纳米抗紫外线氧化物在颌面赝复硅橡胶中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅橡胶已成为临床上最常用的颌面赝复材料,但由于受其理化性能局限及所处自然环境影响,硅橡胶会发生老化,出现变硬、变脆、褪色,甚至导致无法使用。纳米抗紫外线氧化物具备良好的紫外线屏蔽性能,而且稳定性好,不降解,增韧补强性能优异。本课题组首次将其与颌面赝复硅橡胶复合以提高硅橡胶抗老化性能,证实了此方法的可行性。但是无机纳米级氧化物表面具有强极性,与有机硅橡胶基质分散不均匀的问题急需解决。本研究首先筛选出有效的偶联剂表面处理方法,继而对纳米氧化物改性后硅橡胶的各项理化性能,色彩稳定性能,生物安全性能进行全面测试,以获得新型颌面赝复硅橡胶抗老化添加剂的合理配方及添加比例。新方法能够有效改善自然环境因素及局部应力对颌面赝复体机械性能、色彩造成的不利影响,可以长期防止赝复体老化,从而延长赝复体寿命,减少患者医疗花销。
     第一部分纳米TiO_2和纳米ZnO表面偶联剂改性的研究
     包括3部分内容:①使用硅烷偶联剂KH-570对纳米TiO_2和纳米ZnO分别进行表面有机改性,采用多种表征方法对表面改性前后的纳米TiO_2和纳米ZnO进行评价,同时研究KH-570在纳米TiO_2和纳米ZnO表面的存在形式和键合状态。②对表面改性后的纳米TiO_2和纳米ZnO紫外屏蔽性能进行测定。③将偶联剂表面改性后的纳米TiO_2和纳米ZnO以不同添加量加入硅橡胶A-2186中,检测纳米TiO_2和纳米ZnO添加量对硅橡胶机械性能的影响。
     研究结果如下:
     ①KH-570对纳米TiO_2和纳米ZnO进行有机改性,能够使纳米TiO_2和纳米ZnO表面由亲水性变为疏水性,并以牢固的化学键合方式结合在纳米TiO_2和纳米ZnO表面,形成有机包覆层;KH-570在纳米TiO_2和纳米ZnO表面包覆的最大量约为5wt%。
     ②表面改性后的纳米TiO_2和纳米ZnO紫外屏蔽性能良好,纳米TiO_2,ZnO悬浮液在紫外光区(190~400nm)的吸收明显强于可见光区(400~800nm)。
     ③硅烷偶联剂表面改性后的纳米TiO_2和纳米ZnO添加量对硅橡胶的物理机械性能有显著性影响。5wt%硅烷偶联剂处理后的纳米TiO_2添加量为2wt%,纳米ZnO添加量为2.5wt%时,均可以获得较佳的硅橡胶机械性能。
     第二部分不同老化方式下,纳米TiO_2和纳米ZnO与硅橡胶复合材料机械性能及色彩稳定性能的评价
     ①纳米TiO_2、ZnO与硅橡胶复合材料经过人工模拟老化后机械性能的改变;
     研究结果如下:
     a)拉伸强度:与对照组相比,老化后纳米TiO_2实验组和纳米ZnO实验组硅橡胶的拉伸强度均有所改善;纳米ZnO实验组中,添加量为2.5wt%时,硅橡胶拉伸强度变化最小。
     b)撕裂强度:老化后,纳米TiO_2实验组中,添加比为2.5wt%时,硅橡胶撕裂强度变化最大;纳米ZnO实验组中,添加比为1wt%时,硅橡胶撕裂强度变化最小。
     c)扯断伸长率:老化后,纳米TiO_2与纳米ZnO实验组间有明显统计学差异;纳米TiO_2实验组中,添加比为2wt%时,硅橡胶扯断伸长率变化最小。
     d)邵氏硬度:老化后,纳米TiO_2和纳米ZnO实验组邵氏硬度有所升高,但仍在理想值范围内;对照组邵氏硬度变化值是所有实验组邵氏硬度变化值的4-7倍。
     以上结果表明纳米TiO_2、纳米ZnO可有效改善硅橡胶抗老化的机械性能。
     ②纳米TiO_2、ZnO与硅橡胶复合材料经过人工模拟老化及自然环境老化(1个月、3个月、6个月、12个月)后色彩稳定性能的改变;
     研究结果如下:
     a)人工加速老化
     所有纳米TiO_2和纳米ZnO黄色颜料组老化前后色差值最大,3.7-8.4;当三种颜料混合成为混合颜料组时,纳米TiO_2实验组中,添加比为2wt%和2.5wt%时,老化前后色差值最小。所有实验组老化前后色差值均低于50:50%可接受色差值3.0;
     b)自然环境老化
     不同的暴晒周期之间色差值有统计学差异,其中,暴晒周期为12个月的实验组色差值最大;无颜料实验组中,纳米ZnO实验组中,添加比为1wt%时,色差值最小;但当加入混合颜料时,混合颜料实验组中:纳米TiO_2添加比为2.5wt%,色差值最小;与对照组相比,所有混合颜料实验组色差值均低于50:50%可接受色差值3.0;
     以上结果表明,无论是否添加内着色颜料,纳米TiO_2和纳米ZnO均可以提高硅橡胶的色彩稳定性;不同自然老化暴晒周期可导致硅橡胶发生不同程度的颜色变化。硅橡胶自然老化比人工老化后导致的颜色变化更大。
     第三部分纳米TiO_2和纳米ZnO与硅橡胶复合材料生物学性能评价
     按照国家标准GB/T16175-1996医用有机硅材料生物学评价试验方法标准的要求,选取并进行了如下生物学试验:①细胞毒性试验(MTT法):试验结果表明纳米TiO_2、ZnO与硅橡胶复合材料的细胞毒性分级为0级,可认为复合材料无细胞毒性反应;②原发性皮肤刺激试验:试验结果表明,纳米TiO_2、ZnO与硅橡胶复合材料的原发性刺激指数均值为0,仅有极轻微刺激反应类型发生。因此硅橡胶复合材料对受试动物皮肤无刺激。③皮内刺激试验:试验结果表明纳米TiO_2、ZnO与硅橡胶复合材料的皮内刺激反应阴性,硅橡胶复合材料对受试动物皮肤无刺激。④过敏试验:试验结果表明纳米TiO_2、ZnO与硅橡胶复合材料实验组去除敷料后,皮肤无红斑,无水肿;过敏反应记分均为0级,无反应。致敏反应为阴性。⑤口腔粘膜刺激试验:实验结果显示:纳米TiO_2、ZnO与硅橡胶复合材料接触的局部口腔粘膜有无色泽异常、充血、糜烂和渗出等异常现象,组织学切片显示金黄仓地鼠颊囊组织细胞形态正常,上皮连续性完好。
