人工结构材料及其在天线中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁辐射及其相关问题的研究是物理学领域最重要的问题之一。由人工“电原子”和人工“磁原子”组成的人工结构材料以其灵活多变的电磁波操控能力为电磁辐射器件的设计提供了新的思路。本文围绕人工结构材料及其在天线系统中的应用开展了系统的理论和实验研究。首先,针对天线系统对人工结构材料的特殊要求,重点研究和发展了宽带、低损耗和表面波电磁带隙人工结构材料;其次、在研究人工结构材料与天线相互作用的基础上,探讨了人工结构材料与天线的融合方式,发展了基于人工结构材料的新体制天线系统,实现了天线性能的提升,为人工结构材料在天线中的工程应用奠定了基础。本论文的主要研究内容和结论如下:
     (1)宽带、低损耗人工结构材料及其在透镜天线中的应用研究。建立了宽带、低损耗人工结构材料的物理模型,通过周期性的金属柱结构实现了等离子体频率和本征频率的同时调控,实现了微波段的宽带、低损耗人工结构材料。在此基础上,采用以“十”字形金属结构为单元,工作在整个Ku(12GHz–18GHz)及Ku以下频段的人工结构材料,构建了一款宽带平板透镜天线。平板透镜利用人工材料材料对位相的控制实现了天线球面波前或者柱面波前向平面波前的转换,提高了天线增益。原理实验表明平板透镜在Ku波段能使天线的增益至少增加1.3dB,从而验证了基于人工结构材料的平板透镜能够在宽的频带内有效提高天线的增益。
     (2)人工电磁带隙材料及其互耦抑制研究。深入研究了在金属-空气界面上,周期性沟槽结构支持的准表面波模式,得到了沟槽结构对准表面波的调制规律。在此基础上利用周期性的沟槽构建了一种人工电磁带隙材料,证明了该材料不支持表面波传播,对表面波形成带隙。将这种人工电磁带隙材料引入天线阵面,可以切断表面波传输路径,抑制单元天线之间的互耦。初步研究结果表明:采用两个周期的沟槽结构就可以使单元天线的互耦降低20dB。
     (3)基于人工电磁带隙材料的双波束共口径波导缝隙阵列天线研究。利用同一个天线口径产生两个或者多个不同波束时,常规波导缝隙阵辐射单元在阵面上激励起的表面波使得波束之间产生严重的串扰,波束副瓣电平恶化。通过将人工电磁带隙材料集成到天线阵面,切断了天线单元表面波耦合路径,抑制了单元天线的互耦,进而降低了波束的副瓣电平。对比实验结果表明基于人工电磁带隙材料的波导缝隙阵在宽、窄两种工作模式下副瓣电平相对于常规波导缝隙阵列天线至少分别降低了3.6dB和0.8dB。除此之外还系统地开展了针对上述新天线结构设计、零件加工、焊接工艺和性能测试等方面的研究,为该天线在多功能雷达、通信系统中的工程应用奠定了基础。
Research of electromagnetic radiation and related issues is one of the mostimportant issues in the field of physics. Metamaterials consisting of artificial“electronic atom” and artificial “magnetic atom” with their flexible means ofelectromagnetic manipulation provide a new idea for the design of electromagneticradiation devices. This paper focuses on metamaterials and their applications in theantennas and carries out theoretical and experimental studies on the issues. First,around the special requirements of metamaterials for the antennas, we focus on theresearch and development of broadband, low loss and electromagnetic band-gapmetamaterials; Secondly, metamaterials and antennas integration method has beendiscussed after the research on the interaction between metamaterials and antennas,forming a kind of novel antennas with their performance improved. The maincontents and conclusion of this paper are as follows:
     (1) Research on the broadband, low-loss metamaterials and their applications inlens antennas. With the physical model of broadband, low-loss metamaterials, wehave achieved a broadband, low-loss metamaterial working in microwave band byperiodic metal columns which can control plasma frequency and intrinsic frequencyof metamaterials simultaneously. On this basis, a broadband slab lens has beenconstructed by using of the metamaterial with cross-shaped metal structure as a unit,which can work in whole Ku (12GHz–18GHz) band and bellow band. The slab lenscan convert spherical wavefront or cylindrical wavefront to a plane one throughphase manipulation, which will improve antennas’ gain. Experimental results showthat slab lens can increase the gain of antennas by1.3dB at least over the whole Kuband, which indicates that slab lens based on metamaterials can improve antennas’gain in a wide frequency band efficiently.
