人工林杨树木材皱缩恢复工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步探明木材细胞皱缩的恢复机理、木材细胞发生皱缩后皱缩恢复的动力,同时为研究有效恢复皱缩木材变形的干燥工艺提供理论依据,也为高效利用人工林木材提供技术支持。本文以内蒙古地区主要的速生人工林杨树木材为研究对象,研究木材皱缩的可恢复特性和机理、木材细胞皱缩恢复的调控因素和工艺,利用超微图像数字分析法从微观角度分析并评价了皱缩恢复的效果。探明木材干燥过程中木材细胞产生皱缩的机理和过程、皱缩产生的条件的基础上,对比了皱缩恢复前后试样中的水分状态变化以及结晶度变化。
     本文研究主要结论归纳如下
     通过杨树皱缩恢复工艺优化试验中得到,北京杨的弦向恢复率为19.83%,径向恢复率为9.12%。100℃弦向恢复率为26.68%,径向恢复率达到9.36%。6h的弦向恢复率21.27%,径向恢复率为8.13%。皱缩恢复工艺参数优化结果为,处理温度100℃,处理时间6h。
     通过杨树皱缩恢复性能试验得到,北京杨的皱缩深度最大为1.53mm,加拿大杨皱缩因子最大为56.07,小叶杨的体积收缩率最大为3.95%。12h处理后,皱缩深度减小最小为0.20mm。6h处理后,皱缩因子减小到最小为23.79,试样的体积收缩率随着处理时间的增长逐渐增加。
     通过研究不同位置皱缩恢复性能试验得到,纵向位置中,基部的皱缩深度、皱缩因子体积收缩率较大,横向位置中,心边材交界处的皱缩深度较大,心材的皱缩因子较大,边材的体积收缩率较大
     由超微图像分析实验可知,杨树木材发生皱缩的主要区域集中于心边材交界附近。皱缩木材经过蒸汽处理后,与处理前相比,木材细胞面积增大明显,恢复比例为32.90%。周长恢复比例为20.65%。皱缩幅度最大的心边交界材的表面区域,恢复的效果也是最明显的。木材长度方向,皱缩性能变化不显著。
     皱缩恢复细胞模型为薄壁圆柱体模型。木材皱缩恢复机理:木材细胞经过蒸汽或饱和湿空气处理时,皱缩的细胞壁吸收水分和热量,细胞壁刚性下降,在干燥应力作用下,皱缩细胞开始恢复。同时由于细胞腔内部空气受热膨胀,胞腔内压力增大,促使细胞腔进一步恢复形状。
In order to further proven recovery mechanism and recovery power of wood collapse,, and to provide theoretical basis for the study of effective recovery collapse, and to provide technical support for efficient utilization of plantation timber. This paper mainly study on the poplar plantation in Inner Mongolia, and the recovery characteristics and mechanism of collapsed wood. And study on the control factors and recovery technology. To evaluate the collapse recovery effect by Using advanced digital image analysis method from the point of view of microscopic. The change of water status and crystallinity were compared before and after recovery.
     Main conclusions are summarized as follows:
     By poplar collapse recovery process optimization test, the recovery Ratio of tangential direction of Populus Xbeijingensis W. Y. Hsu.is19.83%, and the recovery Ratio of radial direction is9.12%. The recovery Ratio of tangential direction of100℃is26.68%,and the recovery Ratio of radial direction is9.36%. The recovery Ratio of tangential direction of6h is21.27%, and the recovery Ratio of radial direction is8.13%. the collpae parameters optimization results is100℃for the processing temperature, and6hfor the processing time.
     Obtained by poplar collpase recovery performance test, the maximum height of collpae is1.53mm of Populus X beijingensis W. Y. Hsu. the collapse factor is up to56.07of Populus X canadensis Moench, the maximum volume shrinkage is3.95%of Populus simonii Cam. After12h treatment, the minimum height of collapse reduced0.20mm. After6h treatment, the collapse factor is reduced to a minimum of23.79. The Sample s' volume shrinkage ratio gradually increased along with the increase of processing time.
     By studying the different positions collapse recovery performance test, the height of collapse and volume shrinkage ratio of bottom is bigger In the vertical position, the height of collapse of Heartwood and sapwood border is larger, and the collapse factor of Heartwood is larger, and the volume shrinkage ratio of sapwood is bigger.
