oxygen recovery is remarkable. The interval of effluent in this three step series of system was reduced compared with conventional system. Infiltration speed of this three step series of system was 2 to 5 times than the conventional system. Moreover, the infiltration speed of this three step series was almost 10 times than the conventional system when the conventional CRI was clogged. The main reason for deferring of being clogged was the increase of speed of infiltration. The biofilm thickness is between 60 and 150μm calculated by geometric model.
     The results of additional carbon sources experiment showed that the effect was better when corncob was used. The effect of removal of nitrate nitrogen was the best when the temperature was around 25-33℃and pH was 7.5. The average removal rate of TN was 76.3% after adding corncob. The rate was increased by 30% compared with the system to which no carbon source was added. The effect of removal of TN was much better. The result of experiment on corncob with SEM showed that the surface was degraded by microorganism, some denitrifying bacterium, such as bacillus and coccus were found, and the main structure of corncob was not loose, which played a important role of a carrier.
     The best operating parameters under the experimental conditions in this three step series of system showed that hydraulic loading was 1.0m / d, ratio of flooding and drying was 1:5, and hydraulic loading cycle was 4h.
引文
Ago Kaasika, Christina Vohlab, Riho Mo tepa, et al. Hydrated calcareous oil shale ash as potential filter media for phosphorus removal in constructed wetlands [J]. Water Research, 2008, 42:1315– 1323
    Alexandra Tietza, Gunter Langergrabera, Andrea Watzingerb. Bacterial carbon utilization in vertical subsurface flow constructed wetlands [J]. Water Research, 2008, 42:1622– 1634
    Alexandra Tietz, Alexander Kirschner, Günter Langergraber. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands [J]. Science of the Total Environment , 2007,38: 163–172
    Antizar-Ladislao, B.Katz, S, Galil, N.I. Phenol remediation by biofilm developed in sand soil media [J]. Water Science and Technology, 2008,42(1-2):99–104
    A Tan?k, B. C omakog. Nutrient removal from domestic wastewater by rapid infiltration system [J]. Journal of Arid Environments, 1996, 34: 379–390
    Arto Latvala. Multilayer-intermittent sand filter [J].Water Science Technology, 1999, 28 (10):125-132
    Belinda E. Hatt, Tim D. Fletcher, Ana Deletic. Treatment performance of gravel filter media:Implications for design and application of stormwater infiltration systems [J]. Water Research, 2007, 41:2513– 2524
    Boller M, Schwager A, Eugster J, Mottier V. Dynamic behaviour of intermittent buried filters [J]. Water Science Technology, 1993, 28 (10):99–107
    Bosma T N, Hoekstra N K, et al. Biotransformation of organics in soil columns and infiltration area [J]. Ground Water ,1996 ,34(1):49-56
    Chang, Y.Y, Kim, K.S.Jung, J.H. Application of iron-coated sand and manganese-coated sand on the treatment of both As(III) and As(V) [J]. Water Science and Technology, 55 (2) 69–75
    Christopherson, S.H, Anderson, J.J, Gustafson, D.M. Evaluation of recirculating sand filter in a cold climate [J]. Water Science and Technology, 2005, 51(10):267-272
    G. Auslanda, T.K. Stevikb, J.F. Hanssenc,et al. Intermittent filtration of wastewater—removal of fecal coliforms and fecal streptococci [J]. Water Research,2002, 36:3507–3516
    G Langergraber, R haber, J Laber, et al. Evaluation of substrate clogging processes in verticalflow constructed wetlands [J]. Water Science Technology, 2003, 48(5): 25- 34
    Gold A.J, Lamb B.E, Loomis, G.W, Boyd et al. Wastewater renovation in buried and recirculating sand filters [J]. Env. Qual,1992,21:720–725
    Hamazah Z, Ghararah A. Biological denitrification of high nitrate water:influence of type of carbon source and nitrate loading [J] .Environment Science Health, 1996, 31(7) : 1651- 1668.
