阻燃竹基纤维复合材料的制造与性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹基纤维复合材料是以纤维化竹单板为构成单元,按顺纹组坯、经热压(或冷压)胶合而成的板材或方材,这种材料突破了竹材人造板加工利用的竹材径级限制难题,并使竹材的一次利用率从20%-50%提高到了90%以上,实现了竹材人造板从室内地板、家具、水泥模板等中低端应用领域到高强度风电叶片基材、高耐候性户外材料等高附加值领域的跨越。然而,因组成竹基纤维复合材料的基本单元——纤维化竹单板属于易燃材料,不经阻燃处理很难达到相关防火规范的要求,存在着一定的火灾隐患。对竹基纤维复合材料进行阻燃处理,研究材料的燃烧特性,必将成为扩展竹基纤维复合材料使用范围以及实现竹基纤维复合材料产品多样化的重要手段。开展竹基纤维复合材料阻燃性能的系统研究,不仅可以扩宽竹基纤维复合材料的应用领域,同时还可以为相关标准的制定及竹基纤维复合材料产品的开发提供基础的理论依据,这对提升我国竹材产业的整体竞争力、推广竹基纤维复合材料产品、提高其附加值都具有重要的意义。
     本论文主要以毛竹(Phyllostachys pubescens)、慈竹(Neosinocalamus affinis)为研究对象,以聚磷酸铵(APP)、磷酸氢二铵(DAP)为阻燃剂,将纤维化竹单板进行阻燃处理后,制备了阻燃型竹基纤维复合材料,并利用万能力学试验机、锥形量热仪、热重-差热联用分析仪、扫描电镜-能谱连用仪等,对材料的力学性能、燃烧性能和热解行为特征等进行分析表征,重点分析了纤维化竹单板中阻燃元素的分布状态,研究了竹基纤维材料制备工艺对材料性能的影响,探讨了竹基纤维复合材料性能随阻燃剂用量的变化规律,并揭示了阻燃剂对竹基纤维复合材料阻燃性能的影响机理,为阻燃型竹基纤维复合材料的应用提供了基础研究数据。
     主要研究结论如下:
     (1)通过对阻燃剂处理后纤维化竹单板的载药率的研究,分析了纤维化竹单板的竹种来源、浸渍阻燃剂的种类、浸渍处理的工艺等因素对阻燃处理效果的影响,得出了阻燃处理纤维化竹单板的制备工艺。纤维化竹单板的载药率随纤维化竹单板竹种来源的变化不大,慈竹纤维化竹单板的载药率与毛竹纤维化竹单板的载药率基本相同;载药率随浸渍阻燃剂的种类而变化,DAP处理纤维化竹单板的载药率略低于APP处理纤维化竹单板的载药率;载药率随浸渍处理的工艺而变化,高浓度阻燃剂处理的纤维化竹单板的载药率高于低浓度阻燃剂处理的纤维化竹单板的载药率。纤维化竹单板的断面电镜和元素分析表明,阻燃处理后新增的N、P两种元素已均匀地分布在竹材的组织中,当使用浓度为25%的APP对慈竹纤维化竹单板浸渍处理后,N元素含量由处理前的0.23%增大到处理后的9.59%,P元素含量由处理前的0.24%增大到处理后的14.81%。为适应复合材料的生产工艺要求,阻燃剂浸渍时间统一定为3h,当使用浓度为25%的APP对慈竹纤维化竹单板浸渍处理后,纤维化竹单板的载药率可达到最大值19.29%。
     (2)当以DAP作为竹基纤维复合材料阻燃剂时,纤维化竹单板的竹种来源、DAP阻燃剂的浸渍浓度、竹基纤维复合材料的密度等因素对材料的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度、吸水宽度膨胀率、吸水厚度膨胀率、热解性能等产生不同的影响。以慈竹为原料制备的竹基纤维复合材料的静曲强度、弹性模量、抗压强度、水平剪切强度、吸水宽度膨胀率、吸水厚度膨胀率等均高于以毛竹为原料制备的竹基纤维复合材料,而慈竹竹基纤维复合材料的内结合强度则低于毛竹竹基纤维复合材料;当DAP阻燃剂的浸渍浓度增大时,板材的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度等均减小,吸水宽度膨胀率、吸水厚度膨胀率则增大;当竹基纤维复合材料的密度增大时,板材的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度等均增大,吸水宽度膨胀率、吸水厚度膨胀率则减小。竹基纤维复合材料的热降解过程可分为四个阶段,材料的热解性能随DAP阻燃剂的浸渍浓度而变化,当DAP阻燃剂的浸渍浓度增大时,材料600℃质量残留率增大,由10%增大至25%。
     (3)当以APP作为竹基纤维复合材料的阻燃剂时,纤维化竹单板的竹种来源、APP阻燃剂的浸渍浓度、竹基纤维复合材料的密度等因素对材料的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度、吸水宽度膨胀率、吸水厚度膨胀率、热解性能等产生不同的影响。以慈竹为原料制备的竹基纤维复合材料的静曲强度、弹性模量、抗压强度、水平剪切强度、吸水宽度膨胀率、吸水厚度膨胀率等均高于以毛竹为原料制备的竹基纤维复合材料,以慈竹为原料制备的竹基纤维复合材料的内结合强度则低于以毛竹为原料制备的竹基纤维复合材料;当APP阻燃剂的浸渍浓度增大时,板材的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度等均减小,吸水宽度膨胀率、吸水厚度膨胀率则增大;当竹基纤维复合材料的密度增大时,板材的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度等增大,吸水宽度膨胀率、吸水厚度膨胀率则减小。材料的热解性能随APP阻燃剂的浸渍浓度而变化,当APP阻燃剂的浸渍浓度增大时,材料600℃质量残留率增大,由10%增大至24%。
