堤坝渗漏的综合示踪方法理论研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堤坝渗漏探测是一个复杂重要的研究课题。传统的基于地球物理勘探手段的渗漏探测的各种方法,由于都有其条件性、局限性和多解性,特别在埋深大而空间尺寸相对小的渗漏通道探查方面显得无能为力。基于地下水流场、温度场、化学场等的示踪法可以弥补地球物理勘探的不足。本文在分析总结前人的堤坝渗漏探测的示踪法的基础上,对示踪方法做了一些理论和工程应用上的进一步探讨,研究内容和结果如下:
     1.讨论了测温仪器的种类和精度,及钻孔温度的影响因素和除地下水活动外的其它因素的消除校正方法。介绍了线热源作用对地层温度的热源函数。将堤坝集中渗漏通道中的渗漏水流概化为持续线热源,基于热传导的热源法,建立集中渗漏通道的持续线热源模型,并结合一定的边界条件,推导出计算水平渗速公式。在工程实例中,应用钻孔测温资料,用推导的公式计算出的渗透流速与放射性同位素示踪方法测出的渗速基本一致。
     2.由于单孔中计算水平渗透流速的传统的点稀释公式和前人推导的广义示踪稀释公式存在着问题和不足,在钻孔中存在垂向流的情况下,在合理的物理模型的基础上,考虑了渗透流速是示踪剂稀释时间的函数,重新推导了示踪方法测流速的稀释公式。通过3个公式的实例计算比较和误差分析,在钻孔中存在垂向流干扰时,含水层上下垂向流速差的越大,新推导的公式与传统点稀释公式计算出的渗透流速的相对误差也越大,这一点与实际情况相吻合,因此新公式的计算结果更加可信。并对国内外同位素测流速示踪仪进行了论述和讨论。
     3.利用稳定同位素、水化学的方法研究堤防渗漏,是一种十分有效的方法。但是人们大多只是定性的分析判断。本文尝试将稳定同位素和水化学值作为特征指标值,并根据在实际判断中的参数重要程度的不同赋予不同的权重,应用模糊聚类的方法进行聚类分析,在北江大堤石角段的渗漏探测和高水河堤防渗漏探测的两个工程实例中,其聚类结果与稳定同位素和水化学的定性分析结论一致。
     4.将综合示踪方法应用到小浪底左坝肩渗漏调查中,通过在不同季节多次测量左坝肩的排水洞各排水孔中的排水的温度电导率,测定绕坝观测孔中的地下
Detection of the leakage from embankment is a complex and important study problem. There are condition, limitation and multi-results with the traditional detection methods, which are based on geophysical exploration. Especially the traditional detection methods are helpless when dealing with the leakage passage, whose depth of burial is great while spatial sizes are small. The tracer method, which is based on flow, temperature, and chemistry fields, can make up the shortage of geophysical exploration. The paper analyses and summarizes the tracer method, which was formed by predecessors to detect the leakage from embankment. Then the tracer method is further discussed on some theories and engineering application. The content and result of study are as follows.
    1. The paper discusses the species and accuracy of the instruments for measuring temperature, influential factors of temperature in the borehole, and the elimination and adjustment methods of the influential factors except the groundwater motion. The heat source functions of formation temperature, which is affected by line heat source, are expounded. Leakage water, which is in the leakage passage, was taken as continuous line heat source. Based on heat source method of heat conduction, the continuous line heat source model of embankment's leakage was made, combing definite boundary conditions, and a formula for calculating seepage velocity was derived. In the engineering case, based on the temperature measured in the borehole, the value calculated of seepage velocity by the formula is very near to the one measured directly with the method of radioisotopic tracing.
    2. Because there are some questions about the traditional point dilution formula and the generalized dilution formula deduced by predecessors, a new dilution formula was derived to calculate seepage velocity with tracer method, based on the condition that there existed vertical flow in the borehole and a reasonable physical model was adopted, considering the seepage velocity as a function of tracer dilution time. When there was vertical flow in borehole, by the comparison between results of three formulas and the error analysis, it was shown that the
引文
[1].汝乃华,牛运光.大坝事故与安全[M].北京:中国水利水电出版社,2001.
    [2].ICOLD.Dam failures statistical analysis[R].Bulletin 99;ISSN 0534-8293,1995:73.
    [3].崔冠英,潘品蒸.水利工程地质[M].北京:中国水利水电出版社,1985.
    [4].牛运光.病险水库加固实例[M].北京:中国水利水电出版社,2003.
