重组竹螺栓连接节点承载性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节点连接是竹木结构设计的关键,整体建筑结构的破坏大多都起源于节点连接的失效或破坏。在各类金属连接件中,螺栓连接具有简洁、安全可靠、使用方便等优点,随着现代竹结构的发展,螺栓连接已经被广泛应用。目前国内外对重组竹螺栓连接方面的报道甚少,故深入研究重组竹螺栓连接性能,对改善螺栓连接的安全性和可靠性都具有重要作用,也可为螺栓连接的进一步推广提供理论基础。
     本研究以毛竹基重组竹为试验材料,着重于研究重组竹螺栓连接节点特性,分析各因素对销槽承压、螺栓连接节点承载性能的影响,观察破坏模式,探究破坏机理;此外,评价了现行木材螺栓连接计算公式对重组竹螺栓连接承载性能预测的适用性;最后以竹材本身特性为基础,推导了适合于重组竹销槽承压强度、螺栓连接承载力的理论计算公式,为螺栓连接在现代竹结构中的应用提供一定的参考,也为竹结构用螺栓连接性能的改善、新型竹结构连接件的开发,提供可靠的理论依据。
     本论文的主要研究结果归纳如下:
     1.重组竹材料密度均一、力学强度高且稳定,完全能满足结构用材的力学强度要求;得到了重组竹12个弹性常数、TL和RL方向的Ⅰ型断裂韧性,并推荐重组竹断裂韧性试样厚度设置为25mm;螺栓抗弯屈服强度随着螺栓直径增大而增大。
     2.对于销槽承压强度而言,试样尺寸在满足最小要求的前提下,对其无显著影响;螺栓直径、纹理方向和含水率对其影响显著:随螺栓直径增大而减小;随纹角度增大,呈先减小后增大的变化趋势;随含水率增大呈递减趋势,并逐渐趋于稳定。
     3.销槽试样的纹理角度从0°到90°逐渐过渡时,破坏模式由顺纹理劈裂和销槽端部压溃的混合破坏模式,逐渐向销槽压溃和试样整体压溃的混合破坏模式(试样沿着厚度方向发生分层开裂)转变,以45°销槽试样为转折点。
     4.采用Eurocode5和NDS/LRFD中的木材销槽公式计算重组竹销槽承压强度,结果偏差较大,故本研究将螺栓直径、含水率、纹理方向作为考虑因素,分别构建了适合于重组竹销槽承压强度的理论计算公式,并给出了重组竹销槽承压测试试样的标准尺寸。
     5.总结了端距、主构件厚度及螺栓直径等因素对单螺栓承载性能(初始刚度、屈服后刚度、屈服载荷、极限载荷及延性率)影响的显著性,并推荐重组竹螺栓连接节点的主构件厚度设置为90mm,最后结合单螺栓影响因素和销槽承压强度,推导了重组竹单螺栓连接节点承载力理论计算公式。
     6. Foschi模型能较好模拟单螺栓连接节点承载曲线变化,能反映出弹性区域和屈服后节点特性,并将弹性向塑性的转变过程直观地表现。单螺栓连接节点的有效破坏模式主要有两种,即“一铰”和“二铰”屈服模式,此时主构件和螺栓均能充分发挥材料的力学性能,是合理的破坏模式。
     7.得出了螺栓列数、行距、间距及每列螺栓数等因素对多螺栓连接节点的承载性能影响变化趋势。随着螺栓间距的增大,试样的破坏形态由列开裂和单铰屈服破坏的混合模式逐渐向单纯的铰破坏演变。多列螺栓随着螺栓列数的增多,会由单列开裂向两边列劈裂演变;随着列间距增大,试样的开裂破坏逐渐消失,只产生了销槽承压破坏和铰屈服破坏。由于多螺栓连接节点在承载过程中载荷分布不均,导致各螺栓的变形不均匀,中间螺栓的变形小于端部螺栓的变形。
     8.总结了螺栓间距、行距、螺栓个数等因素对多螺栓连接节点承载性能的影响。随螺栓数量的增多,试样载荷-位移曲线的屈服阶段愈加短暂,有些试样几乎从线弹性阶段直接进入破坏阶段,最后结合单螺栓的承载性能,对多螺栓连接节点的有效螺栓数和折减系数进行了计算,并推导了重组竹多螺栓连接节点承载力理论计算公式。
Connection is the key design in wood and bamboo structure. The whole structure damagesare always originated by the connection failure. With the development of modern bamboostructure, bolt joint with the traits of simple, safe and reliable, easy to use and so on,has beenused widely. Recently, there was little report on the bolt joint of recombinant bamboo, so it isimportant to study it, for it has an important role in improving the safety and reliability of boltjoint, and providing theoretical basis for its further promotion.
