纳米金催化剂的制备、表征及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备得到纳米级、高分散的金粒子是金催化剂高活性的前提。制备高分散的、稳定的纳米催化剂,可加入表面活性剂,稳定剂;也可以选择带有巯基,氨基,羧基等官能团的载体,这类载体通过与纳米颗粒相互作用,防止纳米粒子团聚长大,失去活性。载体既可以分散活性组分,提高催化剂的机械性和热稳定性,又可以在某些场合提供活性中心位来提高催化剂的活性和选择性,从而达到节约贵金属的目的。所以选择合适的载体至关重要。
     本文选择富含氨基的壳聚糖(CS)和聚乙烯亚胺(PEI)高分子载体,既是载体,又是稳定剂。采用化学还原法制备出金负载量低、活性较高、粒径分布为30-60nm的Au/CS和粒径分布约为2-7nm的Au/PEI纳米粒子,并且氨基与金相互作用比较强,有效地避免了金纳米粒子之间的团聚,即使放置几个月催化活性依然比较好,较好地实现了预期目标。
     借助Uv-vis、TEM、HPLC等表征手段研究了纳米金催化剂的大致形貌以及活性。PEI的加入促进成核速率,稳定了金纳米粒子,延缓其进一步长大的速率,从而最终形成粒径较小、粒径分布较窄的纳米粒子。
     以对硝基苯酚催化还原制备对氨基苯酚为模板反应,考察了Au/PEI纳米粒子制备条件对其催化性能的影响,比如:还原剂的种类、载体、负载量、还原温度、还原时间、Au与还原剂的比例以及反应时不同溶剂及其配比等不同条件对其催化活性的影响,发现制备时还原剂的种类对纳米金的催化效果影响最大,其次是还原时间、Au与PEI的比例、还原温度,Au与还原剂的比例的影响最小。保持金的用量相同,使用负载量不同的同类催化剂时,金负载量高的纳米金催化剂的催化效果相对要好一些。所制得的催化剂在低温避光保存几个月后,仍能表现出良好的催化活性。
     另外,反应体系中若加入乙醇,会大大降低原来的反应速率,可能是因为乙醇的极性比水低,并且整个反应体系中乙醇的含量越高,反应进行的速度越慢,甚至反应不完全。可能是乙醇的加入降低了NaBH4的水解速率,从而影响整个反应速率。该催化反应的机理有待进一步研究。
Preparation of nano-scale, highly dispersed gold particles provides their high catalytic activity as gold catalysts. In order to prepare highly dispersed and stable catalysts, surfactant or stabilizing agent can be added; and there is also another option to select meterials with functional groups such as thiol, amino or carboxyl as the supports, which have some interaction with gold to prevent agglomeration of gold nanoparticles and loss of their activities.
     Supports have a significant effect on the supported catalysts and it is so important to select proper supports to prepare good catalysts. Not only can supports be used as carriers of active components, dispersing active components, provide suitable pore structure, mechanical supporting and thermal stability for the catalysts, but also they can help active sites to enhance the activity and selectivity of the catalyts, so as to save precious metals and so on.
     In this paper we select chitosan (CS) and branched polyethylene imine (PEI) that are rich in amino group as the appropriate carrier and stabilizer, and prepare gold nanoparticles by reducing the gold solution with various reductants in the presence of chitosan or polyethylene imine.
     These obtained Au/CS nanoparticles with low gold loading and high activity are about 30~60nm in diameter and Au/PEI nanoparticles are about 2~7nm in diameter, which both show relatively strong interaction between gold and amino group to avoid agglomeration of gold nanoparticles effectively. Eeven though the catalysts are positioned for several months, their catalytic activities are still relatively good, which achieves the desired objectives.
     We study the general morphology and activity of nano-gold catalyst with Uv-vis, TEM, HPLC characterization. The addition of PEI can promote the rate of nucleation and stabilize the gold nanoparticles, thereby slow down the rate of its growth further, and ultimately form smaller particle size, narrow particle size distribution of nanoparticles.
     In this paper we select the catalytic reduction of p-nitrophenol to p-aminophenol as a model reaction to investigate and evaluate the catalytic performance of Au/CS and Au/PEI nanoparticles, which are prepared with different preparation conditions, such as:reducing agents, carriers, loading amounts, reduction temperatures, reduction time, the ratios of Au to reducing agent, reaction time and proportions of different solvents. It was found that the types of reducing agents during the process of preparing gold nanoparticles has the greatest impact on catalytic activity, followed by the reduction time, the ratios of Au to PEI, reduction temperature, yet the ratio of reducing agent to Au has a minimal impact. When maintaining the same total amount of gold, catalysts with different loading amounts were used in the catalytic reacition, and it was found that the catalyst with higher loading amount has a better activity. And when the catalysts are positioned for a few months under the condition of low temperature,the catalyt still show good catalytic activity.