     From ultra-microscopic image analysis experiments shows that the collapse occurs the main area of the junction of the heart wood and sapwood of poplar plantation. After steam treatment, the recovery ratio is32.90%compared with before treatment by wood cell area increases significantly. The recovery ratio of Perimeter is20.65%. The most obvious recovery effect is in the junction of the heart wood and sapwood. As length direction, the degree of shrinkage did not show significantly.
     It is thin cylinder model about the collapse recovery cell model. The collapse recovery mechanism of wood:the cell walls absorb water and heat undergoes steam or saturated air treatment, the collapse cells began to recover when the rigid of cell wall reduced under drying stress. And the cell cavity further recoved shape by increasing of cell cavity pressure, because of thermal expansion of the air inside the cavity cells.
引文
1 国家林业局.中国林业统计年鉴[M].2008,北京
    2 国家林业局.2012年全国林业统计年报分析报告[M],2012,北京
    3 吕建雄,王金林,黄安民.中国杨树木材加工利用研究进展[C].第二届中国林业学术大会—S11木材及生物质资源高效增值利用与木材安全论文集.2009:9~18
    4 中国速生丰产林的发展现状和未来趋势分析报告.http://www.chinaccm.com,2003.2.10
    5 叶克林,龙玲,傅峰.人工林杉木、杨树木材的性质及强化前景.中国材料学会,2000年材料科学与工程新进展[C].北京:冶金工业出版社,2001
    6 刘盛全等.我国杨树人工林材性与加工利用研究现状及发展趋势.木材工业[J],1999,13(3):14~16
    7 鲍甫成,江泽慧等著.中国主要人工林树种木材性质[M].北京:中国林业出版社.1998
    8 赵喜龙.人工林杨树、杉木木材胶合工艺和性能研究[D].内蒙古农业大学硕士论文,2004
    9 王新爱,朱玮,汪玉秀,杨木材性的化学改良技术[J],西北林学院学报,2001,16(1):76~81
    10李坚.木材科学[M].北京:高等教育出版社,2002,8
    11 祖勃荪.国外对杨树湿心材的研究[J].林业科学2000,36(5):86~91
    12王欣,薛振华.加拿大杨木皱缩特性研究[J].内蒙古农业大学学报,2003,24(4):83~86
    13刘元.木材干燥皱缩机理及其特性研究[J].中南林学院学报,1994,14(2),97~101
    14彭海源,丁汉喜.山杨小径木超微结构及其与干燥皱缩的关系[J].林业科学.1989,(06):583-587
    15王喜明,王欣.木材的皱缩[J].木材工业,2000,14(2):29~30
    16朱政贤.木材干燥(第二版)[M].北京:中国林业出版社,1989
    17王喜明.山杨小径材皱缩材组织结构的变化及其皱缩机理的研究[J].林业科学,1991,27(4):484-487
    18王喜明,王欣.干燥工艺条件对木材皱缩的影响[J].林产工业,2000,6
    19成俊卿,杨家驹,刘鹏.中国木材志[M].北京:中国林业出版社,1992
    20江泽慧,彭镇华著.世界主要树种木材科学特性[M].科学出版社,北京,2001
    21王桂岩等.13种杨树木材物理力学性质的研究[J].山东林业科技,2002(2):1~11
    22李忠正等.意大利杨树制浆造纸性能的研究—碱性亚硫酸钠-蒽醌法[J].南京林学院学报,1984(1):60~67
    23李延军,孙会等.国内外木材热处理技术研究进展及展望[J].浙江林业科技,2008,28(1):21~23
    24李大纲,顾炼百.高温干燥对杨木主要力学性能的影响[J].南京林业大学学报,2000,1:35~37
    25张壁光,木材科学与技术研究进展[M],中国环境科学出版社北京,2004
    26王洁瑛,赵广杰,饭田生穗.饱水和气干状态杉木的压缩成型及其热处理永久固定[J].北京林业大学学报,2000,22(1):72~75
    27张久荣,人工林杨木利用现状及前景[J],中国林业产业,2006,11:24~26
    28王喜明著.木材皱缩[M].北京:中国林业出版社,2003
    29 Bariska M.. Collapse phenomena in eucalypts[J].Wood Science and Technology,1 991,26,(3):165-179
    30 Kauman W.G.. Cell collapse in E.Regnans [M]. CSIRO DFP Technological paper,1956, No.3
    31 Chafe S.C., Ilic J.. Shrinkage and collapse in thin sections and blocks of Tasmanian mountain ash re-growth Part3:collapse [J].Wood Science Technoloy,1992,26:343-351.