     Recombinant bamboo that produced by Moso bamboo (Phyllostachys pubescens) wastaken as test material. This research focused on the performance of bolt joint for recombinantbamboo, such as analyzing the effect of several factors on dowel-bearing and bolt jointperformances, observing failure mode and exploring failure mechanism. Besides, theapplicability of the wood-bolted design formula was evaluated for recombinant bamboo. Inaddition, based on the characteristics of recombinant bamboo, theoretical calculation formulasof dowel-bearing strength and bearing capacity were derived, which are benfit for theapplication of bolt joint in modern bamboo structure, providing reliable theoretical basis forperformance improvement of bamboo structural bolt joint, new-typed structural connectiondevelopment.
     The main results of this research are summarized as follows:
     1. Recombinant bamboo has uniform density, high mechanical strength and stability,which satisfies the mechanical strength requirements of structural material. Twelve elasticconstants, fracture toughness of modeⅠin TL and RL direction of recombinant bamboo wereobtained. The thickness of the fracture toughness sample for recombinant bamboo wasrecommended to set as25mm. The bending yield strength of bolt increased with the boltdiameter.
     2. As to the dowel-bearing strength, there was no significant dimension effect if sampledimension satisfy the minimum requirements. Besides that, bolt diameter, grain angle andmoisture content have significant effect on the dowel-bearing strength.It decreased with theincrease of bolt diameter. It decreased first and then increased with the grain angle increase. Itshowed a decreasing trend with the moisture content increases, and became constant gradually.
     3. When the grain angle changed from0°to90°, failure mode is from a mixturedamage of the spitting parallel to the grain and crushing on the ends of dowel-bearing sample,to a mixture damage of groove crushing and whole sample crushing (layered crack along thethickness direction of the sample), the45°dowel-bearing sample was as a turning point.
     4. The dowel-bearing strength prediction values from the wood dowel-bearing strengthformula in Eurocode5and NDS/LRFD were much smaller than the test values. Therefore,theoretical design equations of dowel-bearing strength for recombinant bamboo wereconstructed by introduced bolt diameter, moisture content and grain angle as considerationfactors. Besides, the standard dimension of dowel-bearing strength test samples was arised.
     5. The effect of end distance, main member thickness and bolt diameter on bearingperformance of single-bolted connection (initial stiffness, post-yield stiffness, yield load,ultimate load and ductility rate) were obtained. A minimun main member thickness ofrecombinant bamboo joints was recommended to set to90mm. the theory formula ofsingle-bolted joint was derived based on dowel-bearing strength, factor effect of recombinantbamboo.
     6. The load-deformation curves of single-bolted connection simulated by Foschi modelare so well, it could reflect the elastic and yield region characteristics and the transition ofelastic to plastic, visually. Beside, there are two effective failure modes for single-boltedconnections,“one-hinge” and “two-hinge” yield mode. Both of the two failure modes arereasonable, in which the main member and bolt can exert their mechanical properties fully.
     7. The change trend of bolt rows, row space, the space between adjacent bolts and boltnumbers in each row on the bearing performance of multi-bolted joints were summarized. With the increase of space between adjacent bolts, the failure mode changed from the mixture of rowsplit and “one-hinge” yield to simple hinge yield, gradually. In multi-bolted joints, with the boltrows increase, the failure changes from single split to the both sides split. The split graduallydisappeared with the increasing row spacing, only the dowel-bearing and hinge yield failureemerged. For the non-uniform load distributions, the middle bolts had less deformation thanthe others.