     (2) Research of artificial electromagnetic band-gap metamaterials and theirapplications in mutual coupling suppression. Modulation law of periodic groovestructure on quasi-surface wave has been proposed after deeply study ofquasi-surface wave on metal-air interface with periodic grooves. Then we acquire anelectromagnetic band-gap metamaterial based on periodic grooves, which can’tsupport surface wave propagation on it forming a band-gap. If the metamaterials isloaded on an antenna array surface, it will cut off surface wave transmission path, suppressing mutual coupling between antenna elements. Preliminary research resultsshow that mutual coupling of antenna units will reduce20dB using only cycles ofgroove structures.
     (3) Research on double-beam, co-aperture waveguide slot array antenna basedon electromagnetic band-gap metamaterials. When using a same aperture to producetwo or more different beams, the surface wave excitated by radiating elements in theconventional waveguide slot array will produce a serious crosstalk between thebeams, and the side lobe levels of all beams will deteriorate. By integratingelectromagnetic band-gap metamaterials into array surface, the transmission path ofsurface wave will be cut off. The mutual coupling between antenna units willdecrease and side lobe levels of the beams will reduce as a result. Based on thecomparison between waveguide slot array antenna with and without electromagneticband-gap metamaterial, the side lobe level is reduced by3.6dB and0.8dBindependently at least for two operation modes of designed antenna. Additionally, wealso focus on the structure design, parts fabrication, wielding technology andperformance testing, etc of the designed antenna, which make the double-beam,co-aperture waveguide slot array antenna based on electromagnetic band-gapmetamaterials more practical in multi-function radar and communication systems.
引文
[1] Cui T. J., Smith D. R., Liu R. Metamaterials: theory, design, and applications [M]. Springer,2009.
    [2] Pendry J., Holden A., Stewart W., et al. Extremely low frequency plasmons in metallicmesostructures [J]. Physical review letters,1996,76(25):4773.
    [3] Pendry J. B., Holden A. J., Robbins D., et al. Magnetism from conductors and enhancednonlinear phenomena [J]. Microwave Theory and Techniques, IEEE Transactions on,1999,47(11):2075-2084.
    [4] Smith D. R., Padilla W. J., Vier D., et al. Composite medium with simultaneously negativepermeability and permittivity [J]. Physical review letters,2000,84(18):4184.
    [5] Shelby R. A., Smith D. R., Schultz S. Experimental verification of a negative index ofrefraction [J]. science,2001,292(5514):77-79.
    [6]徐慧梁. EBG结构和低折射率特异材料在天线设计中的应用[D].成都:中国科学院光电技术研究所,2008.
    [7] Smith D. R., Kroll N. Negative refractive index in left-handed materials [J]. Physical reviewletters,2000,85(14):2933.
    [8] Fredkin D., Ron A. Effectively left-handed (negative index) composite material [J]. AppliedPhysics Letters,2002,81(10):1753-1755.
    [9] Houck A. A., Brock J. B., Chuang I. L. Experimental observations of a left-handed materialthat obeys Snell’s law [J]. Physical review letters,2003,90(13):137401.
    [10] Yablonovitch E. Photonic band-gap structures [M]. Confined Electrons and Photons.Springer.1995:885-898.
    [11] Knight J. C., Broeng J., Birks T. A., et al. Photonic band gap guidance in optical fibers [J].science,1998,282(5393):1476-1478.
    [12] Cregan R., Mangan B., Knight J., et al. Single-mode photonic band gap guidance of light inair [J]. science,1999,285(5433):1537-1539.
    [13] Painter O., Lee R., Scherer A., et al. Two-dimensional photonic band-gap defect mode laser[J]. science,1999,284(5421):1819-1821.
    [14] Li J., Zhou L., Chan C., et al. Photonic band gap from a stack of positive and negative indexmaterials [J]. Physical review letters,2003,90(8):083901.