     上述结果表明添加纳米TiO_2、ZnO与硅橡胶制成的硅橡胶复合材料具有良好的生物安全性。
Extraoral maxillofacial prostheses are widely used for restoring missing facialstructures due to resection, trauma, or congenital anomalies. Materials used forthis purpose are silicone elastomers. However, because of their limitations ofphysical properties and certain environmental factors, they usually becomeaging, harder and color degradation. Nano oxide, as a kind of ultraviolet lightabsorber, is more stable and has better property of enhancing silicone elastomer.Our group firstly introduces it into maxillofacial elastomer, and investigates thetentative confirmation. The purpose of of our research focus on the effects onthe physical properties, color stability and biological safety performance ofmaxillofacial elastomer after adding surface modified nano-oxides by properconcentrations. When patients wear the maxillofacial prosthesis, the compoundmaterials can resist outdoor environmental factors and partial mechanical forcein order to avoid aging in long term. Then the service life of prosthesis can be extended.
     Part I Study of surface modification of nano-sized TiO_2and ZnOwith silicane coupling agent.
     This part consists of3experiments:
     ①Nano-sized TiO_2and ZnO were treated with different content of KH-570.The nano-sized TiO_2and ZnO before and after modification werecharacterized by virtue of several analysis means.
     ②The evaluation of UV-ray shieding properties of surface modifiednano-sized TiO_2and ZnO;
     ③Evaluations of mechanical properties of silicone elastomer by addingsurface modified nano-sized TiO_2and ZnO with different concentrations.The results are showed as follows:
     ①The surface performance of nano-sized TiO_2and ZnO modified with silanecoupling reagent (KH-570) had changed from hydrophilic to hydrophobic,the KH-570was bound on the surface of nano-sized TiO_2and ZnO particles,a firm chemical bonding of KH-570to nano-sized TiO_2and ZnO and a layerof organic coating layer formed. The best concentration of KH-570coatedon the surface of nano-sized TiO_2and ZnO was about5wt%.