     对比表明,经APP阻燃剂处理的竹基纤维复合材料的力学性能均高于经DAP处理的材料,经APP处理材料的600℃质量残留率与经DAP处理材料的质量残留率基本相同。
     (4)当以按不同比例混合的DAP、APP作为竹基纤维复合材料的阻燃剂时,板材的力学性能、耐水性能、热解性能等随DAP与APP的混合比例而变化,板材的静曲强度、弹性模量、内结合强度、抗压强度、水平剪切强度、600℃质量残留率等随APP比例的增大呈先增大后减小的趋势,而吸水宽度膨胀率、吸水厚度膨胀率等则随APP比例的增大呈先减小后增加的趋势。当DAP:APP=1:1时,板材的力学性能最大,吸水膨胀率最小,热解残留率最大;当DAP:APP=3:1时,板材的力学性能最小,吸水膨胀率最大,热解残留率最小。材料的热释放速率、热释放总量、有效燃烧热、发烟总量等随着APP含量的增大而有所减小,当DAP:APP=1:3时,材料的热释放速率为25.65kW/m2,热释放总量为46.11MJ/m2,有效燃烧热为4.31MJ/kg,发烟总量为1.63m2。
     (5)当DAP、APP加入竹基纤维复合材料中,其磷化物和氮化物具有阻燃功效,并产生磷-氮的协效阻燃作用,在燃烧过程中发生吸热发应,分解生成不燃气体以及不燃的液态膜,在高温下形成膨胀碳层,从而阻止材料的持续燃烧。材料的热解动力学参数随阻燃剂的浸渍浓度而变化,经25%浓度的DAP、APP处理后,材料热解的表观活化能分别为45.03KJ/mol、50.68KJ/mol,竹基纤维复合材料的燃烧过程接近于一级反应。经DAP、APP处理后,材料燃烧的引燃时间延长,热释放速率、热释放总量均大幅度地降低。当阻燃剂的浸渍浓度增大时,材料的平均释热速度减小,热释放总量减小。两种阻燃剂对比表明,经APP处理后材料的平均释热速度、热释放总量等均低于经DAP处理后的材料;而经APP处理后的材料的发烟总量则高于经DAP处理后的材料。
Bamboo-based fiber composite material was made through assemble, press and glue. The problem of utilization of bamboo diameter limit was solved by this method, and utilization rate was increased from20%-50%to90%. The material had been used from the low-end applications such as indoor flooring, furniture to high value-added field such as wind turbine blades, high weatherability outdoor materials. However, because of the bamboo mat was flammable materials, it was hard to meet the fire safety requirements without flame retardant treatment, there was a fire hidden danger in certain. So it will become an important means to make product diversified through studying on fire-retardant treatment and combustion characteristics of the material. To carry out studying of flame-retardant properties of bamboo-based fiber composite materials, not only can be extended the application of the field of materials, but also can provide the relevant standards and theoretical basis. There was a great significance to enhance competitiveness of China's bamboo industry, promote bamboo-based fiber composite products and improve the added value.