     In addition, it was detected the original reaction rate will be significantly reduced when ethanol is added into the reaction system, which is probably because that ethanol has lower polarity than water, and the higher the ethanol content is, the slower the reaction is, or even incomplete. The addition of ethanol might reduce the rate of hydrolysis of NaBH4, thus hinder the overall reaction rate. The catalytic reaction mechanism needs to be further studied.
引文
[1]吕伟.聚丙烯(CPP)表面氨基化及纳米金吸附的应用[D].北京化工大学,2009.
    [2]仇旻.表面等离子体和人工电磁介质纳米光子器件[J].光学与光电技术.2010,8(3):1-6.
    [3]Sau T.K, Pal A, Pal T. et al. J. Nanoparticle Res.2001,3(4):257-261.
    [4]Turkevich J, Stevenson P C, Hillie J. et al. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss Faraday Soc.1951,11:55-75.
    [5]Templeton A.C, Chen S.W, Gross S.M. et al. Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers[J]. Langmuir 1999,15(1):66-76.
    [6]Schaaff T.G, Knight G, Shafigullin M.N.et al. Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound [J]. J. Phys. Chem. B 1998,102(52):10643-10646.
    [7]Gittins D.I, Caruso F. Tailoring the Polyelectrolyte Coating of Metal Nanoparticles [J]. J. Phys. Chem B.2001,105(29):6846-6852.
    [8]Brust M, Walker M, Bethell D.J. et al. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System [J]. J. Chem. Soc. Chem. Commun.1994,8:801-802.
    [9]Brust M, Fink J, Schiffrin D.J. et al. Synthesis and Reactions of Functionalised Gold Nanoparticles [J]. J. Chem. Soc. Chem. Commun.1995,16:1655-1656.
    [10]Birtcher R.C, Donnelly S.E, Schlutig S. Nanoparticle ejection from gold during ion irradiation [J]. Nucl.Instrum.Methods Phys. Res. B.2004,215:69-75.
    [11]Lung J.K, Huang J.C, Tien D.C. et al. Preparation of gold nanoparticles by arc discharge in water [J]. J. Alloys Compd.2007,434-435:655-658.
    [12]Ji X, Song X, Bai Y. et al. Size control of gold nanocrystals in citrate reduction:The third role of citrate [J]. J. Am. Chem. Soc.2007,129:13939-13948.
    [13]Kumar S, Gandhi K.S, Kumar R. et al. Modeling of formation of gold nanoparticles by citrate method [J]. Ind. Eng. Chem. Res.2007,46:3128-3136.
    [14]Brown K.R, Natan M.J, Walter D.G, et al. Seeding of colloidal Au nanoparticle solutions improved control of particles size and shape [J]. Chem. Mater.2000,12:306-313.
    [15]Nguyen D.T, Kim D.J, Kim K.S. Experimental measurement of gold nanoparticle nucleation and growth by citrate reduction of HAuC14[J]. Adv. Powder Tech.2010,21: 111-118.
    [16]Kan C, Wang C, Zhu J. et al. Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel [J]. J. Solid State Chem.2010,183:858-865.
    [17]Chen S, Wang Z L, Ballato J. et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals [J]. J Am. Chem. Soc.2003,125:16186-16187.
    [18]Wu H Y, Liu M, Huang M.H. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles [J]. J. Phys. Chem. B 2006,110:19291-19294.
    [19]Zhao N, Sun N, Wei Y. et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions [J]. Langmuir 2008,24:991-998.
    [20]Zhang J, Wang Z, Liu H. et al. Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes and plasmon resonances [J]. Adv. Funct.Mater.2007,17:3295-3303.
    [21]Yonezawa T, Yasui K, Kimizuka N. Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer [J]. Langmuir 2001,17:271-273.
    [22]仇新印,郑剑旗,李吉忍等.金箔酒浅释[J].酿酒科技.1997,4:74-75.
    [23]孙秀兰.食品中黄曲霉毒素B_1金标免疫层析检测方法研究[D].江南大学.
