粒子群算法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体智能是指众多行为简单的个体在相互作用过程中涌现产生的整体智能行为。群体智能由于原理简单、容易实现、全局搜索能力强的特点,目前已经成为计算机、工程、管理、经济、生物等学科的研究热点和前沿领域。粒子群算法(Particle Swarm Optimization, PSO)是群体智能中较新的一种优化方法,其搜索过程基本不利用外部信息,仅仅以适应度函数作为进化的依据,从而形成一种“生成+检验”为特征的智能计算方法。然而,同与所有随机搜索算法一样,PSO在求解较复杂的问题时容易陷入局部最优。本文在分析PSO目前研究现状的基础上,从不同的角度提出了几种改进算法,使之更加有效可靠;并将提出的改进算法应用于经济管理中的实际问题,拓展粒子群算法的应用领域。
     本文主要的内容概括如下:
     (1)介绍了传统优化方法和进化计算,重点探讨了群体智能的发展、特点和几种典型的群体智能方法。在阅读大量文献的基础上,按照作者的理解对PSO的研究现状与应用进行了归纳和总结,较为深入地分析了PSO中3个重要要素:邻域结构、边界约束处理和速度限制。
     (2)PSO是源于对社会型群居动物的行为模拟,因此将自然界的一些生物行为融入PSO中是一条潜在可行的改进途径。本文第三章提出了3种基于生物行为的PSO改进方法:基于生物寄生的双种群PSO(PSOPB)、模拟生物理想自由分布模型的PSO(IFDPSO)以及基于predator-prey行为的改进PSO(PPPSO)。PSOPB由宿主群和寄生群两个种群组成,两个种群之间模拟自然界中生物的兼性寄生行为,并考虑了“优胜劣汰”的进化法则。在分析生物觅食行为中资源斑块选择理想自由分布模型的基础上,提出了一种新型的粒子群算法—IFDPSO。IFDPSO将所有粒子中3个不重叠的个体最优位置的适应度视为资源斑块的食物质量,并根据理想自由分布模型随机分配相应数量的粒子到各个资源斑块中,从而保证了群体的多样性和算法的全局搜索能力。在分析生物的捕食—被捕食(predator-prey)行为规律的基础上,提出了一种由predator和prey两个种群构成的PSO(PPPSO)。predator种群间隔一定的迭代次数排斥prey种群,逐步向prey种群的群体最优位置靠近,同时每个prey粒子尽量逃离距离最近的predator粒子。采用这样的机制,提高了摆脱局部最优的能力。多个测试函数的仿真实验证明了3种算法的有效性。
     (3)鉴于单一智能算法在实际应用中面临各自的问题,相互之间的促进与补充便成为自然的选择。在分析PSO与人工蜂群算法(Artificial Bee Colony, ABC)的各自优势和缺陷的基础上,提出了一种以PSO为主,在适当的时候嵌入ABC邻域算子的混合算法(PSOABC)。在对PSO搜索原理简要分析的基础上,提出了PSOABC中2种ABC邻域算子方法:O邻域算子和R邻域算子。综合考虑PSO的邻域结构和2种ABC邻域算子,构建了4种不同类型的PSOABC。对4种不同类型的PSOABC仿真实验结果表明R邻域算子性能优于O邻域算子。将R邻域算子的PSOABC与其他几种PSO的实验结果进行比较表明带R邻域算子的PSOABC具有快速的收敛速度和搜索精度,是一种可靠的全局优化方法。
     (4)在分析基本PSO学习策略缺陷的基础上,本文第五章提出了2种新的学习策略的改进PSO:交互学习的双种群粒子群算法(ILPSO)和自适应的正交学习粒子群算法(SOLPSO)。ILPSO是启发于人类社会行为的特征,不同群体之间可以交互学习。由于交互学习的机制,群体的多样性可以得到维护,从而不容易陷入局部最优,测试函数的实验结果证明其有效性。针对PSO中的“两进一退”的现象,将PSO的每一维看成是影响试验结果(函数适应度值)的一个因素,利用种群中其他个体的信息,通过正交试验组合可以产生更优的个体最优位置,从而有利于加快收敛速度和提高搜索的精度。SOLPSO中提出了4种正交组合方法,并分析它们各自优势和缺陷,设计了一种根据算法的进程自适应调整正交组合方法的策略。多个测试函数的仿真实验表明了提出的两种算法的有效性。
     (5)建立了连续型物流配送中心选址的数学模型,并根据问题的特点,设计了合适的粒子编码方案。在考虑现实情况下,构建了一类离散Mean-CVaR投资组合模型,通过增加一个特定的惩罚项,将离散问题转化为连续问题的求解。提出的PSOPB和SOLPSO分别用于两类模型的求解,结果表明了它们的有效性。
     最后,总结了本文的研究成果,并对未来的研究方向提出了进一步的展望。
Swarm intelligence refers to the emergence of the overall intelligent behavior through the interactions of many individuals with simple intelligence. Swarm Intelligence has become the research focus and frontier of computer science, management, economics, biology and other disciplines as it is simple, easy to implementation and has good global search abilities. Particle swarm optimization (PSO) is a relatively new branch optimization method of swarm intelligence. The search process of PSO usually does not use external information, solely on the objective function. As a result, PSO is an adaptive artificial intelligence technique characterized by "generate-and-test". However, just like any other stochastic algorithm, PSO is prone to get trapped in the local optima when complex multimodal problems are being optimized. This article proposed some new some new improved PSOs from different perspective in order to enhance the reliability and effectiveness of PSO. Moreover, the proposed methods are used to solve the practical problem in management and economy areas to extend the application scope.
     In this article, the main contents summarized as follows