     In this paper, Phyllostachys pubescens and Neosinocalamus affinis were chosen as research object, flame retardant bamboo-based fiber composites was made as the bamboo mat was treated by APP and DAP respectively. Mechanical properties, combustion performance and pyrolysis behavior characteristics were characterized. The distribution state of flame retardant elements in bamboo mat, effect of preparation process to material properties, variation of properties with flame retardants concentration, and the mechanism of flame retardant to bamboo-based fiber composites was analyzed respctively. It will provide a basis data for research of flame retardant bamboo-based fiber composite materials.
     The main conclusions were as follows:
     (1) The effect of species of bamboo, types of flame retardant, and treatment process on treatment effect were analyzed. For dug loading of bamboo mat, there was no obviously change in species of bamboo. Bamboo mat drug loading rate with high concentrations treated was slightly higher than with low concentrations treated. The surface electron microscopy and elemental analysis showed that:fire-retardant elements of N, P were distributed in the organization of the bamboo uniformly. When the bamboo mat was impregnated by25%APP, N element content was increased from0.23%to9.59%, P element content was increased from0.24%to14.81%. In order to meet the process requirements, flame retardant impregnation time is unified at3h. When the bamboo mat of Neosinocalamus affinis was impregnated by25%APP, drug loading rate to a maximum of19.29%.
     (2) When DAP was chosen as fiber retardant, the factors such as species of bamboo, impregnation of DAP concentration and density of materials effected the mechanical properties, water resistance properties and pyrolysis performance. Expect to IB, mechanical properties and water resistance properties of Neosinocalamus affinis's bamboo-based fiber composite was respectively higher than Phyllostachys pubescens's bamboo-based fiber composite. When DAP impregnation concentration increased, the MOE, MOR, IB, compressive strength and shear strength were reduced, while WS and TS were inceseaed. When bamboo-fiber composite material's density was increased, the MOE, MOR, IB, compressive strength and shear strength are inceseaed, while WS and TS were reduced. Thermal degradation of bamboo-fiber composite material can be divided into four stages, the pyrolysis of the material was varied with DAP concentration, mass residual was increased from10%to25%as DAP concentration increased.
     (3) When APP was chosen as fiber retardant, the factors such as species of bamboo, impregnation of APP concentration and density of materials effected the mechanical properties, water resistance properties and pyrolysis performance. Expect to IB, mechanical properties and water resistance properties of Neosinocalamus affinis's bamboo-based fiber composite was respectively higher than Phyllostachys pubescens's bamboo-based fiber composite. When APP impregnation concentration was increased, the MOE, MOR, IB, compressive strength and shear strength were reduced, while WS and TS were inceseaed. When the bamboo-fiber composite material's density was increased, the MOE, MOR, IB, compressive strength and shear strength are inceseaed, while WS and TS were reduced. The pyrolysis of the material were varied with APP concentration, mass residual was increased from10%to24%as APP concentration increased.
     The result showed that:the mechniacl properties of APP treated was higher than DAP treated, and mass residual with APP treated was basically as same as DAP treated.
     (4) When DAP and APP were mixed as fiber retardant, the mechanical properties, water resistance properties and pyrolysis performance were changed as mix rate changed. MOE, MOR, IB, compressive strength and shear strength and mass residual at580℃were increases first and then decreases with the proportion of APP increases, while WS and TS were decreases first and then increases. When DAP and APP were mixed with1:1, the mechanical properties and mass residual at580℃was highest, while water resistance was lowest, when DAP and APP were mixed with3:1, the mechanical properties and mass residual at580℃was lowest, while water resistance was highest. HRR, THR, EHC and TSP were decreases with the proportion of APP increases. When DAP and APP were mixed with1:3, HRR was25.65kW/m2, THR was46.11MJ/m2, EHC was4.31MJ/kg, and TSP was1.63m2.