    [5].何继善.堤防渗漏管涌“流场法”探测技术[J].铜业工程.2000,(01):5-8.
    [6].刘建刚.堤坝渗透变形理论与渗漏探测方法研究[D].南京:河海大学.2002.
    [7].冷元宝,胡伟华,何剑等.堤坝隐患及渗漏探测技术[J].人民黄河.2001,(01):3-5.
    [8].彭皖生,伍宛生.堤坝隐患探测方法的思索及浅见[J].治淮.2001,(03):43-47.
    [9].吴怀宇,周兆英,熊沈蜀等.堤坝隐患探测技术的现状与展望[J].长江科学院院报.2000,(03):25-29.
    [10].李富强,王钊.堤坝隐患探测技术综述[J].人民黄河.2004,(10):25-29.
    [11].岩土工程中的预测与预算[EB/OL].http://www.52wg.org/jiaoyu/ja/200511/64987.html,2005-11.
    [12]. Mook, W. G. Environmental Isotopes in The hydrological cycle[J].IHP-V Technical Documents in Hydrology No39.2000.
    [13].刘光尧.水库检漏[J].勘察科学技术.1997,(4):3-8.
    [14]. Plata, A. Assessment of contamination risk of Asososca Lake, Nicaragua[A]. In: T. Suokko JS, editor. Future groundwater resources at risk[C]; Helsinki: IAHS Publ.; 1994. p. 177-188.
    [15]. Plata, A. Leakage study at lake Laja, Chile[M]. Rotterdam: Balkema, 1992: 387-396.
    [16]. Fischer, H. B., List, E.J., Koh, R.C., et al. Mixing in inland and coastal water[M]. New York: Academic Press, 1979.
    [17]. Plata, A., Tones, A., Perez, O. Estudio de las filtraciones de la presa de Sabaneta[M], Republica Dominicana. Vienna, 1989. 103.
    [18]. Kappelmeyer, O. The Use of Near Surface Temperature Measurements for Discovering Anomalies due to Causes at Depths[J]. Geophysical Prospecting. 1957, Vol.3: 239-258.
    [19]. Cartwright, K. and McComas, M.R. Geophysical surveys in the vicinity of sanitary landfills in Northeastern Illinois[J]. Ground Water. 1968, 6(5): 912-918.
    [20]. Birman, J.H. Thermal monitoring of leakage through dams[J]. Geological Society of America Bulletin. 1971, 82(8): 2261-2284.
    [21]. Koerner Robert M.; Reif, et al. Detection Methods for Location of Subsurface Water and Seepage[J]. American Society of Civil Engineers, Journal of the Geotechnical Engineering Division. 1979, 105(11): 1301-1316.
    [22]. Cartwright, K. Tracing shallow groundwater systems by soil temperatures[J]. Water Resources Research. 1974, 10(4): 847-855.
    [23]. Birman, J.H., Leakage detection method[P], United Stated Patent Office,. No.3, 375, 702. 1968.
    [24]. Welch L. Randall. Thermal monitoring of seepage at Fontenelle dam [A]. In: Proceedings of the International Conference on Hydropower-Waterpower[C]; Atlanta, GA, USA: ASCE, New York, NY, USA; 1997. p. 786.
    [25].H.H.叶尔马科娃等.皮罗戈夫斯克水利枢纽渗透的温度观测[J].水利水电快报.2003:20-22.
    [26].陈建生,余波,陈亮.利用地下水温度场研究江都高水河船厂段堤防的渗漏[J].岩土工程界.2002,(12):44-48.
    [27].刘建刚,陈建生.平面热源法在北江石角段堤基渗漏分析中的应用[J].水利水运工程学报.2002,(03):52-56.
    [28].傅碧宏,史基安,张中.LandsatTM热红外遥感数据定量反演地下水富集带的温度信息——以甘肃河西地区石羊河流域为例[J].遥感技术与应用.1999,14(2):34-38.
    [29].王成秋.社上水库砌石坝(副坝)渗漏量变化特性分析[J].江西水利科技.2000,26(2):115-117.
    [30].刘宁,柯庆清,阎旭.重力坝的随机温度场初探[J].河海大学学报.2000,28(3):7-13.
    [31].周志芳,王锦国.河流峡谷区地下水温度异常特征分析[J].水科学进展.2003,14(1):62-65.
    [32].肖才忠,潘文昌.由温度场研究坝基渗流初探[J].人民长江.1999,30(5):21-23.