     ②Both of nano-sized TiO_2and ZnO have the better UV-sheildingperformance.
     ③KH-570surface modified nano-sized TiO_2and ZnO at concentrations of2.0wt%and2.5wt%improved the overall mechanical properties of thesilicone A-2186maxillofacial elastomer.
     Part II After different aging conditions, the evaluations of mechanical properties and color stability of silicone elastomerA-2186by adding nano-sized TiO_2and ZnO
     ①The evaluation of mechanical properties of silicone elastomer A-2186byadding nano-sized TiO_2and ZnO after artificial aging
     The results showed below:
     a) For tensile strength, compared with control group, both ZnO groups andTiO_2groups improved the tensile strength before and after artificial aging(p<0.05); ZnO with2.5wt%concentration groups showed the smallestchanges (p<0.05);
     b) For tear strength, TiO_2at2.5wt%concentration with no pigments group hadthe greatest changes (p<0.05); When mixed with pigments, ZnO at1.0wt%showed smallest changes (p<0.05);
     c) For elongation, there was significant difference among the type ofnano-oxides (p<0.05); control group had the greatest changes after artificialaging (p<0.05); TiO_2at2.0wt%concentration group had the smallestchanges (p<0.05);
     d) For hardness, after artificial aging, specimens of control groups become4-7times harder than all nano-oxide groups (p<0.001).
     Above all results, the conclusion was: Both of nano-sized TiO_2and ZnOimproved mechanical properties of silicone elastomer A-2186after subjected toartificial aging.
     ②The evaluation of color stability of silicone elastomer A-2186by addingnano-sized TiO_2and ZnO after artificial aging and outdoor aging
     a) Artificial aging condition Yellow pigments mixed with all three nano-oxides at all intervals increased E*values significantly from3.7up to8.4. When mixed pigment groups wereconsidered, TiO_2at2.0wt%, and2.5wt%exhibited the smallest color changes,followed by ZnO respectively (p<0.001).The smallest color differences,observed for nano-oxides groups, were recorded for TiO_2at2.0wt%and2.5wt%.When the nano-oxides were tested at all concentrations, TiO_2groups had theleast color change. All E*values of the mixed pigment groups were below the50:50%acceptability threshold (E*=1.2–2.3, below3.0).
     b) Outdoor aging conditionFor the exposure periods, there were significant differences from each other. Allspecimens of12months exposure showed the greatest color changes (p<0.001);Nano ZnO at1.0wt%concentration with no pigments showed the smallest colorchange; however, after mixed with three pigments, nano TiO_2at2.5wt%showedthe smallest color differences; Compared with control group, all E*values ofthe mixed groups were below the50:50%acceptability threshold (E*=0.6-2.6,below3.0).
     Above all results, the conclusion were: Nano TiO_2and nano ZnO protected bothpigmented and nonpigmented silicone A-2186from color degradation. Exposureperiods had significantly affected the color change. Outdoor aging made greatercolor changes than artificial aging.
     Part III Evaluations on the biocompatibility of silicone elastomerA-2186with nano TiO_2and nano ZnO
     Before the clinical application, a series of experiments should be done todetermine the biological safety of silicone elastomer A-2186with nano TiO_2and nano ZnO according to standards GB/T16175-1996. The results of biological
     tests were as below:
     ①Cytotoxicity test, the result showed that the cytotoxicity index of siliconeelastomer A-2186with nano TiO_2and nano ZnO were in grade I, whichindicated that the materials had no cytotoxicity;
     ②Skin irritation tests, the primary irritation index of silicone elastomerA-2186with Nano TiO_2and nano ZnO were all zero. The response types ofirritation tests were all minimal. The data showed that these materials didn’thave skin irritaion under the experimental condition.
     ③Intracutaneous irritation tests, the results showed there were no obviousintracutaneous irritations.
     ④Skin sensitization tests, the scores of skin reaction of silicone elastomerA-2186with Nano TiO_2and nano ZnO were all zero. Sensitization rates ofthe two groups were also zero. There are no potential of skin sensitizationunder the experimental conditions.