     (1) This paper introduced traditional optimization methods, evolutionary computation and swarm intelligence, especially focusing on the development, characteristics and several typical swarm intelligence methods. Current research situation on PSO improvements and applications are summarized according the author’s understanding. Three key elements in PSO, that is neighborhood structure, boundary constraint handling and velocity-constrained, are analyzed in-depth.
     (2) As PSO algorithm is derived from mimicking sociological behaviors of animals, it is natural to incorporate other biological mechanisms into basic PSO, which may be a viable way to improve the algorithm’s performance. The third chapter proposed three kinds of improvements based on biological behavior, to be specific, a two-population PSO mimicking bio-parasitic behavior named PSOPB, a PSO variant based on simulation of biological ideal free distribution model (IFDPSO) and a two-population PSO based on predator-prey behavior (PPPSO). PSOPB is composed of the host and the parasite population. In the proposed algorithm, two populations mimic facultative bio-parasitic behavior and exchange particles according to particles’fitness values sorted of each population in a certain number of iterations. In order to embody the law of“survival of the fittest”in biological evolution, the particles with poor fitness in the host population are removed and replaced by the same numbers of the re-initialization particles in order to maintain a constant population size. In IFDPSO, three non-overlapping personal best positions of the particles are selected, and their fitness values are regarded as food quality of resource patch. The number of particles is randomly assigned to each resource patch according to ideal free distribution model. In order to guarantee the diversity of the whole population, thus improving the global search capabilities, the best position of each sub-population keep a distance, which linearly decreases with the increase of iterations. According to biological rules of predator-prey behavior, a two-population particle swarm optimization (PPPSO) was proposed. In the presented algorithm, the particles are divided into two populations, the predator and prey population. Particles in predator population exclude the particles in prey population in a certain interval of iterations. In order to enhance the capacities to escape from local optimum of the particles with stagnation state in prey population, a method with speed mutation is used. The experimental results of some benchmark functions demonstrate three proposed algorithm’s efficacy.
     (3) In view of the limitations of each single algorithms used to solve practical problems, it is natural to hybrid different algorithm. After analyzing the strength and drawbacks of PSO and artificial bee colony (ABC), this article designed a new hybrid algorithm called PSOABC, in which PSO is the main part and ABC is incorporated into PSO at the proper time. According to the principle of PSO, two types ABC neighbor search operators, that is origin neighbor search (ONS) and random neighbor search (RNS), are proposed in PSOABC. Considering PSO neighbor structure and ABC neighbor search operators, four types of PSOABC are presented. Some experimental results show that the performance of RNS is better than ONS. Comparing PSOABC with RNS with other PSO variants, experiments show that the proposed algorithm has faster convergence speed and search accuracy. Thus it is a reliable global optimization method.