    [15] Rahmat-Samii Y., Mosallaei H. Electromagnetic band-gap structures: Classification,characterization, and applications; proceedings of the Antennas and Propagation,2001EleventhInternational Conference on (IEE Conf Publ No480), F,2001[C]. IET.
    [16] Yang F., Rahmat‐Samii Y. Polarization‐dependent electromagnetic band gap (PDEBG)structures: Designs and applications [J]. Microwave and optical technology letters,2004,41(6):439-444.
    [17] Zhang L.-J., Liang C.-H., Liang L., et al. A novel design approach for dual-bandelectromagnetic band-gap structure [J]. Progress In Electromagnetics Research M,2008,4(81-91.
    [18] Yang F., Rahmat-Samii Y. Electromagnetic band gap structures in antenna engineering [M].Cambridge University Press Cambridge,2009.
    [19] Munk B. A. Frequency selective surfaces: theory and design [M]. John Wiley&Sons,2005.
    [20] Feresidis A. P., Goussetis G., Wang S., et al. Artificial magnetic conductor surfaces and theirapplication to low-profile high-gain planar antennas [J]. Antennas and Propagation, IEEETransactions on,2005,53(1):209-215.
    [21] Clavijo S., Diaz R. E., McKinzie W. E. Design methodology for Sievenpiperhigh-impedance surfaces: An artificial magnetic conductor for positive gain electrically smallantennas [J]. Antennas and Propagation, IEEE Transactions on,2003,51(10):2678-2690.
    [22] Kern D. J., Werner D. H., Monorchio A., et al. The design synthesis of multiband artificialmagnetic conductors using high impedance frequency selective surfaces [J]. Antennas andPropagation, IEEE Transactions on,2005,53(1):8-17.
    [23] Ahn D., Park J.-S., Kim C.-S., et al. A design of the low-pass filter using the novelmicrostrip defected ground structure [J]. Microwave Theory and Techniques, IEEE Transactionson,2001,49(1):86-93.
    [24] Kim C.-S., Park J.-S., Ahn D., et al. A novel1-D periodic defected ground structure forplanar circuits [J]. Microwave and Guided Wave Letters, IEEE,2000,10(4):131-133.
    [25] Lim J.-S., Kim C.-S., Ahn D., et al. Design of low-pass filters using defected groundstructure [J]. Microwave Theory and Techniques, IEEE Transactions on,2005,53(8):2539-2545.
    [26] Park J.-S., Yun J.-S., Ahn D. A design of the novel coupled-line bandpass filter usingdefected ground structure with wide stopband performance [J]. Microwave Theory andTechniques, IEEE Transactions on,2002,50(9):2037-2043.
    [27] Lai A., Itoh T., Caloz C. Composite right/left-handed transmission line metamaterials [J].Microwave Magazine, IEEE,2004,5(3):34-50.
    [28] Sanada A., Caloz C., Itoh T. Characteristics of the composite right/left-handed transmissionlines [J]. Microwave and Wireless Components Letters, IEEE,2004,14(2):68-70.
    [29] Caloz C., Sanada A., Itoh T. A novel composite right-/left-handed coupled-line directionalcoupler with arbitrary coupling level and broad bandwidth [J]. Microwave Theory andTechniques, IEEE Transactions on,2004,52(3):980-992.
    [30] Gil M., Bonache J., Garcia-Garcia J., et al. Composite right/left-handed metamaterialtransmission lines based on complementary split-rings resonators and their applications to verywideband and compact filter design [J]. IEEE Transactions on Microwave Theory andTechniques,2007,55(6):1296-1304.
    [31] Schurig D., Mock J., Justice B., et al. Metamaterial electromagnetic cloak at microwavefrequencies [J]. science,2006,314(5801):977-980.
    [32] Pendry J. B., Schurig D., Smith D. R. Controlling electromagnetic fields [J]. science,2006,312(5781):1780-1782.
    [33] Liu R., Ji C., Mock J., et al. Broadband ground-plane cloak [J]. science,2009,323(5912):366-369.
    [34] Valentine J., Li J., Zentgraf T., et al. An optical cloak made of dielectrics [J]. Naturematerials,2009,8(7):568-571.