     ⑤Oral mucous membrane irritation tests, there were no local or systemicabnormal response in the groups of Nano TiO_2and nano ZnO. The scores oferythematous response were all zero and the histopathological findings werealso normal. There had no irritating response to oral mucous membraneunder the experimental conditions.
引文
1. Roberts A. History. In: Facial Prostheses.1971. Henry Kimpton Publishers.London, p.2.
    2. Upham R. Artificial Noses and Ears. Boston Med and Surg J1901,145:522.
    3. Kazanjian V, Rowe A, Young H. Prostheses of the mouth and face. J DentRes1932,12:651.
    4. Bulbulian A. An improved technique for prosthetic restorations of facialdefects by use of a latex compound. Proc Staff Meetings, Mayo Clinic,1939,p13-433.
    5. Clarke C. Moulage prostheses. Am J Orthodont Oral Surg1941,27:214-16.
    6. Tylman S. Resilient and elastic resins: Technique for their use inmaxillofacial prostheses. Dental Digest1944,260:43-47.
    7. Barnhart G. A new material and technique in the art of somato-prosthesis. JDent Res1960,39:836-44.
    8. Lewis DH, Cowsar DR,Tanquary AC.A now TRV silphenylene facial andprosthetic material.J Dent Res,1977,Special issue B,55, abstract1077
    9. Montgomery PC, Kiat-amnuay S. Survey of currently used materials forfabrication of extraoral maxillofacial prostheses in North America, Europe,Asia and Australia. J Prosthodont; doi:10.1111/j.1532-849X.2009.00538.
    10. Chalian, V.A. Extra oral prosthetics. In Chalian, V.A., Drane, J.B., Standish,S.M., eds.: Maxillofacial Prosthetics, Baltimore,1974. The Williams&Wilkins Co.
    11. Bell W, Chalian V, Moore B. Polydimethyl siloxane materials inmaxillofacial prosthetics: Evaluation and comparison of physical properties.J Prosthet Dent1985,54:404-07.
    12. Andres C. Survey of materials used in extra-oral maxillofacial prosthetics.In: Proceedings of Conference on Materials Research in MaxillofacialProsthetics. Trans Acad Dent Mater1992,5:25.
    13. Moore D, Glaser Z, Tabacco M. Evaluation of polymeric materials formaxillofacial prosthetics. J Prosthet Dent1977,38:319-21.
    14. Udagama A, Drane J. Use of medical-grade methyl triacetoxy silanecrosslinked silicone for facial prostheses. J Prosthet Dent1982,48:86-88.
    15. Farah J, Robinson J, Koran A. Properties of a modified cross-linked siliconefor maxillofacial prostheses. J Oral Rehabil1987,14:599-603.
    16. Farah J, Robinson J, Hood J. Force-displacement properties of a modifiedcross-linked silicone compared with facial tissues. J Oral Rehabil1988,15:277-81.
    17. Udagama A. Urethane-lined silicone facial prostheses. J Prosthet Dent1987,58:351-53.
    18. Kiat-Amnuay S, Mekayarajjananonth T, Powers JM, Chambers MS, LemonJC. Interactions of pigments and opacifiers on color stability ofMDX4-4210/type A maxillofacial elastomers subjected to artificial aging. JProsthet Dent2006,95:249-57.
    19. Andres CJ, Haug SP, Munoz CA, Bernal G. Effects of environmentalfactors on maxillofacial elastomers: Part I—Literature review. J ProsthetDent1992,68:327-30.
    20. Haug SP, Andres CJ, Moore BK. Color stability and colorant effect onmaxillofacial elastomers. Part III: weathering effect on color. J ProsthetDent1999,81:431-38.
    21. Polyzois GL. Color stability of facial silicone prosthetic polymers afteroutdoor weathering. J Prosthet Dent1999,82:447-50.
    22. Polyzois GL, Tarantili PA, Frangou MJ, Andreopoulos AG. Physicalproperties of a silicone prosthetic elastomer stored in simulated skinsecretions. J Prosthet Dent2000,83:572-77.
    23. Steinberg MJ, Herrera AF. An alternative material for maxillofacialcompression dressings. J Oral Maxillofac Surg.2000,58:454-55.
    24. Hatamleh MM, Haylock C, Watson J, Watts DC. Maxillofacial prostheticrehabilitation in the UK: a survey of maxillofacial prosthetists' andtechnologists' attitudes and opinions. Int J Oral Maxillofac Surg2010,39:1186-92.