    Harold L.Leverenz , George Tchobanoglous .Clogging in intermittently dosed sand filters used for wastewater treatment [J]. Water Research, 2009, 43: 695– 705
    Horana N.J, M. Loweb. Full-scale trials of recycled glass as tertiary filter medium for wastewater treatment [J]. Water Research, 2007, 41:253– 259
    Hyun-su Kim, Peter R. Jaffe, Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene [J]. Water Research, 2007, 41:2089 – 2100
    Latyala, Arto. Multilayer intermittent sand filter [J].Water Science and Technology,1993,28(10):123—132
    Lionel Hoa, Thomas Meynb, Alexandra Keegana,et al. Bacterial degradation of microcystin toxins within a biologically active sand filter [J]. Water Research, 2006, 40:768– 774
    Long M N, guyen. Organic matter composition, microbial biomass and microbial activity in gravel -bed constructed wetlands treating farm dairy wastewaters [J]. Ecological Engineering, 2000, 16:199-221
    Luanmanee, S, Attanandana, T., Masunaga T et al. The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation [J]. Ecol. Eng, 2001, 18:185–199。
    Marc Wichern, Claus Lindenblatt, Manfred et al. Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater [J]. Water Research, 2008, 42:3899– 3909
    Masunaga T, Sato K, Zannemi T. Direct treatment of polluted river water by the Multi-Soil-Layering method [J]. Water Env Tech, 2003, 1(1):99-104
    M.G. Healy, M. Rodgers, J. Mulqueen. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters [J].Journal of Environmental Management ,2007, 83:409–415
    M. Rodgers, M.G. Healy, J. Mulqueen. Organic carbon removal and nitrification of high strength wastewater using stratified sand filters [J]. Water Research,2009, 39:3279–3286
    Muller W R, Heinemann A, Schafer C, et al. Aspects of PHA(poly-e-hydroxy-butyric-acid) as an H2 donor for denitrification in water treatment processes [J] . Water Supply , 1992 , 10 :79-90
    Olivier X. Leupin, Stephan J. Hug. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron [J]. Water Research, 2005, 39:1729–1740
    Ovez B. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source [J]. Process Biochemistry, 2006, 41:1289- 1295
    Paul Elliotta, David C. Aldridgea, et al. Zebra mussel filtration and its potential uses in industrial water treatment [J]. Water Research, 2008, 42:1664– 1674
    Pauel, Schedule, Markus Boller. Onsite wastewater treatment buried filter [J]. Water Science Technology,1990,Vol.22,No.3/4:93-100
    Ruppe, L.M. Effects of Dosing Frequency on the Performance of Intermittently Loaded Packed Bed Wastewater Filters [Dissertation]. University of California, Davis, 2005
    Rajala, Ritva L. Pulkkanen, M. Pessi, M.et al. Removal of microbes from municipal wastewater effluent by rapid sand filtration and subsequent UV irradiation [J]. Chemosphere ,2003,47(3):157-162
    Revital, Aroninoa,Christina,Dlugya,Elizabeth,Arkhangelskya, et al. Removal of viruses from surface water and secondary effluents by sand filtration [J]. Water Research ,2009,43:87– 96
    Robertson W D, Cherry J A. In situ denitrification of septic system nitrate using reactive porous media barriers [J]. Field trials. Ground water, 1995, 33(1):99 - 111.
    Sabbah, I. Ghattas, B.; Hayeek, A. Intermittent sand filtration for wastewater treatment in rural areas of the Middle East - A pilot study [J]. Water Science and Technology, 2004,48(11-12):147—152
    Schwager A. Boller M. Transport phenomena in intermittent filters [J]. Water Science Technology ,1997, 35 (6):13–20.
    Siegrist, R.L, Boyle, W.C. Wastewater-induced soil clogging development. ASCE J. Env. Eng. ASCE, 1987, 113:550–566.