     (4) As the learning mechanism of basic PSO results in premature easily, this article developed two new improved PSOs, interactive learning PSO (ILPSO) and self-adaptive orthogonal learning PSO (SOLPSO). ILPSO is inspired by the phenomenon of human social behavior that individuals in different groups can learn each other. In ILPSO, leaning population and learned population are determined according their best particle’s fitness. Each particle in learning population has different learning probability according its fitness. As the mechanism of interactive learning, diversity of the two populations can be maintained. Therefore, ILPSO is not to easily fall into local optimum. Experimental results on some test function demonstrate its effectiveness. For“two step forward, one step back”phenomenon in basic PSO, a self-adaptive orthogonal learning PSO(SOLPSO)was proposed. In SOLPSO, each dimension of a particle is regarded as a factor in orthogonal experimental design. The orthogonal learning mechanism guide the particle, which did not improve its personal best position in a certain iterations, to fly in better direction by utilizing the information of other individuals, and formed a better personal best position. The article develop four methods that to utilize other individual information, and analyze the strength and drawbacks of each method. A self-adaptive strategy is proposed that probability of each method selected is adjusted in terms of search process. The comparisons show that SOLPSO significantly improved the performance of PSO.
     (5) This article builds a continuous logistics distribution center location model, and designs a suitable encoding scheme of particles in accordance with the characteristics of the problem. Considering the reality, a class of discrete Mean-CVaR portfolio selection model is created. The discrete problem solved turns into the continuous one by added a particular punishment item. The proposed PSOPB and SOLPSO are used to solve two models, respectively. Results show the effectiveness of the two algorithms.
     Finally, achievements in this paper are summarized, and the prospects of the future research are discussed.
引文
[1] Byron S.G., Joel W.. Introduction to Optimization Theory [M]. New Jersey, Englewood Cliffs, 1973: 1-10.
    [2] Kantorovich L.V.. Mathematical Methods of Organizing and Planning of Production. [J]. Management Science, 1960,6(4):366-422.
    [3] Dantzig G.. Linear Programming and Extensions. Princeton, New Jersey, Princeton University Press, 1963
    [4]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [5] Blackmore S.. The Meme Machine. Oxford University Press,2000.
    [6] Kennedy J., Eberhart R.C., Shi Y.. Swarm Intelligence [M]. San Francisco, Morgan Kaufman Publishers, 2001.
    [7] Kennedy J., Eberhart R.C.. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia, 1995, 1942-1948.
    [8]运筹学教材编写组.运筹学[M].北京:清华大学出版社,2000.
    [9] Back T., Fogel D.B., Michalewicz Z.. Evolutionary Computation 1: Basic Algorithm and Operators [M]. IOP press, 2000.
    [10] Reynolds C.. Boids-Background and Update, http://www.red3d.com/cwr/boids/ 2001.
    [11] Heppner F., Grenander U.. A Stochastic Nonlinear Model for Coordinated Bird Flocks [M]. In S. Krasner, Eds, the Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990.
    [12] Goss S., Aron S., Deneubourg J.L., et al.. Self-Organized Shortcuts in the Argentine Ant [J]. Naturwissenschaften,1989,76:579-581.
    [13] Colorni A., Dorigo M., Maniezzo V.. Distributed Optimization by Ant Colonies [C]. Proceedings of the 1st European Conference on Artificial life, Cambridge, MA, MIT press. 1992:134-142,
    [14] Bonabeau E., Dorigo M., Theraulaz G.. Swarm Intelligence: From Natural to Artificial Systems [M]. New York: Oxford University Press, 1999.
    [15] Millonas, M.M.. Swarms, Phase Transitions, and Collective Intelligence [M]. In Langton C.G., Ed., Artificial Life III. Addison Wesley, Reading, MA, 1994.
    [16]康琦,汪镭,吴启迪.群体智能与人工生命[J].模式识别与人工生命,2005,18(6):689-697.
    [17] Dorigo M.. Optimization, Learning and Natural Algorithm [in Italian, D]. PhD Thesis, Dipartimentodi Elettronica, Politecnico di Milano, Milan,1992.
    [18] Dorigo M., Maniezzo V., Colorni A.. Ant System: Optimization by a Colony of Cooperating Agents [J], IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1):29-41.
    [19] Stützle T., Hoos H.H.. MAX-MIN Ant System [J]. Future Generation Computer Systems, 2000, 16(8):889-914.