     8. The effect of end bolt space, bolt and row number on bearing performance ofMulti-bolted connection were obtained.With the increase of bolt number, the yield phase of theload-displacement curve is even more short-lived. Several load-deformation curves almostdirectly changed from the linear elastic stage to destruction stage. Beside, the effective boltnumbers and reduction coefficients those based on the single-bolted connection are calculated,and the theory formula for Multi-bolted joint aslo been derived.
引文
[1]任海青,周海宾.木结构住宅常见性能检测和评估[M].北京:中国建筑工业出版社,2008.
    [2]傅万四,周建波.竹材弧形原态重组材料产业化制造技术研究[J].木材加工机械,2010,21(6):1-5.
    [3]李霞镇,钟永,任海青.现代竹结构建筑在我国的发展前景.木材加工机械,2011,22(6):44-47.
    [4]2010年我国竹业年产值及格局分析[EEB/0L].(2011-10-20)[2011-12-23].http://www.chinairn.com/news/20111020/381618.html.
    [5]李琴,华锡奇,戚连忠.重组竹发展前景展望[J].竹子研究汇刊,2001,20(1):76-80.
    [6]单炜,李玉顺.竹材在建筑结构中的应用前景分析[J].森林工程,2008,24(2):62-65.
    [7]于文吉.我国高性能竹基纤维复合材料的研发进展[J].木材工业,2011,25(1):6-8,29.
    [8]陈恩灵,费本华.木结构金属连接件连接性能的研究现状[J].木材工业,2008,22(3):9-12.
    [9] CSA.Engineering design in wood [M].Mississauga: Canadian Standards association,2009:105-173.
    [10]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局.GB50005-2003.木结构设计规范[S].北京:中国建筑工业出版社,2003.
    [11] Sven Thelandersson. Timber engineering[M]. London: John Wiley&Sons, Ltd,2003.
    [12]徐德良刘伟庆.三次样条插值函数拟合木拱桥拱轴线[J].江苏建筑,2008(5):36-44.
    [13]李霞镇,钟永,任海青.现代木结构螺栓连接性能及其影响因素研究现状.世界林业研究,2012,25(4):52-57.
    [14]潘景龙,祝恩淳.木结构设计原理[M].北京:中国建筑工业出版社,2009:78-79.
    [15] TrayerGW.The bearing strength of wood under bolts[R]. USDA Washington DC: Technical Bulletin,1932.
    [16] DoyleDV, Scholten JA.Performance of bolted joints in Douglas-fir:USDA Forest Service GeneralTechnical Report FPL–RP–2[R]. Madison, WI: Forest Products Laboratory,1963.
    [17] Soltis LA,Hubbard FK,Wilkinson TL.Bearing strength of bolted timber joints[J].Journal of StructuralEngineering,1986,112(9):2141-2154.
    [18] Johanson KW.Theory of timber connections [J].International Association for Bridge and StructuralEngineering,1949,(9):249-262.
    [19] McLain TE, Thangjitham S.Bolted wood-joint yield model [J].Journal of structural division,1983,109(8):1820-1835.
    [20] Lawrence A, Soltis PE.Bolted connection research: present and future [J].Wood Design Focus,1994,5(2):3-5.
    [21]中华人民共和国建设部,中国人民共和国国家质量监督检验检疫总局. GB50005-2003.木结构设计规范[S].2003.
    [22]《木结构设计手册》编委会.木结构设计手册(第三版)[M].北京:中国建筑出版社.2005.
    [23] American Forest&PaperAssociation.ANSI/AF&PA NDS-1997.National design specification forwoodconstruction[S].AF&PA:Washington, D.C.1997.
    [24] Canadian Standard Association(CSA). Engineering design in wood[S]. Mississauga, Ontario, Canada,2009.
    [25] British Standards Institution.BS EN1995-1-1.Eurocode5: Design of timber structures-Part1-1:General-Common rules and rules for buildings[S].BSI; London.2004.