    Soares M, Abeliovich A. Wheatstraw as substrate for water denitrification [J]. Water Research,1998, 32(12): 3790~3794
    Spychaa, M. Bazejewski. Sand filter clogging by septic tank effluent [J]. Water Science and Technology,2004,48 ( 11-12 ): 153– 159
    S.R. Ragusa, D. McNevin, S Qasem, et al. Indicators of biofilm development and activity in constructed wetlands microcosms [J].Water Research, 2004, 38:2865– 2873
    Tanja Rauch-Williams, et al. Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration [J]. Water Research, 2006, 40:961– 968
    Volokia M,Abeliovich A. Denitrification of groundwater using cotton as energy source [J].Water Science Technology,1996,34(1-2):379-385
    Volokita M, Belkin S, Abeliovich A, et al. Biological denitrification ofdrinking water using newspaper [J]. Water Research, 1996, 30(4):965-971
    Vilpas, Riikka, Santala, Erkki. Comparison of the nutrient removal efficiency of onsite wastewater treatments systems: Applications of conventional sand filters and sequencing batch reactors (SBR) ,Water Science and Technology ,2007, 55(7):109-117
    Wakatsuki, T. Esumi, H, Omura, S. High performance and N&P removable on-site domestic waste water treatment system by multi-soil- layering method [J]. Water Science Technology, 1993, 27 (1):31-40
    Wilson L G, Amy G L, Gerba C P, et al. water quality change during soil aquifer treatment of tertiary effluent [J].Water Environment Research,1995,67:71-376
    W.W. Veta, I.J.T. Dinklab, G. Muyzerc, et al. Molecular characterization of microbial populations ingroundwater sources and sand filters for drinking water production [J]. Water Research, 2009, 43 :182 -194
    蔡碧靖.反硝化脱氮补充碳源选择与研究:[硕士学位论文].上海:同济大学,2008
    崔程颖,马利民,张选军等.人工快速渗滤系统对污染物的去除机制[J].环境污染与防治,2007,29(2): 95-98
    崔程颖.新兴人工强化土地渗滤系统工艺及艺术研究.[硕士学位论文].上海:同济大学,2007
    付永胜,朱杰. SBR工艺处理肉类加工废水脱氮最佳运行条件的选择[J] .水处理技术, 2005, 31( 12) : 67- 71
    高拯民,李宪法主编.城市污水土地利用手册[M].北京:中国环境科学出版社,1991
    高景峰,彭永臻,王淑莹等.不同碳源及投量对SBR法反硝化速率的影响[J].给水排水, 2001, 127 (15):55-58
    郭劲松,王春燕,方芳等.湿干比对人工快渗系统除污性能的影响[J].中国给水排水,2006,22(17):9~12
    何江涛,钟佐燊,汤鸣皋等.解决污水快速渗滤土地处理系统占地突出新方法[J].现代地质,2001,15(3):339-345
    何江涛,钟佐燊,汤鸣皋等.人工构建快速渗滤系统污水处理系统的实验[J].中国环境科学,2002,22(3):239-243
    何江涛,马振民等.污水渗滤土地处理系统中的堵塞问题[J].中国环境科学,2003,23(1):85-89
    何江涛.人工快渗污水处理系统水力负荷周期的设计,地学前缘,2005,12(supp1): 49-54
    姜昕,马鸣超,李俊等.污水人工快速渗滤系统中厌氧氨氧化菌的分子生态学分析[J].生态学杂志,2008,27(4): 573-577
    姜昕,马鸣超,李俊.用DGGE技术分析污水人工快速渗滤系统中微生物种群分布[J].微生物学通报,2007,34(6): 1179-1183
    金赞芳,陈英旭,小仓纪雄.以纸为碳源去除地下水硝酸盐的研究[J].应用生态学报,2004, 15(12): 2359-2363
    金赞芳,陈英旭,小仓纪雄.以棉花为碳源去除地下水硝酸盐的研究[J].农业环境科学学报,2004,23(3): 512-515