    [20] Bullnheimer B., Hartl R.F., Strauss C.. A New Rank Based Version of the Ant System: A Computational Study [J]. Central European Journal for Operations Research and Economics, 1999,7(1):25-38.
    [21] Gambardella L.M., Dorigo M.. Solving symmetric and asymmetric TSP by ant Colonies [C]. Proceedings of IEEE International Conference on Evolutionary Computation (ICEC’96), New Jersey: IEEE Press, 1996: 622-627.
    [22] Passino K.M.. Biomimicry of Bacterial Foraging for Distributed Optimization and Control [J]. IEEE Control Systems Magazine, 2002,22:52-67.
    [23] Dasgupta S., Biswas A., Abraham A., et al. Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An analysis [C]. CI-SIS, Barcelona, Spain, 2008: 64-71.
    [24] Dasgupta S., Das S., Abraham A., et al. Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An analysis [J]. IEEE Transactions on Evolutionary Computation, 2009,13(4):919-941.
    [25] Datta T., Misra I.S., Mangaraj B.B., et al. Improved Adaptive Bacterial Foraging Algorithm in Optimization of Antenna Array for Faster Convergence [J]. Progress in Electromagnetics Research C, 2008,1: 143-157.
    [26] Biswas A., Dasgupta S., Das S., et al. Synergy of PSO and Bacterial Foraging Optimization-A Comparative Study on Numerical Benchmarks [J]. Innovations in Hybrid Intelligent Systems, 2007,44:255-263.
    [27] Storn R., Price K.. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces [R]. ICSI, Tech. Rep. TR-95-012, 1995. Available: http://icsi.berkeley.edu /~storn/litera.html.
    [28] Price K., Storn R., Lampinen J.. Differential Evolution-A Practical Approach to Global Optimization [M]. Berlin, Germany: Springer, 2005.
    [29]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [30] Lampinen J., Zelinka I.. An Introduction to Differential Evolution [M]. In: D, Dorigo M, Glover F (Eds) New ideas in optimization. McGraw-Hill, New York, 127-146.
    [31] R?nkk?nen J., Kukkonen S., Price K.. Real-parameter Optimization with Differential Evolution [C]. Proceedings of IEEE l Conference on Evolutionary Computation, 2005, 1,506-513.
    [32] Liu J., Lampinen J.. A Fuzzy Adaptive Differential Evolution Algorithm [M]. In: Soft Computation Fusion Found Methodol Application, Springer, Berlin, 2005, 9, 448-462.
    [33] Brest J., Greiner S., Bo?kovi′c B., Mernik M., et al. Self-adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transaction on Evolutionary Computation, 2006, 10(6):646-657.
    [34] Chiou J.P., Chang C.F., Su C.T.. Ant Direction Hybrid Differential Evolution for Solving Large Capacitor Placement Problems. IEEE Transaction on Power Systems, 2004, 19:1794-1800.
    [35] Biswas A., Dasgupta S., Das S., et al. A Synergy of Differential Evolution and Bacterial Foraging optimization for Global Optimization [J]. Neural Network World, 2007, 17(6):607-626.
    [36] Noman N., Iba H.. Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Transaction on Evolutionary Computation, 2008, 12(1):107-125.
    [37] Qing A.. Dynamic Differential Evolution Strategy and Applications in Electromagnetic Inverse Scattering Problems [J]. IEEE Transaction on Geosciences and Remote Sensing, 2006, 44(l):116-125.
    [38] Rahnamayan S., Tizhoosh H., Salama M.. Opposition-based Differential Evolution [J]. IEEE Transaction on Evolutionary Computation, 2008, 12(1):64-79.
    [39]池元成,方杰,蔡国飆.中心变异差分进化算法[M].系统工程与电子技术,2010,32(5):1105-1108.
    [40] Qin A.K., Huang V.L., Suganthan P.N.. Differential Evolution Algorithm with Strategy Adaptation forGlobal Numerical Optimization [J]. IEEE Transaction on Evolutionary Computation, 2009, 13(2):398-417.
    [41] Mallipeddi R., Suganthan P.N., Pan Q.K., et al. Differential Evolution Algorithm with Ensemble of Parameters and Mutation Strategies [J]. Applied Soft Computing 11, 2011:1679-1696.