    [26] Soltis, L.A., Wilkinson, T.L. Bolted connection design: USDA Forest ServiceFPL–GTR–54[R] Madison,WI: Forest Products Laboratory.1987.
    [27]徐德良,刘伟庆,倪庚东.木材-钢夹板螺栓连接的承载能力试验研究[J].江苏建筑,2009,(3):18-20,33.
    [28]徐德良,刘伟庆,杨会峰等.木材-钢填板螺栓连接的承载能力试验研究[J].南京工业大学学报(自然科学版),2009,31(1):87-91,96.
    [29]翁晓红,刘伟庆,杨会峰等.木材-钢填板螺栓连接的承载能力试验研究[J].江苏建筑,2008(4):17-19.
    [30] Saba EB,Janardhanam R,Young DT.The optimization of bolted timber joints[C].InternationalConference Timber Engineering,Seattle,Washington,U S A,1988.
    [31] YasamuraM,MurotaT, Sakai H.Ultimate properties of bolted joints in glued-laminated timber:Paper20–7–3[C].CIB-W18,Dublin,Ireland,1987.
    [32] Doyle DV.Performance of joints with eight bolts in laminated Douglas-fir:USDAForest ServiceFPL–RP–10[R]. Madison, WI: Forest Products Laboratory,1964.
    [33] Maik G.,Maximilian C,Frank L.Reduced edge distances in bolted timber moment[C]. The11th WorldConnection Timber Engineering,Trentino,Italy,2010.
    [34] César E.Capacity predictions for bolted timber joints failing by splitting[C].The10th World ConnectionTimber Engineering,Miyazaki,Japan,2008.
    [35] Wataru K.A Study on Brittle Fracture of Bolted Joint with Japanese Larch Glulam LoadedPerpendicular to the Grain Based on Local Fracture Approach [J].structural and constructionengineering, Trans. A.I.J.,2007(611):111-118.
    [36] Wataru K, Naoyuki I, Yasuo I.A study of bearing sterength with different enddistance, bolt-diameter andwood species[C].The11th World Connection Timber Engineering, Trentino,Italy,2010.
    [37] Keiichi T.Behaviour of tensile strength and displacement concerning Big Screw Joint with CrossLaminated Panel[C].The10th World Connection Timber Engineering,Miyazaki, Japan,2008.
    [38] Forest Products Laboratory.Wood handbook:wood as an engineering material:USDA Forest ServiceGeneral Technical Report FPL-GTR-113[R].Madison,WI:Forest Products Laboratory,2010.
    [39] National Forest Products Association (NFPA).National design specification for wood construction
    [M].WashingtonDC,1982.
    [40] Mclain TE.Curvilinear load-slip relations in laterlly loaded nailed joints [D].FortCollins,Colorado:Colorado State University,1975.
    [41] Lawrence A. S., Robert J. R., Daniel F. Fiberglass-reinforced bolted wood connections [J]. ForestProducts Journal,1998,48(9):63-67.
    [42] Wataru K,Tadao N.An investigation by fracture mechanics for the strength of Japanese larch subjectedto force perpendicular to the grain [J].Journal of Structural Engineering,2006,52B:429-438.
    [43] Nicolas S,Octavian P,Seddik M,etal.Effect of moisture content variation on short term dowel-bearingstrength[C].The10th World Connection Timber Engineering, Miyazaki, Japan,2008.
    [44] Fantonzzi JA.Tensile failure characteristics of bolted wood joints subjected to bending moments
    [D].Corvallis,Oregon State University,1988.
    [45] Rammer,D R. Winistorfer. S G. Effect of moisture content on dowel-bearing strength [J]. Wood andFiber Science,2001,33(1):126-139.
    [46]尹思慈.木材学[M].北京:中国林业出版社,1996.
    [47] Green DW,Kretschmann DE.Moisture content and the properties of clear Southern pine:USDAForestServiceFPL-RP-531[R].Madison,WI:Forest Products Laboratory,1994.
    [48] Alexander S,Baptiste L,Mohammad M,etal.Effect of moisture on the performance of bolted connectionsin timberstructure[C].The11th World Connection Timber Engineering,Trentino,Italy,2010.