    康爱彬.人工快渗系统除磷方法和多段处理工艺研究:[硕士学位论文].北京:中国地质大学(北京),2006
    康爱彬,杨雅雯,王守伟等.三级串联人工快渗系统处理养殖废水[J].环境工程学报,2009,3(3):475-478
    刘家宝.人工快渗系统污染物去除机理及处理效果研究:[博士学位论文].北京:中国地质大学(北京),2006
    刘江霞,罗泽娇,靳孟贵等.以麦秆作为好氧反硝化碳源的研究[J].环境工程:2008,26(2):94-96
    刘传,田媛,杨昕等.复合快渗系统处理生活污水的模拟试验研究[J].北京工商大学学报(自然科学版),2008,26(3):1-3
    李丽,陆兆华,王昊等.新型混合填料人工快渗系统处理污染河水的试验研究[J].中国给水排水,2007,11(23):86-89
    李冰,崔康平,彭书传等.沸石床快速渗滤工艺性能研究[J],合肥工业大学学报(自然科学版) ,2008,31(1):109-111
    李基东.反硝化脱氮补充碳源选择与研究:[硕士学位论文].上海:同济大学,2007
    徐锁洪,施巍.以稻壳为载体培养反硝化菌及硝酸盐氮的去除[J].大连铁道学院学报, 2001, 22(4): 98-101
    马放,张佳,张献旭等.生物陶粒反应器中好氧反硝化菌的脱氮研究[J].中国环境科学,2007,27(4):529-533
    马鸣超,姜昕,李俊.应用16S rDNA克隆文库解析人工快速渗滤系统细菌种群多样性[J].微生物学通报,2008,35(5): 731-736
    马鸣超,姜昕,李俊.人工快速渗滤系统中硝化菌群脱氮作用解析[J].中国环境科学,2007,28(4): 350-354
    牟新民等.人工快渗处理深圳茅洲河水的实验研究[J] .应用基础与工程科学学报.2003,11(4):370-377
    邵坚,程林,刘俊.人工快速渗滤系统堵塞现象及成因探讨[J].安徽农业科学,2006,34(18)4814-4816
    邵坚,孙恳,杨小毛.运行方式对人工快渗系统水质净化效果的影响[J].环境监测与管理技术,2006,18(5): 31-34
    司马卫平.新型人工湿地污水处理系统复氧效果研究[J].环境保护科学,2009,35(3):10-13
    孙铁珩,周思毅主编.城市污水土地处理技术指南[M].北京:中国环境科学出版社,1997
    汤丽华,杨健,娄山杰.两段式蚯蚓强化快速渗滤系统的实验研究[J].环境污染与防治,2008,30(11):9-12
    魏才捷,吴为中、杨逢乐.多级土壤渗滤技术研究现状及进展[J].环境科学学报2009,29(7):1351—1357
    王春燕,郭劲松,王飞等.紫色土构建人工快渗系统对污水氮去除性能影响[J].重庆大学学报,2008,31(6):688-693
    王禄,喻志平,赵智杰.人工快速渗滤系统氨氮去除机理[J].中国环境科学2006,26(4):500-504
    汪民,吴永峰,钟佐燊等.污水快速渗滤土地处理[M].北京:地质出版社,1993.
    王祖光.人工快渗系统复氧机理研究和水流流态探讨:[硕士学位论文].北京:中国地质大学(北京),2006
    王珍,张增强,唐次来等.生物化学联合法去除地下水中硝酸盐[J].环境科学学报,2008,28(9):1839-1847
    王旭明,从二丁,罗文龙等.固体碳源用于异养反硝化去除地下水中的硝酸盐[J].中国科学B辑:化学2008 ,38(9): 824 - 828
    叶建锋,徐祖信,李怀正等.模拟钢渣垂直潜流人工湿地的除磷性能分析[J],中国给水排水,2006,22(9):62-64
    叶建锋,徐祖信,李怀正.垂直潜流人工湿地堵塞微观概念模型的提出[J].环境污染与防治,2008,30(2):16-19
    叶建锋.垂直潜流人工湿地中污染物去除机理研究:[博士学位论文].上海:同济大学,2007
    喻治平,赵智杰,杨小毛.人工快速渗滤池微生物活性的研究[J],中国环境科学2005,25(5):589-593
    阎宁,金雪标,张俊清.甲醇与葡萄糖为碳源在反硝化过程中的比较[J].上海师范大学学报(自然科学版) ,2002, 31( 3) : 41-44
    詹德昊,吴振斌,徐光来.复合垂直流构建湿地中有机质积累与基质堵塞[J].中国环境科学, 2003, 23(5): 457-461
    张金炳,汤鸣皋,陈鸿汉等.人工快渗处理洗浴废水的实验研究[J].岩石矿物学杂志,2001,20(4):539-543
    张金炳,黄培鸿,杨小毛等.东莞华兴电器厂生活污水人工快渗处理系统[J].环境工程,2003,21(6):32-36
    张金炳.污水处理人工快速渗滤系统研究:[博士学位论文].北京:中国地质大学(北京),2002
    张国臣.人工快渗系统处理高氨氮生活污水试验研究:[博士学位论文].北京:中国地质大学(北京),2008
    张永华,杨崇豪,杨小毛.运行方式对人工快渗系统除污效果的影响[J].人民长江,2006,37(8): 46-47
    张云,张胜,杨振京.不同碳源强化地下水中生物脱氮模拟试验研究[J].地理与地理信息科学:2003,19(1):66-69
    郑毅.不同供氧条件下污水人工快渗系统处理的试验研究:[硕士学位论文].长沙:湖南师范大学,2008
    郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    祝明.人工快渗系统处理养殖废水小型试验研究:[硕士学位论文].北京:中国地质大学(北京),2005
    周贵忠,孙静,张旭等.地下水生物反硝化碳源材料研究[J],环境科学与技术, 2008, 31(7):4-6
    周海红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐[J] .清华大学学(自然科学版) ,2006,46(3):434-436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700