     (5) When DAP and APP were added in bamboo-based fiber composite, there were a flame retardant effect in phosphide and nitride, meanwhile, a synergistic flame retardant effect of phosphorus-nitrogen was producted. In combustion process, there was a endothermic reaction occurred in phosphide and nitride, and non-combustible gases as well as non-combustible liquid film was generated, these substance could prevent the material continued to burn. The pyrolysis kinetic parameters were changed with flame retardant concentrations. Activation energy of bamboo-based fiber composite was45.03KJ/mol and50.68KJ/mol with DAP and APP treated respectively. Bamboo-based fiber composite material combustion process were closed to a first-order reaction. After DAP and APP treated respectively, bamboo-based fiber composite material's TTI, HRR and THR were significantly reduced. When the concentration of the flame retardant impregnation increased, HRR and THR were decreases. Comparied to DAP treated, bamboo-based fiber composite material's HRR and THR with APP treated were lower, while bamboo-based fiber composite material's TSP with APP was higher.
引文
[1]于文吉.我国重组竹产业发展现状与趋势分析[J].木材工业,2012,26(1):11-14
    [2]范维澄,刘乃安.中国火灾科学基础研究进展与展望明[J].中国科学技术大学学报,2006,36(1):1-8
    [3]于文吉.竹材表面性能及力学性能变异规律的研究[D].北京:中国林业科学研究院,2001
    [4]孙兆斌.龙竹竹材的热压干燥及传热传质特性[D].南京:南京林业大学,2005
    [5]张齐生.中国竹材工业化利用[M].中国林业出版社,1995
    [6]周芳纯.竹材培育和利用[M].南京林业大学《竹类研究》编委会.1998:178-267
    [7]刘柏平,程万里,周建波等.弧形原态重组竹制造工艺的初步研究[J].木材加工机械,2009,6:31-34
    [8]吴平.精心做好产业这篇大文章[N].中国经济时报,2010-09-27
    [9]李琴,汪荃宏,华锡奇等.小径杂竹制造重组竹的试验研究[J].竹子研究汇刊,2002,21(3):33-36
    [10]傅万四.竹质OSB削片技术及工艺学研究[D].哈尔滨:东北林业大学,2007
    [11]孟凡丹.纤维化竹单板重组材的制造技术与性能研究[D].哈尔滨:东北林业大学,2011
    [12]张齐生.竹类资源的加工特点及其利用途径的展望[J].中国林业产业,2004(1):9-11
    [13]Wang Zheng, Guo Wenjing. Physical-Mechanical Properties of Manufacture [J]. Chinese ForestryScience and Technology,2004,3(1):74-79
    [14]唐永裕.竹材利用现状及开发方向讨论[J].竹子研究汇刊,2001,20(3):3643
    [15]赵仁杰,喻云水.我国竹材加工利用的现状与发展建议.面向二十一世纪我国人造板工业发展问题研讨会论文集.北京,1995
    [16]张齐生,孙丰文.我国竹材工业的发展展望.面向二十一世纪中国木材工业发展问题研讨会论文集.福建,1995
    [17]江泽慧.中国现代林业.北京:中国林业出版社,2000
    [18]张齐生.中国的竹材人造板工业.中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001
    [19]郑睿贤.毛竹工业利用分析.竹子研究汇刊,1998,17(3)1-9
    [20]叶良明,叶建华等.重组竹板材的研究——去青与不去青的比较[J].竹子研究汇刊,1996,15(1):58-65
    [21]李琴,汪奎宏,华锡奇等.重组竹生产工艺的初步研究[J].人造板通讯,2001(7):6-9
    [22]于文吉.我国高性能竹基纤维复合材料的研发进展[J].木材工业,2011,25(1):6-8
    [23]杨杰.新型膨胀阻燃剂的合成研究[D].贵阳:贵州大学,2010
    [24]GB8624-2006《建筑材料及制品燃烧性能分级》[S]