    32 Chafe S. C., Ilic.J.. Shrinkage and collapse in thin sections and blocks of Tasmanian mountain ash regrowth [J]. Wood Science and Technology.1991,26(3):181-187
    33郭明辉等.木材皱缩的研究现状及发展趋势[J].世界林业研究,2005,18(1):39~42
    34成俊卿.木材学[M].北京:中国林业出版社,1985
    35 Innes T.C.. Collapse and internal checking in the latewood of Eucalyptus regnans F.Muell [J]. Wood Science and Technology,1996,30:373-383
    36 Innes T.C.. Collapse free pre-drying of Eucalyptus regnans.F.Muell. Holz als Roh-und Werkstoff,1995,53:403-406
    37 Innes T. C.. Stress model of a wood fibre in relation to collapse [J]. Wood Science and Technology,1995,29(5):363-376
    38 Kauman W.G. Equilibrium moisture content relations and drying control in super heated steam drying[J]. Forest Product Journal,1956,6 (9):328-332
    39 Kauman W.G.. Cell Collapse in Wood Part 2:Prevention, Reduction and Predication of Collapse Recent Results [J].Holz als Roh-und Werkstoff,1964,22(12):465-472
    40 Kauman W.G.. Collapse in some Eucalypts after treatment in inorganic salt solution[J]. Forest. Product Journal,1960,10:463-467
    41 Kauman W.G.. Effect of thermal degradation on shrinkkage and collapse of wood from three [J]. Aust.Spec. Forest Product Journal,1961,11(9):445-452
    42王喜明.山杨小径材干燥皱缩的初步研究[J].林产工业,1989,16(2):12~15
    43刘元,吴叉强,乔建政等.按树人工林木材的干燥特性及干燥基准研究[J].中南林学院学报,2002,(4):44~49
    44刘元.桉树木材超微结构及其对干燥皱缩的影响[J].中南林学院学报,1995,15(1):33~37
    45 Chafe S. C.. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F. Muell [J]. Wood Science and Technology,1990,24,(4): 311-326
    46 Greenhill W.L.. The shrinkage of Australian timbers. Part I. A new method of determining shrinkage and shrinkage figures for a number of Australian species CSIRO Division of Forest Product Technology,1936, Pap. No.21:1
    47小林好纪Anatomical characteristics of collapsed western red-cedar wood 2[J]木材学会志,1986,32(1):12~18
    48小林好纪Cause of collapse in western red-cedar[J]木材学会志,1986,32(10):846~847
    49小林好纪Anatomical characteristics of collapsed western red-cedar wood[J].木材学会志,1985,31(8):633~639
    50小林好纪Anatomical characteristics of collapsed western red-cedar wood 3.木材学会志,1986, Vol.32, No.7:492-497
    51 Kollmann F.F.P. High temperature drying, Forest Product Journal,1961,11 (11):508-515
    52 Chafe S. C.. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species [J]. Wood Science and Technology,1987,21(1):27-41
    53 Chafe S.C.. Radial Variation of Collapse, volumetric shrinkage, moisture content and density in Eucalyptus regnans F.Muell [J]. Wood Science and Technolgy,1986,20:253-262
    54 Chafe S. C. and Ilic.J.. Shrinkage and collapse in thin sections and blocks of Tasmanian mountain ash regrowth [J].Wood Science and Technology,1991,26(5):343-351
    55 Chafe S. C.. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans F. Muell [J]. Wood Science and Technology,1992,27(3): 205-217
    56 Chafe S.C.. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F.Muell [J]. Wood Science and Technology,1990,24:311-326
    57寺尺真,林和男.Studies on cell-collapse of Water-Saturated Balsa wood 1.Relation of shrinkage process and moisture distribution to cell-collapse mechanism [J]木材学会志,1974,20(5):205~209
    58寺尺真,林和男Studies on cell-collapse of Water-Saturated Balsa wood 2.The effect of Pre-freezing upon reduction of cell-collapse[J]木材学会志,1986,20(7):306~312
    59王喜明,赵广杰.杨木干燥基准及其皱缩特性的研究[J].林产工业,2002,29(3):15~17
    60 Kalman W.G.. Contribution to the theory of cell collapse in wood [M]. Investigations
    61 Ilic J.. The effect of pre-freezing on collapse, internal check development and drying rate in Eucalyptus regnans F.Muell. Proceedings,24th CSIRO Forest Products Research Conference, Melbourne Australia, Topic,1993,3/10 Nov.