    25. Sweeney W, Fischer T, Castleberry D. Evaluation of improvedmaxillofacial prosthetic materials. J Prosthet Dent1972,27:297-301.
    26. Lewis D, Castleberry D. An assessment of recent advances in externalmaxillofacial materials. J Prosthet Dent1980,43:426-29.
    27. Kiat-amnuay S, Beerbower M, Powers JM, Paravina RD. Influence ofpigments and opacifiers on color stability of silicone maxillofacialelastomer. J Dent2009,37Suppl1:e45-50
    28. Mayer R. The artist’s handbook of materials and techniques.5th ed. NewYork: Viking Penguin;1991.
    29. Craig RG, Koran A, Yu R, Spencer J.Color stability of elastomers formaxillofacial appliances. J Dent Res1978,57:866-71.
    30. Glassman AH.Xylene-a potential danger to the maxillofacialprosthodontist.J Prosthet Dent1982,48:571-74.
    31. Hanson MD,Shipman B,Blomfield JV,Janus CE.Commercial cosmetics andtheir role in the coloring of facial prostheses.J Prosthet Dent1983,50:818-20.
    32. Haug SP,Andres CJ,Munoz CA,Bernal G.Effects of environmental factorson maxillofacial elastomers:Part IV--Optical properties.J Prosthet Dent1992,68:820-23.
    33. Watson RM, Coward TJ, Forman GH. Results of treatment of20patientswith implant-retained auricular prostheses. Int J Oral Maxillofac Implants1995,10:445-49.
    34. Beatty MW, Mahanna GK, Dick K,Jia W.Color changes in dry-pigmentedmaxillofacial elastomer resulting from ultraviolet light exposure.J ProsthetDent1995,74:493-98.
    35. Beatty M, Mahanna G, Jia W. Ultraviolet radiation-induced color shiftsoccurring in oil-pigmented maxillofacial elastomers. J Prosthet Dent1999,82:441-46.
    36. Gary JJ, Smith CT.Pigments and their application in maxillofacialelastomers:a literature review.J Prosthet Dent1998,80:204-08.
    37. Winkler S, Vernon HM.Coloring acrylic denture base resins.J Prosthet Dent1978,40:4-7.
    38. Hanson MD, Shipman B, Blomfield JV, Janus CE. Commercial cosmeticsand their role in the coloring of facial prostheses. J Prosthet Dent1983,50:818-20.
    39. McKinstry RE. Fundamentals of facial prostheses. Arlington: ABIProfessional Publications;1995. p.198.
    40. Firtell DN, Bartlett SO. Maxillofacial prostheses: reproducible fabrication. JProsthet Dent1969,22:247-52.
    41. Schaaf NG. Color characterizing silicone rubber facial prostheses. JProsthet Dent1970,24:198-202.
    42. Fine L, Robinson JE, Barnhart GW, Karl L. New method for coloring facialprostheses. J Prosthet Dent1978,9:643-49.
    43. Cantor R, Webber RL, Stroud L, Ryge G. Methods for evaluating prostheticfacial materials. J Prosthet Dent1969,21:324-32.
    44. Shriver MD, Parra EJ.Comparison of narrow-band reflectance spectroscopyand tristimulus colorimetry for measurements of skin and hair color inpersons of different biological ancestry.Am J Phys Anthropol2000,112:17-27.
    45. Paravina RD, Majkic G, Del Mar Perez M, Kiat-Amnuay S. Colordifference thresholds of maxillofacial skin replications. J Prosthodont2009,18:618-25.
    46. Craig RG, Koran A, Yu R, Spencer J. Color stability of elastomers formaxillofacial appliances. J Dent Res1978,57:866-71.
    47. Koran A, Yu R, Powers JM, Craig RG. Color stability of a pigmentedelastomer for maxillofacial appliances. J Dent Res1979,58:1450-54.
    48. Kiat-Amnuay S, Lemon JC, Powers JM. Effect of opacifiers on colorstability of pigmented maxillofacial silicone A-2186subjected to artificialaging. J Prosthodont2002,11:109-16.
    49. ASTM. G7-05, Standard Practice for Atmospheric EnvironmentalExposure Testing of Nonmetallic Materials, G7-05(2005).
    50. Andres CJ, Haug SP, Brown DT, Bernal G. Effects of environmental factorson maxillofacial elastomers: Part II--Report of survey. J Prosthet Dent1992,68:519-22.