    [33].王志远,王占锐,王燕.一项渗流监测新技术——排水孔测温法[J].大坝观测与土工测试.1997,21(4):5-7.
    [34].王志远,王占锐,王燕.一项渗流监测新技术——排水孔测温法[J].大坝观测与土工测试.1997,21(5):10-13.
    [35].张键,葛社民,许鹤华等.利用井温分布估算莺-琼盆地地下流体运移速度[J].地质力学学报.2000,6(2):1-5.
    [36].李端有,陈鹏霄,王志旺.温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J].长江科学院院报.2000,Vol.17 Suppl.:48-51.
    [37]. Li Duanyou Yu Sanda. Study on the seepage monitoring technology with temperature in embankment dam[A]. In: International Sympostium on Dam Safety and Detection of Hidden Troubles of Dam and Dikes[C]; Xi'an, China; 2005.
    [38]. Witherspoon P A Wang J S Y. Validity of cubic law for fluid flow in deformable rock fracture[J]. Water Resources Research. 1980, (6): 112-118.
    [39]. Noorishad J Ayatollahi M S.. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[J]. Int J Rock Mech Min Sci & Geomech Abstr. 1982, 19: 185-193.
    [40]. Barton N Bandis S C. Strength, deformation and conductivity coupling of rock joints[J]. Int J Rock Mech Min Sci & Geomech Abstr. 1985, 22(3): 121-140.
    [41]. Jing L. Tsang C F., Stephansson O. DCOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J]. Int. J Rock Mech Min Sci & Geomech Abstr. 1995, 32(5): 399-408.
    [42].刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,(2):22-27.
    [43].仵彦卿.岩体水力学导论[M].成都:西南交通大学出版社,1994:78-90.
    [44].仵彦卿,高荣芳.影响油气运移的应力场地温场渗流场耦合的双重介质模型[J].西安理工大学学报.1998,14(2):113-117.
    [45].柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析研究综述[J].水利水电科技进展.2002,(02):44-49.
    [46].柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水力发电学报.2000,(1):27-35.
    [47].柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水.1997:37-41.
    [48].柴军瑞,韩群柱,仵彦卿.岩体一维渗流场与温度场耦合模型的解析演算[J].地下水.1999,(04):24-29.
    [49].柴军瑞,李守义.大柳树水利枢纽坝区渗流场与应力场耦合分析[J].岩石力学与工程学报.2002,(S1):2322-2325.
    [50].柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报.2004,(08):1280-1284.
    [51].柴军瑞,仵彦卿.碾压混凝土坝渗流场与应力场耦合分析的数学模型[J].水利学报.2000,(09):33-36.
    [52].柴军瑞,仵彦卿.小湾水电站坝区渗流场与应力场耦合分析[J].四川大学学报(工程科学版).2001,(02):9-11.
    [53].黄涛,杨立中,陈一立.工程岩体地下水渗流-应力-温度耦合作用数学模型的研究[J].西南交通大学学报.1999,34(1):14-18.
    [54].杨立中,黄涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质工程地质.2000,(2):33-35.
    [55].Yuzo Ohnishi Akirako Bayashi.地下工程围岩的热力-水力-力学特性[A].In:第六届国际岩石力学会议论文选集《岩石力学的进展》:重庆大学出版社;1990:72-77.
    [56]. Leach Bryan. Investigation and control of canal seepage problems in southern Alberta-a case history[J]. Canadian Geotechnical Conference. 1991, (pt 2): 60.
    [57]. Drommerhausen, D. J., Radcliffe, D. E., Brune, D. E., et al. Electromagnetic conductivity surveys of dairies for groundwater nitrate[J]. Journal of Environmental Quality. 1995, 24(6): 1083.
    [58]. Oh M. H., Kim Y. S., Park J. Contaminant leakage detection system using a grid-net electrical conductivity measurement method[A]. In:[C]; Siena, Italy: WIT Press, Southampton, SO40 7AA, United Kingdom; 2004: 75-80.
    [59].吴其斌,任理.大地电导率仪探查堤坝隐患[J].水利水电技术.1999,30(2):26-28.
    [60].汪进良,姜光辉,侯满福.自动化监测电导率在盐示踪试验中的应用——以云南八宝水库盐示踪试验为例[J1.地球学报.2005,26(4):371-374.
    [61].宋汉周.陈村水电站坝基地下水化学特征的研究及其意义[J].勘察科学技术.1994,(05):23-27.