    [42] Wang Y., Cai Z.X., Zhang Q.F.. Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters [J]. IEEE Transaction on Evolutionary Computation, Accept. Available: http://cswww. essex.ac.uk/staff/zhang/mypublication.htm.
    [43] Wilbert D., Macready W.. No Free Lunch Theorems for Optimization [J]. IEEE Transactions on Evolutionary Computation. 1997, 1(1):67-82.
    [44]李丽,牛奔.粒子群优化算法.北京:冶金工业出版社. 2009.
    [45] Kennedy J.. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. Proceedings of IEEE Congress Evolutionary Computation, Piscataway, NJ: IEEE Press, 1999:1931-1938.
    [46] Eberhart R.C., Simpson P.K., Dobbins R.W.. Computational Intelligence PC Tools [M]. Academic Press Professional, First Edition, 1996.
    [47] Shi Y., Eberhart R.C.. Parameter Selection in Particle Swarm Optimization. Proceedings of the Annual Conference on Evolutionary Programming, San Diego, 1998, 591-600.
    [48] Fan H.Y.. A Modification to Particle Swarm Optimization Algorithm [J]. Engineering Optimization, 2002, 19(7-8):970-989.
    [49] Huang T., Mohan A.S.. A hybrid Boundary Condition for Robust Particle Swarm Optimization [J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4:112-117.
    [50] Xu, S., Rahmat-Samii Y.. Boundary Conditions in Particle Swarm Optimization Revisited [J]. IEEE Antennas and Wireless Propagation Letters, 2007, 55(3): 760-765.
    [51] Ozcan E., Mohan C.. Analysis of a Simple Particle Swarm Optimization System [J]. Intelligent Engineering Systems through Artificial Neural Networks, 1998, 253-258.
    [52] Ozcan E., Mohan C.. Particle Swam Optimization: Surfing the Waves. Proceedings of IEEE Congress on Evolutionary Computation, Washington, DC. 1999, 3, 1939–1944.
    [53] Clerc M., Kennedy J.. The Particle Swarm: Explosion, Stability and Convergence in a Multidimensional Complex Space. IEEE transaction on Evolutionary Computation, 2002(6): 58-73.
    [54] Van den Bergh F. An analysis of particle swarm optimizers [D], PhD Thesis, University of Pretoria, Pretoria, South Africa, 2001.
    [55] Kadirkamanathan V., Selvarajah K., Fleming P.J.. Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer. IEEE transaction on Evolutionary Computation, 2006, 10(3): 245-255.
    [56] Clerc M. Stagnation Analysis in Particle Swarm Optimisation or What Happens when Nothing Happens [R]. Technical Report CSM-460, Department of Computer Science, University of Essex. August, 2006.
    [57] Jiang M, Luo Y P, Yang S Y. Stochastic Convergence Analysis and Parameter Selection of the Standard Particle Swarm Optimization Algorithm. Information Processing Letters. 2007, 102(1):8-16.
    [58] Trelea I.C.. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection [J]. Information Processing Letters, 2003, 85(3):317-325.
    [59] Van den Bergh F., Engelbrecht A.P.. A New Locally Convergent Particle Swarm Optimizer [C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2002, 96-101.
    [60] Shi Y., Eberhart R.C.. A Modified Particle Swarm Optimizer [C]. Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway. IEEE Press. 1998. 69-73.
    [61] Shi Y., Eberhart R.C.. Fuzzy adaptive particle swarm optimizer [C]. Proceedings of IEEE Congress on Evolutionary Computation. Korea. IEEE Service Center. 2001, 1:101-106.
    [62] Clerc M.. The Swarm and the Queen: towards a Deterministic and Adaptive Particle Swarm Optimization [C]. Proceedings of the Congress of Evolutionary Computation, Washington, 1999, 1951-1957.
    [63] Eberhart R.C., Shi Y.. Tracking and Optimizing Dynamic Systems with Particle Swarms [C]. Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea, 2001:94-97.
    [64] Chatterjee A., Siarry P.. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization [J], Computers & Operations Research. 2006, 33: 859-871.
    [65]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策, 2008,23(11): 1253-1257.
    [66] Ratnaweera A., Halgamuge S.K., Watson H.C.. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients [J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3):240-255.