    51. Chu CC, Fischer TE. Evaluation of sunlight stability of polyurethaneelastomers for maxillofacial use. I. J Biomed Mater Res1978,12:347-59.
    52. Bryant A, Schaaf N, Casey D. The use of a photoprotective agent toincrease the color stability of a tinted extraoral prosthetic silicone. JProsthodont1994,3:96.
    53. Lemon JC, Chambers MS, Jacobsen ML, Powers JM. Color stability offacial prostheses. J Prosthet Dent1995,74:613–8.
    54. Tran NH, Scarbecz M, Gary JJ. In vitro evaluation of color change inmaxillofacial elastomer through the use of an ultraviolet light absorber anda hindered amine light stabilizer. J Prosthet Dent2004,91:483–90.
    55.唐厚元.纳米材料及其在有机硅材料中的应用有机硅材料,2002,16:30-3.
    56.严东生,冯瑞材料新星纳米材料学.长沙湖:南科学技术出版社,1997.
    57.李风声,杨毅纳米/微米复合技术及应用.北京:国防工业出版社,
    2002.36.
    58.肖长江,邓湘荣,栗正新纳米陶瓷的特性和烧结方法研究进展硅酸盐通报,2011,30:129-35.
    59.王大志,江毅,罗毅等纳米超微粉晶粒尺寸测量技术新技术新工艺,1993,6:2-4.
    60.温树林,王大志,阮美玲等纳米固体的晶界结构自然科学进展-国家重点实验室通讯,1993,3:412-4.
    61.麦立强,杨霜,韩春华等纳米材料的化学锂化与电活性物理化学学报,2011,27:1551-9.
    62.任红轩.磁性纳米材料的制备与应用发展趋势新材料产业,2011,8:49-52.
    63.朱慧敏,陈志天然产物抗紫外线的研究进青海科技,2007,1:49-51.
    64.何天白,胡汉杰功能高分子与新技术北京:化学工业出版社,2001.
    65.周大纲,谢鸽成塑料老化与防老化技术北京:中国轻工业出版社,
    1992.
    66. Rose A. Ryntz.塑料和涂层-耐久性、稳定化测试北京:化学工业出版社,2003.
    67.徐良,步平,防晒化妆品及其市场发展日用化学品科学,1997,2:17-20.
    68. Li YQ FS, Mai YW. Preparation and characterization of transparentZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer.2006,47:2127-32.
    69. Tang E CG, Pang XS, Ma XL, Xing FB. Synthesis ofnano-ZnO/poly(methylmethacrylate) composite microsphere throughemulsion polymerization and its UV-shielding property. Colloid Polym Sci.2006,284:422-8.
    70. Watson S, Beydoun D, J S. Preparation of nanosized crystalline TiO2particles at low temperature for photocatalysis. J of Nano Res2004,6:193-207.
    71.钟庆东,李永光纳米氧化物材料研究的现状及进展上海电力学院学报,2003,19:1-7.
    72.沈勇,秦伟庭,张惠芳,丁颖,王黎明改性纳米氧化物的抗紫外整理研究印染,2003,29:1-4.
    73.杨佳音纳米氧化物材料紫外屏蔽性能评估方法的新探索华东师范大学2006届研究生硕士学位论文.
    74.刘华,吴文启钛白粉的生产和应用北京:科学技术出版社,1992.
    75.姚超,吴凤芹,林西平等金红石型纳米TiO2的制备及其屏蔽紫外线的研究江苏工业学院学报,2003,15:1-4.
    76.陈晓青,杨娟玉,蒋新宇掺铁TiO2纳米微粒的制备及光催化性能.应用化学,2003,20:73-6.
    77.王亚婷,赵凤林有机染料作为光散射探针在分析应用中的研究进展高等学校化学学报,2000,10:1491-97.
    78.李原芳,黄承志,胡小莉共振光散射技术的原理及其在生化研究和分析中的应用分析化学,1998,12:1508-15.
    79.曹剑瑜,卢文庆,焦程敏等纳米TiO2的合成、表征及紫外吸收性能南京师大学报(自然科学版),2004,27:51-4.
    80.张元广,陈友存纳米TiO2微球的制备及光催化性能研究材料科学与工程,2003,21:60-3.