    [25]罗文圣.木质材料的燃烧过程及其阻燃处理[J].建筑人造板,1994,2:13-18
    [26]K.Yeh.et al.Prepr.Am.Chem.,1978,5:200
    [27]李坚主编.木材保护学.哈尔滨:东北林业大学出版社,1999:102-116
    [28]罗杰·罗维儿.实木化学[M].北京:中国林业出版社,1988
    [29]骆介禹.木材阻燃的概况[[J].林产工业,2000,27(2):7-9
    [30]Roger rowell. The Chemistry of Solid Wood [M]. Washington. D C:American Chemical Socity, 1984
    [31]欧育湘,陈宇.阻燃高分子材料[M].北京:国防工业出版社,2001
    [32]王清文.新型木材阻燃剂FRW[D].哈尔滨:东北林业大学,2000
    [33]J.G Leslie, et al. Investigation of polymeric Materials Using the Cone Calorimeter [J]. Polym Eng Sci,1993,33 (8):497-500
    [34]卢凤珠,俞友明,黄必恒,等.用CONE法研究竹材的阻燃性能[J].竹子研究汇刊,2005,24(1):45-49
    [35]李延军,顾军,高立英,等.复合阻燃剂在中密度纤维板中的应用研究[J].中国人造板,2007(5):35-37
    [36]王清文,李坚,李淑君.用FTIR法研究木材阻燃剂FRW的阻燃机理[J].林业科学,2005,41(4):149-154
    [37]江进学,李建章,梅超群,等.木质材料阻燃改性研究进展[J].应用化工,2009,38(8):1203-1206
    [38]Lee H L Chen G C, Rowell R M, Termal properties of wood reacted with a phosphrus pentoxid-amine system [J].Journal of Applied Polymer Science,2004,91 (4):2465-2481
    [39]Gao Ming, Li Shuying, Sun Caiyun. Thermal degradation of wood in air and nitrogent treated with basic nitrogen compounds and phosphoric acid [J]. Combustion Science and Technology,2004,176 (12):2057-2070
    [40]董放.思茅松胶合板阻燃技术研究[D].西南林学院,2007
    [41]欧育湘.国外阻燃剂发展动态及对我国阻燃剂.工业之浅见[J].精细与专用化学品,2003,(2):3-6
    [42]李晓欣,朱冬生.欧盟RoHS指令的有害物质替代研究[J].电机电器技术,2005,(1):34-36
    [43]Carmen Branca, Colomba Di Blasi. Oxidation characteristics of chars generated from wood impregnated with ((NH4) 2HPO4 and (NH4) 2SO4) [J]. The rmochimica Acta,2007,456 (2):120-127
    [44]Nassar M.M. Mackay G.D. Studies on mechanical of flame retardation in wood [J]. Wood and Fiber Science,1985,17 (4):439-443
    [45]Winandy J.E. Effect on fire retardant retention, borate, buffers, and redrying temperature after treatment on thermal-induced degradation [J]. Forest Product Journal,199,47 (6):79-86
    [46]Juniea S.C. Vertical fire retardant amino resins [J]. Forest Products Journal,1994,24:5
    [47]Dobele G, Urbanovich I, Zhurins A, et al. Application of analytical pyrolysis for wood fire protection control [J]. J Anal Appl Pyrolysis,2007.79:47-51
    [48]Stevens R, Es DS, Bezemer R, et al. The structure-activity relationship of fire retardant phosphorus compounds in wood [J]. Polym Degrad Stabil,2005,91:832-41
    [49]Chuen-Shii Chou, Sheau-Horng Lin, Chin-I Wang, et al. A hybrid intumescent fire retardant coating from cake-and eggshell-type IFRC [J]. Powder Technology,2010,198:149-156
    [50]吴玉章,原田寿郎.磷酸铵盐处理人工林木材的燃烧性能[J].林业科学,2005,41(2):112-116