    [49] Kunesh RH,Johnson JW.Strength of multiplebolt joints: Influence of spacing and other variables. Rep.T-24[R].Corvallis,OR:Forest Research Laboratory,OregonStateUniversity,1968.
    [50] WilkinsionTL.Bolted connection strength and bolt hole size:USDA Forest Service General TechnicalReport FPL-RP-524[R].Madison,WI: Forest Products Laboratory,1993.
    [51] American Forest&Paper Association (AF&PA).National design specification for wood construction
    [M].Washington, DC. American Forest&PaperAssociation,1997.
    [52] Mettem CJ, Page AV.Load distributions in multi-fastener bolted joints in European whitewood glulamwith steel sideplates. Paper25–7–12[C], CIB-W18, hus, Sweden,1992.
    [53]周俐俐,沈鹃,曹国.对螺栓群不等间距排列方式及承载力的初步研究[J].钢结构,2007,22(6):48-49,77.
    [54] Andrew J.B..Corrosion of nails in CCA-and ACA-treated wood in two environments [J].ForestProducts Journal,1992,42(9):39-41.
    [55] Bejtka I.Self-tapping screws as reinforcements in connectionswith dowel-type fasteners.Paper38-7-4[C].CIB-W18,Karlsruhe,Germany,2005.
    [56] Sawata K, YasumuraM.Determination of embedding strength of wood for dowel-type fasteners [J].Journal of Wood Science,2002,48(2):138-146.
    [57] Baba,BO. Behavior of Pin-loaded Laminated Composites [J]. Experimental mechanics,2006,46(5):589-600.
    [58] Cramer S M, Shrestha D, Fohrell W B. Theoretical consideration of metal-plate-connectedwood-trusses[J]. Journal Structural Engineering,1990,116(12):3458-3475.
    [59] Foschi R O, Analysis of wood diaphragms and trusses PartⅡ: Truss-plate connections[J]. Canadian J.Civil Eng.1997,4(3):353-362.
    [60] Riley G J, Gebremedhin K G. Axial and rotational stiffness model of metal-plate-connected wood trussjoints[J]. Transactions of the ASAE,1999,42(3):761-770.
    [61] Amanuel S, Gebremedhin K G, Boedo S, etal. Modeling the interface of metal-plate-connectedtension-splice joint by finite element method[J]. Transactions of the ASAE,2000,43(5):1269-1277.
    [62]石伟.有限元分析基础与应用教程[M].北京:机械工业出版社,2010.
    [63] Tsiang, T H. Survry of bolted-joint technology in composite laminates [J], Composites TechnologyReview,1984,6(8):74-77.
    [64] Wong C M S., Matthews, F L. A finite element analysis single and two-hole bolted joints in fibrereinforced plastic [J]. Journal of Composite Materials,1981,481-491.
    [65] Chen, W H, Yeh, J T. Three-dimensional contact stress analysis of composite laminate with bolted joint[J]. Composite Structures,1995,30(3):287-297.
    [66] Moses,D W, Prion,HGL.A three-dimensional model for bolted connections in wood [J].CanadianJournal of Civil Engineering,2003,30(3):555-567.
    [67] Dano M L, Guy G D. André P. Stress and failure analysis of mechanically fastened joints in compositelaminates[J],Composite Structures,2000,50(3):287-296.
    [68] HONG JP.Wood material parameters of numerical model for bolted connections-Compressionproperties and embedment properties[C].The10th World Connection Timber Engineering, Miyazaki,Japan,2008.
    [69] XU,BH. Mechanical analysis of timber connection using3D finite element model[C]. The10th WorldConnection Timber Engineering, Miyazaki, Japan,2008.
    [70] Xu,BH, Boucha rA, TaazountM,etal.Numerical and experimental analyses of multiple-dowelsteel-to-timber joints in tension perpendicular to grain [J].Engineering Structures,2009,31,(10):2357-2367.
    [71]徐德良,刘伟庆,周叮等.胶合木与胶合木螺栓连接力学性能试验研究[J].建筑结构学报,2011,32(7):93-99.