    81.刘建本,陈上,吴竹青等.纳米氧化锌水溶胶的紫外可见光特性.精细化工,2002,19:93-4.
    82.施利毅,房鼎业高温气溶胶反应器中制备纳米TiO2颗粒的形态和结构华东理工大学学报:自然科学版,1999,2:151-5.
    83.施利毅,李春忠高温气相应合成金红石型纳米TiO2颗粒的研究金属学报,2000,3:295-9.
    84.朱以华陈爱平化学气相合成TiO2过程中的冷壁凝结机理华东理工大学学报:自然科学版,1999,4:382-5.
    85. Yang G.X., Zhuang H.R., Biswas P. Characterization and sinterablility ofnanophase titania particles processed in flame reactors. Nano Mater1996,7:675-89.
    86. Schleich D.M., Walter B. Formation of titania nanoparticles by vapor phasereactions of titanium tetraisopropoxide in oxygen/ozone containingatmospheres. Nano Mater1997,8:579-86.
    87.李国华,王大伟,徐铸德等不同沉淀剂制备的纳米氧化钛粉体晶相控制硅酸盐学报,2003,3:272-7.
    88.何超,于云,周彩华Ag掺杂对TiO2粉末结构的影响无机材料学报,
    2003.18:455-64.
    89.卢铁城,宋萍,林理彬晶体生长用TiO2纳米晶的改良工艺研究无机材料学报,2001,16:475-9.
    90.林元华,张中太,黄淑兰纳米金红石型TiO2粉体的制备及其表征无机材料学报,1999,14:853-60.
    91.魏雨,张艳峰,韩梅娟TiOCl2溶液合成异形TiO2纳米粉体及形成机理化学学报,2001,59:1424-9.
    92.杨凤霞,刘其丽,毕磊纳米氧化锌的应用综述安徽化工,2006,1:13-7.
    93.王久亮,刘宽,秦秀娟等纳米氧化锌的应用研究展望.哈尔滨工业大学学报,2004,2:226-30.
    94.刘波,庄志强,刘勇,王悦辉粉体的表面修饰与表面包覆方法的研究中国陶瓷工业,2004,11:50-4.
    95.沈勇,秦伟庭,张慧芳等改性纳米氧化物抗紫外整理研究印染,2003,9:1-4.
    96.姚超,丁永红,李为民等有机表面修饰温度对纳米二氧化钛微结构的影响无机材料学报,2009,24:438-42.
    97.李晓娥,邓红,樊安等纳米TiO2粉体的表面有机处理研究西北大学学报(自然科学版),2002,32:523-5.
    98.刘红波,林峰,缪国元偶联剂对纳米材料分散的影响及相关光固化涂料研究中国涂料,2009,4:45-8.
    99.姚超,丁永红,林西平等纳米TiO2有机表面改性的研究无机材料学报,2005,21:638-42.
    100.于守武,肖淑娟纳米TiO2的表面修饰研究上海化工,2010,10:13-7.
    101.刘甲,张林进,叶旭初纳米氧化锌的分散与表面改性研究无机盐工业,2010,8:28-30.
    102.佘利娟,韩静香,刘宝春硅烷偶联剂对纳米氧化锌的表面改性研究化工时刊,2010,24:15-20.
    103.姚超,高国生,林西平等硅烷偶联剂对纳米二氧化钛表面改性的研究无机材料学报,2006,21:315-21.
    104.苏正涛,刘君,孔毅硅橡胶-金属高温硫化粘接的研究粘接,1999,20:5-7.
    105.吴森纪.有机硅应用.成都:电子科技大学出版社,2000.
    106.陈世容,瞿晚星,徐卡秋硅烷偶联剂的应用进展有机硅材料,2003,17:28-31.
    107.张立德,牟季美纳米材料和纳米结构北京:科学出版社,2002.
    108.王晶,刘国军,张桂霞等纳米CaCO3/SiO2复合粒子对硅橡胶性能的影响大连轻工业学院学报,2006,25:252-6.
    109.陈传志,周祚万,胡书春等纳米ZnO/HDPE复合材料的制备与研究塑料工业,2003,31:18-9.
    110.王津,周丽玲,傅政纳米ZnO/PP复合材料性能研究青岛科技大学学报,2003,24:507-10.