    62 Ilic J.. Advantages of pre-freezing for reducing shrinkage-related degrade in Eucalypts; General considerations and review of the literature [J]. Wood Scienceand Technoogy,1995,29: 277-285
    63王喜明.预冻处理对杨木皱缩特性的影响[J].内蒙古农业大学学报,1999,(4):14-17
    64 Chafe S. C.. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans F. Muell [J]. Wood Science and Technology,1992,27(3): 205-217
    65 Chafe S.C.. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F.Muell [J]. Wood Science and Technology,1990,24:311-326
    66林和男.Study on cell collapse of water saturated Balsa Wood, Increase in collapse intensity produced by steaming [J].木材学会志,1977,23(1):25~29
    67寺尺真.The effect of the tensile stress on the collapse intensity [J].木材学会志,1975,5:278-282
    68 Innes T. C.. Collapse free pre-drying of Eucalyptus regnans F. Muell.European [J]. Journal of Wood and Wood Products,1995,53(6):403-406
    69 Innes T.C.. Pre-drying of collapse prone wood Free of surface and internal checking. Holz als Roh-und Werkstoff,1996,54(3):195-199
    70 Bryan E.L.. Collapse and its removal [J].Forest Product Journal,1960,11:589-604
    71 Greenhill W.L.. Collapse and its removal.Some recent investigations with Eucalyptus regnans [J]. CSIRO Division of Forest Product Technology Pap.,1938,24:1
    72 Hart C.A.. Principles of moisture movement in wood [J]. Forest Product Journal,1964,5:207-214
    73 Hart C.A.. Relative humidity, EMC, and collapse shrinkage in wood [J]. Forest Product Journal,1984,34 (11/12):45-54
    74 Tiemann H.D.. Collapse as shown by microscope [J]. Journal of Forest,1941,39:271-282
    75 Tiemann H.D.. How to restore collapsed timber [J].The lumber Work,1929,5(57):3-44
    76 Tiemann H.D.. The kiln drying of lumber [M]. Philadelphia:Lippincott,co.,1917
    77服部芳明.板材的溃陷与皱缩[J].木材工业(日),1983,81:10-14
    78 Chafe S.C. The Distribution and Interrelationship of Collapse, volumetric shrinkage, moisture content and density in trees of Eucalyptus regnans F.Muell [J]. Wood Science and Technology,1985, 19:329-345
    79郑万钧.中国树木志[M].北京:中国林业出版社,1982
    80裴喜春,薛河儒.SAS及应用[M].北京:中国农业出版社,1998
    81阮桂海等.SAS统计分析实用大全[M].北京:清华大学出版社,2003
    82王文中,Excel在统计分析中的应用[M].北京:中国铁道出版社,2003
    83王学民.应用多元分析[M],上海:上海财经大学出版社,2002
    84周永东.木材含水率测量方法及影响因素分析[J].木材工业.2000,9(5):29~30
    85 中国林业科学研究院木材工业研究所主编.中国主要树种的木材物理力学性质[M].北京:中国林业出版社,1982
    86陈魁.实验设计与分析(第二版)[M].北京:清华大学出版社,2005
    87翟冰云.木材的热处理及蒸汽处理[J].国外林业,1995,25(4):38~41
    88李娜,何定华,赵亮等.百度实验法预测几种阔叶树材干燥基准.木材干燥学术讨论会论文集(16):1999:79~81
    89刘志军,张璧光.百度试验法测杨木干燥基准和初步研究[J].干燥技术与设备,2006,(4):32~35
    90 Tiemann H.D.. Principle of kiln drying lumber. World Review,1915, January 15 and September 25
    91 Tiemann H.D.. Collapse of Aspen impregnated with salt and sodium. Bicarbonate U.S. Dept. Agric, For.Prod.Lab. eport.,1934, No.232
    92 Kauman W.G.. Cell Collapse in Wood Part 1:process variables and collapse recovery [J]. Holzals Roh-und Werkstoff,1964,22(5):183-196