    [35] Ergin T., Stenger N., Brenner P., et al. Three-dimensional invisibility cloak at opticalwavelengths [J]. science,2010,328(5976):337-339.
    [36] Hedayati M. K., Javaherirahim M., Mozooni B., et al. Design of a perfect black absorber atvisible frequencies using plasmonic metamaterials [J]. Advanced Materials,2011,23(45):5410-5414.
    [37] Zhang B., Zhao Y., Hao Q., et al. Polarization-independent dual-band infrared perfectabsorber based on a metal-dielectric-metal elliptical nanodisk array [J]. Optics express,2011,19(16):15221-15228.
    [38] Landy N., Sajuyigbe S., Mock J., et al. Perfect metamaterial absorber [J]. Physical reviewletters,2008,100(20):207402.
    [39] Pendry J. B. Negative refraction makes a perfect lens [J]. Physical review letters,2000,85(18):3966.
    [40] Alitalo P., Maslovski S., Tretyakov S. Three-dimensional isotropic perfect lens based onLC-loaded transmission lines [J]. Journal of applied physics,2006,99(6):064912.
    [41] Pendry J. Perfect cylindrical lenses [J]. Optics express,2003,11(7):755-760.
    [42] Casse B., Lu W., Huang Y., et al. Super-resolution imaging using a three-dimensionalmetamaterials nanolens [J]. Applied Physics Letters,2010,96(2):023114.
    [43] Mesa F., Freire M., Marqués R., et al. Three-dimensional superresolution in metamaterialslab lenses: Experiment and theory [J]. Physical Review B,2005,72(23):235117.
    [44] Helsing J., McPhedran R. C., Milton G. W. Spectral super-resolution in metamaterialcomposites [J]. New Journal of Physics,2011,13(11):115005.
    [45] Kraus J. D., Marhefka R. J. Antennas For All Applications [M]. third ed. New York:McGraw-Hill,2001.
    [46] Munk B. A. Finite antenna arrays and FSS [M]. John Wiley&Sons,2003.
    [47] Pozar D. M., Schaubert D. H. Scan blindness in infinite phased arrays of printed dipoles [J].Antennas and Propagation, IEEE Transactions on,1984,32(6):602-610.
    [48] Knittel G. H., Hessel A., Oliner A. A. Element pattern nulls in phased arrays and theirrelation to guided waves [J]. Proceedings of the IEEE,1968,56(11):1822-1836.
    [49] Farrell Jr G., Kuhn D. Mutual coupling in infinite planar arrays of rectangular waveguidehorns [J]. Antennas and Propagation, IEEE Transactions on,1968,16(4):405-414.
    [50] Enoch S., Tayeb G., Sabouroux P., et al. A metamaterial for directive emission [J]. Physicalreview letters,2002,89(21):213902.
    [51] Akalin T., Danglot J., Vanbesien O., et al. A highly directive dipole antenna embedded in aFabry-Perot type cavity [J]. Microwave and Wireless Components Letters, IEEE,2002,12(2):48-50.
    [52] Weng Z., Wang N., Jiao Y., et al. A directive patch antenna with metamaterial structure [J].Microwave and optical technology letters,2007,49(2):456-459.
    [53] Huang C., Zhao Z., Wang W., et al. Dual band dual polarization directive patch antennausing rectangular metallic grids metamaterial [J]. Journal of Infrared, Millimeter, and TerahertzWaves,2009,30(7):700-708.
    [54] Zhou H., Pei Z., Qu S., et al. A planar zero-index metamaterial for directive emission [J].Journal of Electromagnetic Waves and Applications,2009,23(7):953-962.
    [55] Burokur S. N., Latrach M., Toutain S. Theoretical investigation of a circular patch antennain the presence of a left-handed medium [J]. Antennas and Wireless Propagation Letters,2005,4(8):183-186.
    [56] Majid H. A., Rahim M. K. A., Masri T. Left handed metamaterial design for microstripantenna application; proceedings of the RF and Microwave Conference,2008RFM2008F,2008
    [C]. IEEE.
    [57] Majid H. A., Abd Rahim M. K., Masri T. Microstrip antenna's gain enhancement usingleft-handed metamaterial structure [J]. Progress In Electromagnetics Research,2009,8(5):235-247.