    [72] Patel M.C., Hindman D.P., ASCE A.M..Comparison of single-and two-bolted LVLperpendicular-to-grain connections.Ⅰ: National design specification for wood costruction equations[J].Journal of materials in civil engineering,2012,24(4):339-346.
    [73] Patel M.C., Hindman D.P., ASCE A.M.. Comparison of single-and two-bolted LVLperpendicular-to-grain connections.Ⅱ: Fracture models [J].2012,24(4):347-355.
    [74]张齐生,孙丰文.竹木复合是科学合理利用竹材资源的有效途径[J].林产工业,1995,22(6):4-6.
    [75]于文吉.我国重组竹产业发展现状与趋势分析[J].木材工业,2012,26(1):11-15.
    [76]李和麟.高性能重组竹制造技术研究.世界竹藤通讯,2010,8(4):27-29.
    [77]胡南,李贤军,吴义强等.室外用重组竹及重组竹复合材生产工艺初探[J].林业机械与木工设备,2011,39(11):17-19.
    [78]李琴汪奎宏华锡奇.重组竹生产工业的初步研究[J].中国人造板,2001,8(7):6-9.
    [79] Li Qin,Wenji Yu.Research on surface color,properties of thermo-treated reconstituted bamboo lumberafter artificial weathering test[J]. Advanced Materials Research,2009,79-82:1395-1398.
    [80]关明杰,林举媚,朱一辛.家具用重组竹干缩与湿胀性能研究[J].竹子研究汇刊,2009,28(3):38-41.
    [81]秦莉,于文吉,余养伦.重组竹材耐腐防霉性能的研究[J].木材工业,2010,24(4):9-11.
    [82]崔会旺,杜官本.我国竹木复合材料研究进展[J].中国人造板,2007,14(6):4-6.
    [83] ASTM D143-94. Standard Test Methods for Small Clear Specimens of Timber D143-94(2007)[S].2007
    [84]刘永峰.胶合木曲梁横纹开裂试验研究及数值模拟[D].哈尔滨:哈尔滨工业大学,2011.
    [85]成俊卿.木材学[M].北京:中国林业出版社,1996.
    [86]湿地松与马尾松人工林木材物理力学性质的比较研究[J].中南林业调查规划,2004,23(2):58-59.
    [87]不同树龄秃杉与杉木人工林木材物理力学性质的比较[J].浙江林学院学报,2008,25(2):137-142.
    [88]龚蒙.用电阻应变法测定木材顺纹抗压弹性常数的研究[J].林业科学,1995,31(2):189-191.
    [89]邵卓平,祝山.电阻应变法测定杉木弹性常数的研究[J].安徽农业大学学报,2001,28(1):32-35.
    [90]王丽宇,鹿振友,申世杰.白桦材12个弹性常数的研究[J].北京林业大学学报,2003,25(6):64-67.
    [91]科尔曼.木材学与木材工艺学原理[M].北京:中国林业出版社,1991.
    [92]渡边治人.木材应用基础[M].上海:上海科学技术出版社,1986.
    [93]任海青,邵卓平.断裂力学及其在木材学中的应用[J].木材工业,1999,13(5):20-23.
    [94]任海青.人工林木材断裂性质的研究[D].北京:中国林业科学研究院,1999.
    [95] ASTM International.ASTM F1575-03.Standard test method for determining bending yield moment ofnails[S].2008.
    [96] Michael A.D. The effects of row spacing and bolt spacing in6-bolt and4-bolt wood-to-steelconnections[D]. USA: Washington state university,2003.
    [97] ASTM International.ASTM D5764-97a.Standard test method for evaluation dowel-bearing strength ofwood and wood-based products[S].
    [98]刘柯珍.落叶松胶合木梁柱连接节点设计与承载性能评价[D],北京:中国林业科学研究院,2011.
    [99] Wilkinson T.L. Dowel-bearing strength: USDA Forest Service General Technical ReportFPL-RP-505[R].Madison,WI: Forest Products Laboratory,1991.