    [62].龚自珍等.锦屏水电工程区岩溶水化学研究[J].水文地质工程地质.1994,(4):31-33.
    [63].刘爱菊.朝邑滩地下水水化学分带性及其形成机制之探讨[J].地下水.1992,(6):1-5.
    [64]. Appelo, C.A.J. and Postma, D. Geochemstry, groundwater and pollution[M]. Rotterdam/Brookfield: A.A. Balkema, 1996.
    [65]. Wedepohl, K.H. Handbook of geochemistry[M]. Berlin: Springer Verlag, 1976.
    [66].沈照理,朱宛华.水文地球化学基础[M].北京:地质出版社,1993:13-14.
    [67]. IAEA. Isotope Techniques in Groundwater Hydrology[A]. In: Proceedings of Symposium Vienna[C]; Vienna; 1974&1978.
    [68]. Gourcy, L., Aggrarawl, P. Groundwater Flow Understanding:From Local to Regional Scales [A]. In: 33rd IAH Congress[C]; Mexico: Programa Final; Oct. 2004.
    [69].汪集旸.同位素水文学与水资源、水环境[J].地球科学—中国地质大学学报.2002,27(5):1-2.
    [70].张人权.国外水文地质研究中应用同位素方法的现状[J].水文地质工程地质.1981,(6):55-58.
    [71]. Brown, R., Grummitt, W. E. The determination of tritium in natural waters[J]. Canadian Journal of Chemistry. 1956, Vol.34: 220-226.
    [72].王恒纯.同位素水文地质概论[M].北京:地质出版社,1991:102-103.
    [73]. Craig, H. Standards for reporting concentrations of deuterium and oxygen-18 in nature waters[J]. Science. 1961, Vol.133: 1833-1834.
    [74]. Bigeleisen, J. Chemistry of isotope[J]. Science. 1965, Vol.147: 463-471.
    [75]. Craig, H. Isotopic variation in meteoric waters[J]. Science. 1961, 133:1702-1703.
    [76].刘进达.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术.1997,(3):34-39.
    [77]. IAEA. Environmental Isotope Data No.1: World Survey of Isotope Concentration in Precipitation (1953-1963) [R]. Technical Reports Series No.96 Vienna, 1969.
    [78]. IAEA. Environmental Isotope Data No.2: World Survey of Isotope Concentration in Precipitation (1964-1965) [R]. Technical Reports Series No.117 Vienna, 1970.
    [79]. IAEA. Environmental Isotope Data No.3: World Survey of Isotope Concentration in Precipitation (1966-1967) [R]. Technical Reports Series No.129 Vienna, 1971.
    [80]. IAEA. Environmental Isotope Data No.4: World Survey of Isotope Concentration in Precipitation (1968-1969) [R]. Technical Reports Series No.147 Vienna, 1973.
    [81]. IAEA. Environmental Isotope Data No.5: World Survey of Isotope Concentration in Precipitation (1970-1971) [R]. Technical Reports Series No. 165 Vienna, 1975.
    [82]. IAEA. Environmental Isotope Data No.6: World Survey of Isotope Concentration in Precipitation (1972-1975) [R]. Technical Reports Series No. 192 Vienna, 1979.
    [83]. IAEA. Environmental Isotope Data No.7: World Survey of Isotope Concentration in Precipitation (1976-1979) [R]. Technical Reports Series No. 226 Vienna, 1983.
    [84]. IAEA. Environmental Isotope Data No.8: World Survey of Isotope Concentration in Precipitation (1980-1983) [R]. Technical Reports Series No. 264 Vienna, 1986.
    [85]. IAEA. Environmental Isotope Data No.9: World Survey of Isotope Concentration in Precipitation (1984-1987) [R]. Technical Reports Series No. 311 Vienna, 1990.
    [86]. IAEA. Environmental Isotope Data No.10 World Survey of Isotope Concentration in Precipitation (1988-1991) [R]. Technical Reports Series No. 371 Vienna, 1994.
    [87]. Gat, J.R., Gonfiantini, R. Stable isotope hydrology-deuterium and oxygen-18 in the water cycle[M]. Vienna: International Atomic Energy Agency, 1981: 7-18.
    [88]. Carol Kendall Jeffrey, J. Mcdonnell. Isotope tracers in catchment hydrology[M]. Amesterdam: Elsevier Science B.V., 1998: 20-35.
    [89]. Craig, H., Gordon, L. Deuterium and oxygen-18 variation in the ocean and marine atmosphere[A]. In: Stable isotopes in oceanographic studies and paleotemperature[C]; Pisa; 1965:119-130.