    111.祖庸,王训,吴金龙.新型无机抗菌剂——超微细氧化锌化工时刊,1999,13:7-9.
    112.张梅,杨绪杰纳米TiO2一种性能优良的光催化剂化工新型材料,2000,28:11-3.
    113.曹建军,郭刚,吴健春等金红石型纳米TiO2在HIPS塑料中的抗老化应用研究钢铁钒钛,2006,27:12-5.
    114.徐斌,钟明强,孙莉等纳米TiO2,纳米ZnO对聚丙烯抗紫外光老化及结晶性能的影响高分子材料科学与工程,2007,23:137-40.
    115.汪斌华,黄婉霞,李彦峰等纳米TiO2和ZnO的抗老化性应用研究四川大学学报(工程科学版),2003,35:103-5.
    116.范红青,谢小林,权红英等纳米氧化钛改性聚苯乙烯耐紫外光老化性能的研究江西化工,2010,1:69-72.
    117. M.J. Yarg, Y.Dan. Preparation and characterization ofpoly(methylmethacrylate)/titanium oxide composite particles. Coll andPoly Sci,2005,284:243-50.
    118.徐惠,孙涛硅烷偶联剂对纳米TiO2:表面改性的研究涂料工业,2008,38:1-3.
    119. Bowen RL. Compatibility of various materials with oral tissues. I: Thecomponents in composite restorations. J Dent Res1979,58:1493-503.
    120.赵振国氨基酸在固/液界面的吸附作用化学研究与应用,2001,13:599-604.
    121.陈宗淇,王光信,徐桂英等胶体与界面化学.北京:高等教育出版社,
    2001.
    122.石顺祥,张海兴,刘劲松物理光学与应用光学.西安:西安电子科技大学出版社,2000.
    123. Hosaka N, Sekiya T, Fujisawa M,et al. UV reflection spectra of anataseTiO2. J of Elec Spec and Rel Pheno.1996,78:75-8.
    124. American National Standards ASTM D412, Standard test methods forvulcanized rubber and thermoplastic elastomers tension. Philadelphia:American Society fo r Testing and Materials,1998. Part37.
    125. American National Standards ASTM D624, Standard test method for tearstrength o f conventional vulcanized rubber and thermoplastic elastomers.Philadelphia: American Society for Testing and Materials,2000. Part37.
    126. American National Standards ASTM Standard D2240. Standard test methodfor rubber property-durometer hardness. West Conshohocken: AmericanSociety for Testing and Materials;2005.
    127. Society of Automotive Engineers. Accelerated exposure of automotiveexterior materials using a controlled irradiance water-cooled xenon arcapparatus. Specification SAEJ1960, June2003.
    128. Kim SC,Kim DW,Hong JP,Rah DK.A quantitative evaluation of pigmentedskin lesions using the L*a*b*color coordinates.Yonsei Med J2000,41:333-9.
    129. Berns RS, editor. Billmayer and Saltzman’s principles of color technology.New York: Wiley-Interscience;2000.
    130. H. Al-Madfa, Z. Mohamed, Kassem ME. Weather ageing characterizationof the mechanical properties of the low density polyethylene. PolymerDegradation and Stability.1998,62:105-9.
    131. ASTM G24-05Standard practice for conducting exposures to daylightfiltered through glass. Philadelphia (PA): American Society for Testing andMaterials;2005
    132. Gary JJ, Huget EF, Powell LD. Accelerated color change in a maxillofacialelastomer with and without pigmentation. J Prosthet Dent2001,85:614-20.
    133.国家标准局.中华人民共和国标准, GB/T16175-1996,医用有机硅材料生物学评价试验方法
    134.国家标准局.中华人民共和国标准, GB/T16886.12-2000医疗器械生物学评价—第12部分:样品制备与参照样品
    135. Mosmann.T. Rapid clorimetric assay for celluar growth and survival:application to proliferation and cytotoxic assays. J Immunol Meth1983,65:5563-7.
    136. Smith P.K, Krohn R.I, Hermanson A.K, Mallia, et al. Provenzanomeasurement of protein using bicinchonic acid. Analytical Biochemistry,1985,150:76-85.
    137. GB/T16886医疗器械生物学评价北京:中国标准出版社,2003.
    138. ISO10993-10:1995. Biological evaluation of medical devices. part10:Tests for irritation and sensitization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700