    [100] Rammer D.R. Parallel-to-grain dowel-bearingstrength of twoGuatemalan hardwoods [J].ForestProductsJournal.1999,49(6):77–87.
    [101] Whale L.R.J., Smith I. The derivation of designclasses for nailed and bolted joints in EUROCODE5[C].International Council for Building Research Studies andDocumentation, Working CommissionW18–TimberStructures,1988.
    [102] Fahlbusch H. A contribution to the problem of the bearing strength of bolts in wood under static loads(Report No.49-09)[R]. Institute for Mechanical construction and carpentry, Braunschweig,Germany.1949.(Translation No.218, Research Information Service, translated for USDA ForestService, Forest Products Laboratory, New York, May1955).
    [103] Winistorfer S.G. Validation of the European yield model for nailed connections[C].Proceedings of thestructures congress94, Atlanta,1994.
    [104] Koponen, S. Embedding characteristics of wood in the grain direction[R].HelsinkiUniversity ofTechnology, Laboratory of Structural Engineering and Building Physics.Espoo, Finland,1991.
    [105] Boucha r A, Racher P, Bocquet JF. Analysis of dowelled timber to timber moment-resisting joints [J].Materials and Structures,2007,40(10):1127-1141.
    [106] SilihS, Premrov M, Kravanja S. Optimum design of plane timber trussesconsidering joint flexibility[J].Engineering Structures,2005;27(1):145_54.
    [107] Kasim M, Quenneville JHP. Effect of row spacing on the capacity of boltedtimber connections loadedperpendicular-to-grain[C].Proceedings of CIBW18conference, Lisbon, Portugal,2002.
    [108] Guan ZW, Rodd PD. Hollow steel dowelsa new application in semi-rigidtimber connections [J].Engineering Structures,2001,23(1):110-119.
    [109] Sawata K, Yasumura M. Estimation of yield and ultimate strengths of boltedtimber joints by nonlinearanalysis and yield theory. Journal of Wood Science,2003,49(5):383-391.
    [110] Hindman DP, Finkenbinder D, LoferskiJR etal.Predictingthe strength of scl dowel connections loadedperpendicular tograin. Part II: Fracture mechanics equation.Journal of Materials in Civil Engineering,2010,22(12):1226–1234.
    [111] ASTM International.ASTM D5652-95.Standard test methods for bolted connections in wood andwood-based products[S].
    [112] Wilkinson T.L. Strength of bolted timber connections with steel side members: USDA, Forest ServiceGeneral Technical Report FPL-RP-513[R]. Madison, WI: Forest products Laboratory,1992.
    [113] Lantos, G.Load Distribution in a Row of Fasteners Subjected to Lateral Load.Wood Science,1969,1(3):129-136.
    [114] Cramer, C.O. Load Distribution in Multiple-bolt Tension Joints. Journal of Structural Division,1968,ASCE94(ST5):1101-1117.
    [115] Milton, J.T.Some Notes on the Strength of Riveted Joints.Transactions, Institution of Naval Architects,1885,26(March27):204-210.
    [116] Smith I, Foliente G C. Load and resistance factor design oftimber joints: Internationalpractice andfuture directions.Journal of Structure Engineering,2002,128(1):48–59.
    [117] American Forest and Paper Association (AF&PA). General dowelequations for calculating lateralconnection values.Technical Rep.12,AF&PA, Washington, DC.1999.
    [118] PatelM C, HindmanDP.Comparison of single-andtwo-bolted LVL perpendicular-to-grain connections.I: National DesignSpecification forWood Construction equations. Journal of Materials in CivilEngineering,2012,24(4):339–346.
    [119] PatelM C, HindmanDP, ASCE A M. Comparison of single-andtwo-bolted LVL perpendicular-to-grainconnections.Ⅱ: Fracture models. Journal of Materials in Civil Engineering,2012,24(4):347–355.
    [120]魏洋,张齐生,蒋身学等.现代竹质工程材料的基本性能及其在建筑结构中的应用前景.建筑技术,2011,42(5):390-393.
    [121]李琴,汪奎宏.重组竹产业化发展可行性分析[J].木材工业,2007,21(1):33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700