    [51]Ergun Baysal, Mustafa Altinok, Mehmet Colak, et al. Fire resistance of Douglas fir (Pseud suga menzieesi) treated with borates and natural extractives [J]. Bioreaource Technology, 2007,8 (5):1101-1105
    [52]Nadir Ayrilmis. Effect of fire retardants on internal bond strength and bond durability of structural fiberboard [J]. Building and Environment,2007,42:1200-1206
    [53]姚春花,卿彦,吴义强.磷-氮-硼复合木材阻燃剂配方优化及处理工艺[J].林业科技开发,2010,24(5):91-93
    [54]陈志林,纪磊,傅峰.磷酸三聚氰胺复配硼酸锌阻燃中密度纤维板的燃烧性能[J].木材工业,2011,25,(5):5-8
    [55]傅深渊,程书娜,赵广杰等.阻燃型竹丝成形材燃烧动力学和燃烧性能[J].浙江林学院学报,2009,6(6):767-773
    [56]王戈.毛竹\杉木层积复合材料及其性能[D].北京:中国林业科学研究院,2003
    [57]王艳良,李光沛.BL-降醛阻燃胶在刨花板制造中与脲胶配伍性的研究[J].木材加工机械,2005,5:5-19
    [58]李良,徐忠勇.阻燃剂对竹/木复合材物理力学性能的影响[J].内蒙古林业调查设计,2008,31(2):6-97
    [59]李琴,汪奎宏,何奇江等.阻燃竹木复合板生产工艺研究[J].浙江林业科技,2005,5:1-5
    [60]W.J.Oberley. Synergetic Fireproofing Composition for Treating Cellulosic Material. US patent No.4 373010 (1983)
    [61]王清文,李淑君,崔永志,等.新型木材阻燃剂FRW的阻燃性能[J].东北林业大学学报,1999,27(6):31-33
    [62]王清文,李坚.用热分析法研究木材阻燃剂FRW的阻燃机理[J].林业科学,2002,38(5):108-114
    [63]王清文,李坚.木材阻燃剂FRW的阻燃机理[J].林业科学,2005,41(5):123-126
    [64]许民,王清文,李坚.锥形量热仪法在木材阻燃性能测试中的应用-FRW阻燃落叶松木材阻燃性能分析[J].东北林业大学学报,2001,29(3):17-20
    [65]许民,李坚,王清文.落叶松木材的FRW阻燃处理技术[J].林产工业,2001,28(5):8-10
    [66]刘迎涛,刘一星.FRW阻燃中密度纤维板的FTIR分析[J].东北林业大学学报,2003,31(5):40-41
    [67]刘迎涛,李坚,王清文.FRW阻燃桦木胶合板的性能研究[J].林产工业,2004,31(3):22-24
    [68]Yong Tang, De-Yi Wang, Xin-Ke Jing. A Formaldehyde-Free Flame Retardant Wood Particle board System Based on Two-Component Polyurethane Adhesive [J]. Journal of Applied Polymer sci,2008,23:1217-1222
    [69]朱敏,黄军.新型竹材阻燃剂的合成[J].湖南林业科技,2009,36(1):34-36
    [70]高黎,王正,任一萍.阻燃处理竹篾层积材的性能分析[J].木材工业,2009,23(2):7-9
    [71]金春德,杜春贵,李延军等.FRW阻燃刨切薄竹的阻燃特性[J].林业科学,2011,47(7):156-159
    [72]梁天保.一种阻燃成型竹材及其生产方法.发明专利,中请号02111686.5
    [73]沈哲红.一种竹木质材料阻燃防腐防霉剂.发明专利,中请号200610052154.0
    [74]江泽慧,王正,高黎,等.阻燃型竹材结构层积材及其制造方法.发明专利,中请号200510135906.5
    [75]Saka Shiro, et al. fireproofing Agent for Paper. JP 04045148, ca 117:10157
    [76]王明,刘君良,柴宁博等.增强-阻燃处理改善柳杉木材的性能研究[J].木材工业,2011,25(4):15-17
    [77]王清文.新型木材阻燃剂FRW[D].哈尔滨:东北林业大学,2000
    [78]陈晞.竹材阻燃浸注处理工艺的研究[J].建筑人造板,2002,1:20-21
    [79]黄晓东.竹胶合板阻燃性能的研究[J].西北林学院学报,2006,21(2):146-149
    [80]郭成.木质材料阻燃机理研究综述[J].东北林业大学学报,1998,26(6):71-74
    [81]张亚慧,孟凡丹,于文吉.疏解次数对竹基纤维复合材料性能的影响[J].木材工业,2011,25(5):1-4
    [82]尹思慈.木材学[M].北京:中国林业出版社,2001,257-259
    [83]关明杰,高婕,朱一辛.丛生竹地板与毛竹地板吸声性能比较[J].林业科技开发,2009,1:29-31
    [84]腰希中,梁景森,马乃训,等.中国主要竹材微观构造[M].大连:大连出版社,1992,13-37