    [90]. Dincer, T. The use of oxygen-18 and deuterium concentration in the water balance of lakes[J]. Water Resources Research. 1968, Vol.4: 1289-1306.
    [91]. Turkish National Committee. Investigations of leakage of Keban Dam[A]. In: Ⅶme Congres des Grands Barrages[C]; Mexico City; 1976.
    [92]. B.R. Payne E. Eriksson, A.I. Danilinm, et al. Guidebook on Nuclear Techniques in Hydrology 1983 Edition [M]. VIENNA: International Atomic Energy Agency, 1983: 17-27.
    [93]. Molinari, J. Contribution to discussion of isotope hydrology[M]. Vienna: IAEA, 1978.
    [94]. Drost, W. Groundwater measurements at the site of the Sylvenstein Dam in the Bavarian Alps[M]. Vienna: IAEA, 1970.
    [95]. Antonio Plata Bedmar. Manual de fugas en embalses[M]. CEDEX, Centro de Estudios y Experimentacion de Obras Publicas, 1999.
    [96]. MOOK, W. G. Environmental Isotopes in The hydrological Cycle Principles and Applications[M]. IAEA, 2002.
    [97]. Molinari, J. Recherche et localisation de fuites sur retenues naturelles ou artificielles par techniques de traceurs[J]. Houille Blanche. 1976, 31(4): 301-319.
    [98]. Drost, W. Point dilution methods of investigating ground water flow by means of radioisotopes[J]. Water Resources Research. 1968, (4): 125-146.
    [99]. Borowczyk, M. Laboratory investigation on the determination of filtration velocity by means of radioisotopes[J]. Atomkernenergie. 1965, (10): 51-56.
    [100]. Borowczyk, M., Mairhofer, J. and Zuber, A. Single-well pulse techniques [A]. In: Isotope in Hydrology[C]; Vienna: International Atomic Energy Agency; 1967:507-517.
    [101]. Drost, W. Groundwater measurement by means of radioactive tracers[J]. Atomkernenergie/Kerntechnik. 1986, 48(2): 81-86.
    [102]. Drost, W. Single well techniques[A]. In: Artificial tracers in hydrology[C]; Vienna: International Atomic Energy Agency, TECDOC No.291; 1983: 7-16.
    [103]. Guizerix, J. Appareil par la mesure des vitesses relatives des eaux souterraines par la methode de dilution ponctuelle[A]. In: Isotope in Hydrology[C]; Vienna: International Atomic Energy Agency; 1963: 25-35.
    [104]. Moser, H. and Neumaier, F. Nukleare Methoden in der Hydrologies des Bauwesens[A]. In: Konferenz uber die Strahlungs-und Isotopenanwendung in Bauwesen[C]; Brussels; 1970.
    [105].陈建生.探测地下水参数的同位素示踪仪及其应用[J].物理.1989,(04):221-225.
    [106].陈建生,方杰,杜国平.地下水同位素示踪仪[J].核技术.1992,15(03):167-172.
    [107].郭吉堂.NSD-A型地下水流向仪的研制和应用[J].核技术.1986,(07):38-42.
    [108].刘兰珍,李樟苏.测定地下水流向的多计数管探头的研制[J].核技术.1987,(04):50-53.
    [109]. Mairhofer, J. Bestimmung tier stromungsrichtung des Grundwassers in einem einzigen Bohrloch mit Hilferadioaktiver Elemente[J]. Atompraxis. 1963, 9(1): 23-34.
    [110]. Klotz, D. Untersuchung der Grundwasserstromung mit radioaktiven Tracem, durchgefuhrt in einem Filterpegelrohr [D]. Munich: Phisikalisches Institut der Universitat Munchen. 1966.
    [111]. Wurzel, P. Ward P.R.B. A simplified method of groundwater direction measurement in a single borehole[J]. Journal of Hydrology. 1965, (5): 372-383.
    [112]. Borowczyk, M. Radioisotope measurements of Groundwater Flow Direction by the Single-well method[R]. 502/Ⅵ Warsaw: Institute of Nuclear Research, 1964.
    [113]. Dinescu, M., Gaspar, E. Determination of the undergroundwater flowing direction by the single-well method[J]. Rev Roum Phys. 1969, 14(10): 1141-1152.
    [114]. Drost, W. Isotope methods in groundwater hydrology[M]. Brussels, Belgium: Eurostop Office Information and Documentation Service Series, 1974.