    [24]吕晓丽,康丽娟,程志强等.纳米金颗粒的制备、性质及其在生物检测中的应用[J].世界元素医学.2006,13(3):31-38.
    [25]Hutchings G.J. Vapor hydrochlorination of acethlene: Correlation of catalytic activity of supported metal chlorride catalysts. J.Catal.1985,96:292-295.
    [26]王桂英,张文祥,蒋大振等.常温常湿条件下Au/MeOx催化剂上CO氧化性能[J].化学学报.2000,58(12):1557-1562.
    [27]Choudhary T, Goodman D.W. Oxidation catalysis by supported gold nano-clusters [J]. Top Catal,2002,21(1-3):25-34.
    [28]Ossipo N.J, Cant N.W. Adsorption and reactivity during low temperature oxidation of carbon monoxide on Au/TiO2 catalysts studied by rapid respone mass spectrometry [J]. Top. Catal.,1999,8:161-169.
    [29]Boccuzzi F, Gerrato G, Pinna F. et al. FTIR, UV-Vis, and HRTEM study of Au/ZrO2 catalyst:reductivity in the CO-O2 reaction of electron-deficient gold sites present on the used samples [J]. J. Phys. Chem. B 1998,102:5733-5736.
    [30]Moreau F, Bond G.C. Gold on Titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide [J]. Appl Catal A:Gen.2006,302:110-117.
    [31]杜以会.纳米金银的妙用[J].资源与人居环境.2009,1:37-39.
    [32]张翠娥,陈兴泉,刘鸿等.对硝基苯乙酸还原反应的研究[J].应用化工.2004,33(4);55-56.
    [33]Michel Gubelmann. Preparation of p-aminophenol [P], US,5288906,1994.
    [34]孙勤.对氨基苯酚的产需现状及发展建议[J].氯碱工业.2004,5:25-28.
    [35]龙荷云工业水处理.江苏科技出版社.1991,124.
    [36]李保山,朱玉舒.硝基苯在发泡铜阴极上电还原为对氨基苯酚研究[J].精细化工,2000,1(4):213-216.
    [37]段明生.硝基苯的合成与市场及下游产品的开发前景[J].医药化工.2007,5:16-20.
    [38]王留成,赵建宏,宋成盈,徐海升,杨许召.对氨基苯酚合成工艺最新进展[J].精细与专用化学品.2002,18:24-25.
    [39]CN 85,103,667.
    [40]CA 82 36695.
    [41]周家永.对氨基苯酚合成应用概述[J].四川化工.1993,1:56-58.
    [42]苏宇.对氨基苯酚制备条件的探讨[J].四川师范学院学报.1998,3:340-342.
    [43]汤立军,肖振林,张红等.8-氨基-7-羟基黄酮的简便合成[J].渤海大学学报.2009,30(2):124-127.
    [44]马原辉.金属固体酸催化剂上合成对氨基苯酚反应研究[D].河北工业大学.2007.
    [45]王公应.对氨基苯酚研究进展[J].医药化工.2007,10:26-30.
    [46]徐铮奎.我国对氨基酚产量激增-PAP市场前景看好[J].中国制药信息.2010,26(2):32-33.
    [47]钱松.我国对氨基苯酚发展现状[J].精细化工原料及中间体.2006,1:28-29.
    [48]关胤.氨基苯酚的制备方法和产需情况分析[J].中国科技博览.2010,7:172.
    [49]Sun Y G, Xia Y N. Increased sensitivity of Surface Plasmon Resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes [J]. Anal. Chem,2002,74:5297.
    [50]Allen C Templeton. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected Gold Cluste [J]. J. Phys. Chem. B.2000,104:564.
    [51]Xu X H Nancy, Huang S, Brownlow W. et al. Size and temperature dependence of Surface Plasmon Absorption of gold nanoparticles induced by tris(2,2'-bipyridine)ruthenium(Ⅱ) [J]. J. Phys. Chem. B.2004,108:15543.
    [52]Liao J H. Zhang Y. Enhancement of the Second Harmonic Response by adsorbates on gold colloids:the effect of aggregation [J]. J Colloids and Surfaces A:Physicochem. Eng. Aspects.2003,223:177.
    [53]张智敏.甲壳质-钯加氢催化剂的催化性能研究[J].华东冶金学院报.1996,13(4):323-325.
    [54]Qi S.Z, Huang A.J, Sun Y.L. Chinese Journal of chromatography.1994,12(5):348-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700