    [58] Boardman A., Marinov K. Radiation enhancement and radiation suppression by a left‐handed metamaterial [J]. Microwave and optical technology letters,2006,48(12):2512-2516.
    [59] Yang L., Fan M., Chen F., et al. A novel compact electromagnetic-bandgap (EBG) structureand its applications for microwave circuits [J]. Microwave Theory and Techniques, IEEETransactions on,2005,53(1):183-190.
    [60] Yao Y., Wang A., Feng Z. A novel dual-band compact electromagnetic bandgap (EBG)structure and its application in multi-antennas; proceedings of the Antennas and PropagationSociety International Symposium2006, IEEE, F,2006[C]. IEEE.
    [61] Iluz Z., Shavit R., Bauer R. Microstrip antenna phased array with electromagnetic bandgapsubstrate [J]. Antennas and Propagation, IEEE Transactions on,2004,52(6):1446-1453.
    [62] Yang F., Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap(EBG) structures: A low mutual coupling design for array applications [J]. Antennas andPropagation, IEEE Transactions on,2003,51(10):2936-2946.
    [63] Rajo-Iglesias E., Quevedo-Teruel O., Inclan-Sanchez L. Mutual coupling reduction in patchantenna arrays by using a planar EBG structure and a multilayer dielectric substrate [J]. Antennasand Propagation, IEEE Transactions on,2008,56(6):1648-1655.
    [64] Farahani H. S., Veysi M., Kamyab M., et al. Mutual coupling reduction in patch antennaarrays using a UC-EBG superstrate [J]. Antennas and Wireless Propagation Letters, IEEE,2010,9(57-59.
    [65] Sievenpiper D., Zhang L., Broas R. F., et al. High-impedance electromagnetic surfaces witha forbidden frequency band [J]. Microwave Theory and Techniques, IEEE Transactions on,1999,47(11):2059-2074.
    [66] Manh C. T., Han X., Ouslimani H. H., et al. Reduction of the coupling between microstriparrays antennas using High Impedance Surface (HIS) structures; proceedings of the MicrowaveConference (EuMC),2010European, F,2010[C]. IEEE.
    [67] Lee C.-J., Leong K. M., Itoh T. Composite right/left-handed transmission line basedcompact resonant antennas for RF module integration [J]. Antennas and Propagation, IEEETransactions on,2006,54(8):2283-2291.
    [68] Lee C.-J., Leong K. M., Itoh T. Design of resonant small antenna using compositeright/left-handed transmission line; proceedings of the Antennas and Propagation SocietyInternational Symposium,2005IEEE, F,2005[C]. IEEE.
    [69] Casares-Miranda F. P., Camacho-Pe alosa C., Caloz C. High-gain active compositeright/left-handed leaky-wave antenna [J]. Antennas and Propagation, IEEE Transactions on,2006,54(8):2292-2300.
    [70] Ma H., Chen X., Yang X., et al. A broadband metamaterial cylindrical lens antenna [J].Chinese Science Bulletin,2010,55(19):2066-2070.
    [71] Cheng Q., Ma H. F., Cui T. J. Broadband planar Luneburg lens based on complementarymetamaterials [J]. Applied Physics Letters,2009,95(18):181901.
    [72] Smith D., Schultz S., Marko P., et al. Determination of effective permittivity andpermeability of metamaterials from reflection and transmission coefficients [J]. Physical ReviewB,2002,65(19):195104.
    [73] Smith D., Vier D., Koschny T., et al. Electromagnetic parameter retrieval frominhomogeneous metamaterials [J]. Physical Review E,2005,71(3):036617.
    [74] Vial A., Grimault A.-S., Macías D., et al. Improved analytical fit of gold dispersion:Application to the modeling of extinction spectra with a finite-difference time-domain method[J]. Phys Rev B,2005,71(8):085416.
    [75] Bohm D., Pines D. A collective description of electron interactions: III. Coulombinteractions in a degenerate electron gas [J]. Physical Review,1953,92(3):609.
    [76] Liu R., Cheng Q., Chin J. Y., et al. Broadband gradient index microwave quasi-opticalelements based on non-resonant metamaterials [J]. Optics express,2009,17(23):21030-21041.