    [85]周芳纯,等.竹材力学性质测定报告。竹类研究,1991,10(1):7-12
    [86]Ibrahim N H.埃及队竹子物理和机械性质的研究及利用竹子作为建筑材料[J].Caring for the forest:Research in a Changing World.1995:398
    [87]张齐生,王建和.竹材复合板的研究—主要工艺参数与物理力学性能之间的关系[J].林产工业,1990,(1):1-7
    [88]叶良明,姜志宏,叶建华,等.重组竹板材的研究[J],浙江林学院学报,1991,8(2):133-140
    [89]Della Bona A, Benetti P, Borba M, et al. Flexural and diametral tensile strength of composites resins [J]. Braz Oral Res,2008,22 (1):84-89
    [90]于文吉,江泽慧,叶克林.竹材特性研究及其进展[J],世界林业研究,2002,15(2):50-55
    [91]D.R. Rammer, In:National conference on wood transportation structures.1996:23-25
    [92]朱一辛,程丽美,关明杰.竹木复合板水平剪切强度的研究.西北林学院学报.2006,21(6):180-182
    [93]王瑞,陈海霞,郭兴峰等.层合板复合材料的层间剪切强度评价方法及其改进研究.玻璃钢/复合材料.2004(3):8-11
    [94]张晓春,蒋身学,张齐生.热压温度及板材密度对竹木复合层积材顺纹抗压强度的影响[J],林业科技开发,25(2):45-48
    [95]罗鹏,杨传民,计宏伟,等,密度对稻壳——木材复合材料性能的影响[J],林业科技,2003,28(6):36-37
    [96]邓天异.竹材热解过程的研究[D],浙江大学,浙江:2004
    [97]李余增,热分析,清华大学出版社,1987年8月第一版
    [98]徐明.毛竹材的热解及液化特性研究[D],浙江林学院,浙江:2007
    [99]杨守生,段楠.木材热解特性研究[J].消防科学与技术,2004,5(3):9-11
    [100]蒋剑春,邓先伦,张燕萍,等.竹材热解特性研究[J].林产化学与工业,2005,25:15-18
    [101]徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展[J].东北林业大学学报,2003,31(5):71-77
    [102]Brown M E, Galwey A K. The distinguishability of selected kinetic models for isothermal solid-state reactions[J]. Thereto Acta,1979,29:129-146
    [103]杜瑛.毛竹材的主要成分分析及催化热解研究[D],四川大学,四川:2005
    [104]廖凯荣,卢泽俭,倪跃新.膨胀型阻燃剂中协效剂的炭化作用及其对阻燃性能的影响[J].高分子材料科学与工程,1999,15(1):100-103
    [105]ShenCY, Stahlbeber NE, Dyroff DR.Preparation andCharacterization of Crystalline Long-chain AmmoniumPoly-phosphate[J].Journal of the American Chemical Society, 1969,91 (1): 62-67
    [106]ShenCY, Stahlbeber NE, Dyroff DR.Preparation andCharacterization of Crystalline Long-chain AmmoniumPoly-phosphate[J].Journal of the American Chemical Society,1969,91(1): 62-67
    [107]胡炳成,吕春绪,刘祖亮,等.低聚磷酸钱的合成及其在灭火剂中的应用[J].爆破器材,2001,30(6):30-33
    [108]Narihiro Hiroaki Shirasaka, retardancy of ethylene~vinyl alcohol Keisuke Takayama, et al. Thermal degradation and flame copolymer blended with ammonium polyphosphate[J]. Polymer Degradation and Stability,2003,79:13-20
    [109]Michel Bugajny, ethylene-propylene Michel Le Bras, Serge Bourbigot, et al.Thermal behaviour of rubber/polyurethane/ammonium polyphosphate intumescent formulations-a kinetic study[J]. Polymer Degradation and Stability,1999,64:157-163
    [110]Coats A W, Redfern J P. Kinetic parameters form thermogravimetric data[J]. Nature,1964, 201 (1):68-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700