    [115]. Moser, H. and Neumaier, F. New experiment with the use of radioactive isotopes in hydrology[A]. In: Radioisotopes in hydrology[C]; Vienna: IAEA; 1963: 283-295.
    [116]. Drost, W. New method and instruments for measuring groundwater quantity [A]. In: Water Resources Instrumentation[C]; Chicago: IWRA; 1974: 435-445.
    [117].汪集旸.中低温对流型地热系统[M].北京:科学出版社,1993.162-164.
    [118]. Bullard, E. C. The disturbance of the temperature gradient in the earth's crust by inequalities of height [J]. Geophys. 1940, (4): 360-362.
    [119].张洪济.热传导[M].北京:高等教育出版社,1992.
    [120].O.卡普迈耶,R.海涅尔著,北京大学地质学系地热研究室译.地热学及其应用[M].北京:科学出版社,1981.11-13.
    [121].林睦曾.岩石热物理学及其工程应用[M].重庆大学出版社,1991.
    [122].陈建生,董海洲,陈亮.采用环境同位素方法研究北江大堤石角段基岩渗漏通道[J].水科学进展.2003,14(1):57-61.
    [123] 刘光尧,陈建生.同位素示踪测井[M].南京:江苏科学技术出版社,1999:41-44
    [124] 李樟苏.同位素技术在水利工程中的应用[M].北京:水利电力出版社,1988:23-38
    [125]. Helevy, E., Moser, H., Zellhofer, O. Isotope in Hydrology[M]. Vienna: International Atomic Energy Agency, 1967:531-564.
    [126]. Drost, W., Klotz, D., Koch, A., et al. Point dilution methods of investigating ground water flow by means of radioisotopes[J]. Water Resource Research. 1968, (4): 125-146.
    [127].陈建生,董海洲.井中测定流速广义示踪稀释物理模型[J].水利学报.2002,(9):100-107.
    [128].董海洲.堤坝渗漏热源法及示踪理论研究[D].南京:河海大学.2004.
    [129]. Calmels P., Guizerix, J., Gaillard, B., et al. Methodes de tracage radioactif pour mesurer de tres faibles vitesses de filtration dans un forage profond et pour determiner la fissuration de la roche[A]. In: Proc Int Symp Isotope Hydrology 1983[C]; Vienna: International Atomic Energy Agency; 1983: 719-728.
    [130].陈建生.岩体水力学同位素示踪理论与方法研究[D].南京:河海大学.2000.
    [131].陈亮.孔中测渗技术研究与系统设计[D].南京:河海大学.2004.
    [132]. Zadeh L.A. Fuzzy Sets [J]. Information and Control. 1965, (8): 345-355.
    [133].汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [134].赵焕臣.层次分析法——一种简易的新决策方法[M].北京:科学出版社,1986.
    [135].黄健元.模糊集及其应用[M].银川:宁夏人民教育出版社,1999:90-111,248-251.
    [136].陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998:81-93.
    [137].中国水利水电科学研究院.水库蓄水后小浪底枢纽左岸山体稳定性及其对建筑物的影响研究[R].北京:中国水利水电科学研究院,2002.
    [138].水利部黄河水利委员会勘测规划设计研究院,中国地质大学,黄河水利委员会科学研究所.黄河小浪底水利枢纽工程左岸单薄分水岭岩体渗流及工程地质研究[R].1990.
    [139].王等科,李明俊,王和平等,小浪底地下厂房项拱渗漏水分析[J].华北水利水电学院学报.2001,22(1):36-40.
    [140].陈建生,董海洲,陈亮,杨松堂.用环境氢氧同位素示踪方法研究新安江大坝渗漏[J].核技术.2005,(03):239-242.
    [141].陈建生,董海洲,陈亮,杨松堂.黄壁庄水库副坝塌坝原因的同位素方法研究[J].河海大学学报(自然科学版).2004,(05):42-47.
    [142].陈建生,董海洲,凡哲超,陈亮.示踪法对小浪底坝区绕坝渗漏通道的研究[J].长江科学院院报.2004,(02):14-17.
    [143].陈建生,杨松堂,刘建刚,陈亮.环境同位素和水化学在堤坝渗漏研究中的应用[J].岩石力学与工程学报.2004,(12):2091-2095.
    [144].董海洲,陈建生.堤坝管涌渗漏持续线热源模型研究[J].科技导报(北京),2006,24(2):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700