    93 Chafe S.C.. Barnacle J.E., Hunter A.J., Ilic J., Northway R.L., Rozsa A.N.. Collapse; An introduction [M]. CSIRO Division of Forest Product. Melbourne Australia,1992
    94 Chafe S.C.. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species Part 2:The influence of wood extractives [J]. Wood Science and Technology,1987, 21:27-41
    95马尔妮,赵广杰.木材物理学专论[M].北京:中国林业出版社,2012
    96余雁,人工林杉木管胞的纵向力学性质及其主要影响因子研究[D],中国林业科学研究院博士学位论文,2003
    97江泽慧,余雁,费本华等,纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度[J],林业科学,2004,40(2):113~118
    98 Barber N. F., Meylan B.A. The anisotropic shrinkage of wood [J]. Holzforschung,1964,18: 146-156
    99 Barber N. F.. A theoretical model of shrinkage wood [J]. Holzforschung,1968,3:97-103
    100 Mark R E.. Cell Wall Mechanics of Trachieds [M], Yale University. Press,1967
    101 Cave I. D.. The anisotropic elasticity of the plant cell wall[J], Wood Science andTechnology, 1968,2 (4):268-278
    102 Cave I. D., The longitudinal Young's modulus of Pinus radiata [J], Wood Science and Technology,1969,3 (1):40-48
    103 Schniewind, Barren J. D.. Cell wall model with complete shear restraint [J], Wood and Fiber Science,1969,1(3):205-214
    104马岩,木材横断面六棱规则细胞数学描述理论研究[J],生物数学学报[J],2002,17(1):64~68
    105张士成,齐华春,刘一星等.高温过热蒸汽处理对木材结晶性能的影响[J].南京林业大学学报,2010,34(5):164~166
    106刘元.热处理对水与木材接触角的影响[J].中南林学院学报,1993,13(2):136~141
    107 Borrega M., P. P. Karenlampi. Mechanical behavior of heat-treated spruce (Picea abies) wood a constant moisture content and ambient humidity [J]. Holz Roh Werkst,2008,66:63-69
    108曹永建.蒸汽介质热处理木材性质及其强度损失控制原理[D].中国林业科学研究院,博士论文,2008
    109陈太安,顾炼百等.汽蒸处理对青冈栋干缩系数及气体渗透性的影响[J].南京林业大学学报,2003,27(2):62~64
    110陈太安,顾炼百.汽蒸处理回复赤按干燥皱缩研究[J].南京林业大学学报,2004(28):34~36
    111周兆兵.速生杨木微观力学性能及其表面动态润湿性[D].南京林业大学,硕士论文,2008
    112傅敏,王会才,洪友士.微米/纳米尺度的材料力学性能测试[J],力学进展,2000,30(3):391-399
    113龚仁梅,姬雅才,李晓香.汽蒸处理对木材非稳态下水分传导的研究[J].林业科技,1996(3):63~64
    114龚仁梅,王丽宇.汽蒸处理对木材干燥应力的影响[J].林业科技,1996(5):40~42
    115龚仁梅,杨玲.汽蒸法处理山毛样锯材干燥工艺的研究[J].林产工业,2003(30):19~21
    116龚仁梅,张晓慧.汽蒸时间对木材吸湿性能的影响[J].林业科技,1995(20):46~47
    117江泽慧,王喜明.桉树木材干燥特性与工艺及其皱缩研究现状[J].木材工业:2002,16(4):3-6
    118何玲芝,刁秀明,王洪霞.汽蒸处理对柞木材水分移动性的影响[J],林业科技,1996(19):42,46
    119康跃宾.汽蒸处理对木材力学性能的影响[J].林业勘察设计,2001(1):104~106
    120李坚,刘一星,刘君良.加热、水蒸气处理对木材横纹压缩变形固定作用[J],东北林业大学学报,2000,25(4):4~5
    121李贤军,伊松林.微波预处理对三种人工林木材干燥特性的影响[J].林产工业.2008(04):32-34
    122刘洪谔,刘力,斯红光.几种杨树木材化学成分分析[J].浙江林学院学报,1995,12(4):343~346
    123刘一星.高温高压过热蒸汽处理木材的力学特性和化学性质的变化[J].东北林业大学学报,2005,33(3):44~46
    124马世春.汽蒸处理改善木材尺寸稳定性初探[J].木材工业,1998,12(5):36~39
    125阮锡根,余观夏编著.木材物理学[M].北京:中国林业出版社.2005
    126孙小苗.蒸汽湿热处理对速生杨材性影响的研究[D].南京:南京林业大学,2007
    127万建松,岳珠峰.采用压痕实验获得材料性能的研究现状[J].实验力学,2002,6:131理139
    128王逢瑚.木质材料流变学[M].哈尔滨:东北林业大学出版社,2005.
    129.杨文斌,林金国,郑建财.蒸煮工艺对木材干燥的影响[J].林业科技开发,1999,(2):25~27
    130张俐娜,薛奇,莫志深.高分子物理近代研究方法[M].武汉:武汉大学出版社,2006
    131张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004
    132周兆兵,张洋,袁少飞,潘惠新.速生杨木材的动态润湿性能[J],东北林业大学学,2008,36(4):20~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700