    [77] Pozar D. M. Microwave engineering [M]. John Wiley&Sons,2009.
    [78] Pitarke J., Silkin V., Chulkov E., et al. Theory of surface plasmons and surface-plasmonpolaritons [J]. Reports on progress in physics,2007,70(1):1.
    [79] Pendry J., Martin-Moreno L., Garcia-Vidal F. Mimicking surface plasmons with structuredsurfaces [J]. science,2004,305(5685):847-848.
    [80] De Abajo F. G., Sáenz J. Electromagnetic surface modes in structured perfect-conductorsurfaces [J]. Physical review letters,2005,95(23):233901.
    [81] Lockyear M. J., Hibbins A. P., Sambles J. R. Microwave surface-plasmon-like modes onthin metamaterials [J]. Physical review letters,2009,102(7):073901.
    [82] Lan Y., Chern R. Surface plasmon-like modes on structured perfectly conducting surfaces[J]. Optics express,2006,14(23):11339-11347.
    [83] Qiu M. Photonic band structures for surface waves on structured metal surfaces [J]. Opticsexpress,2005,13(19):7583-7588.
    [84] Williams C. R., Andrews S. R., Maier S., et al. Highly confined guiding of terahertz surfaceplasmon polaritons on structured metal surfaces [J]. Nature Photonics,2008,2(3):175-179.
    [85] Juluri B. K., Lin S.-C. S., Walker T. R., et al. Propagation of designer surface plasmons instructured conductor surfaces with parabolic gradient index [J]. Optics express,2009,17(4):2997-3006.
    [86] Maier S. A., Andrews S. R. Terahertz pulse propagation using plasmon-polariton-likesurface modes on structured conductive surfaces [J]. Applied Physics Letters,2006,88(25):251120.
    [87] Garcia-Vidal F., Martin-Moreno L., Pendry J. Surfaces with holes in them: new plasmonicmetamaterials [J]. Journal of optics A: Pure and applied optics,2005,7(2): S97.
    [88]Josefsson L., Persson P. Conformal array antenna theory and design [M]. John wiley&sons,2006.
    [89] Huff G., Feng J., Zhang S., et al. A novel radiation pattern and frequency reconfigurablesingle turn square spiral microstrip antenna [J]. Microwave and Wireless Components Letters,IEEE,2003,13(2):57-59.
    [90] Cetiner B. A., Jafarkhani H., Qian J.-Y., et al. Multifunctional reconfigurable MEMSintegrated antennas for adaptive MIMO systems [J]. Communications Magazine, IEEE,2004,42(12):62-70.
    [91] Cetiner B. A., Crusats G. R., Jofre L., et al. RF MEMS integrated frequency reconfigurableannular slot antenna [J]. Antennas and Propagation, IEEE Transactions on,2010,58(3):626-632.
    [92]魏文博.可重构天线研究[D].西安:西安电子科技大学,2008.
    [93]杨雪松.微带可重构天线研究[D].成都:电子科技大学,2006.
    [94] Stimson G. W. Introduction to airborne radar [M]. New Jersey; SciTech Publishing, Inc.1998.
    [95]林昌禄.天线工程手册[M].电子工业出版社,2002.
    [96]王哲.8mm波导缝隙天线的研究[D]:哈尔滨工业大学,2011.
    [97]尤立志,窦文斌. W波段雷达导引头低剖面单脉冲天线研究[J].现代防御技术,2008,06):124-129.
    [98]李刚.超低副瓣波导缝隙阵列天线系统[J].合肥工业大学学报(自然科学版),2011,04):537-540.
    [99]王宏建,刘世华,郝齐焱, et al.星载Ku波段波导缝隙天线的缝隙特性分析[J].电波科学学报,2012,06):1225-1231.
    [100]成浩,葛俊祥,于兵, et al.一种X波段船舶导航雷达天线设计[J].现代雷达,2013,10):54-58.
    [101]郭陈江,丁君,许家栋.一种特殊波束的8mm波导缝隙阵列天线[J].电波科学学报,2004,02):233-236.
    [102]戴珺.微波铁氧体开关的设计和分析[D]:电子科技大学,2012.
    [103] Mailloux R. J. Phased array antenna handbook [M]. Artech House Boston,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700