    [67] Cai X.J.; Cui Z.H.; Zeng J.C., et al. Particle Swarm Optimization with Self-adjusting Cognitive Selection Strategy [J]. International Journal of Innovative Computing, Information and Control, 2008, 14(4): 943-952.
    [68] Suganthan P.N.. Particle Swarm Optimizer with Neighborhood Operator [C]. Proceeding of the IEEE Congress of Evolutionary Computation 1999, pp.1958-1962.
    [69] Mendes J.R., Kennedy J., Neves J.. The Fully Informed Particle Swarm: Simpler, maybe Better [J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3):204-210.
    [70] Kennedy J., Mendes R.. Population structure and particle swarm performance [C]. Proceedings of the IEEE Congress on Evolutionary Computation. Honolulu, Hawaii, USA, 2002, 1671-1676.
    [71] Liang J.J., Suganthan P.N.. Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search [C]. Proceedings of the IEEE Congress on Evolutionary Computation; TU München, Germany, 2005, 522–528.
    [72] Janson S., Middendorf M.. A Hierarchical Particle Swarm Optimizer [C]. Proceedings of the IEEE Congress on Evolutionary Computation, Newport Beach, CA, USA, 2003, 2:770-776.
    [73]倪庆剑,张志政,王蓁蓁,刑汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2): 339-349.
    [74] Angeline P.J.. Using Selection to Improve Particle Swarm Optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation. Anchorage, Alaska, 1998, 84-89.
    [75] L?vbjerg M., Rasmussen T.K., Krink T.. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Proceedings of .International Conference on Genetic and Evolutionary Computation, San Francisco, USA, 2001:469-476.
    [76] Zhang W.J., Xie X.F... DEPSO: Hybrid Particle Swarm with Differential Evolution Operator [C]. Proceedings. of IEEE International Conference on System, Man and Cybernetics, 2003, 4:3816-3821.
    [77] Hendtlass T.. A Combined Swarm Differential Evolution Algorithm for Optimization Problems [C]. Lecture Notes in Computer Science, Berlin: Springer, 2001, 2070:11-18.
    [78] Miranda V., Fonseca N.. EPSO-Best-of-two-worlds Meta-heuristic Applied to Power System Problems [C]. Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 2002, 2:1080-1085.
    [79] Sun J., Feng B., Xu W.B.. Particle Swarm Optimization with Particles Having Quantum Behavior [C]. Proceedings of the IEEE Congress on Evolutionary Computation, San Diego, CA, USA, 2004, 325-331.
    [80] L?vbjerg M., Krink T.. Extending particle swarm optimisers with self-organized criticality [C], Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 2002, 1588–1593.
    [81] Monson C.K., Seppi K.D.. The Kalman Swarm: A New Approach to Particle Motion in Swarm Optimization. Proceedings of .International Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA, 2004, 140–150.
    [82] Zahara E., Kao Y.T.. Hybrid Nelder–Mead Simplex Search and Particle Swarm Optimization for Constrained Engineering Design Problems [J]. Expert Systems with Applications, 2009, 36(2):3880–3886.
    [83] Chuanwen J., Bompard E.. A Hybrid Method of Chaotic Particle Swarm Optimization and Linear Interior for Reactive Power Optimization [J]. Mathematics and Computers in Simulation, 2005, 68: 57-65.
    [84] Dos Santos Coelho L. Herrera B.M.. Fuzzy Identification based on a Chaotic Particle Swarm Optimization Approach Applied to a Nonlinear Yo-yo motion System [J]. IEEE Transactions on Industrial Electronics, 2007, 54(6):3234-3245.
    [85] Liu B., Wang L., Jin Y.H., et al. Improved Particle Swarm Optimization Combined with Chaos [J]. Chaos, Solitions & Fractals, 2005, 25(5):1261-1271.
    [86] Liang J.J., Qin K., Suganthan P.N.. Comprehensive Learning Particle Swarm Optimization for Global Optimization of Multimodal Functions [J]. IEEE transaction on Evolutionary Computation. 2006, 6(3):281-295.
    [87] Sabat S.L., Ali L., Udgata S.K.. Integrated Learning Particle Swarm Optimizer for Global Optimization [J]. Applied Soft Computing, 2011, 11(1):574-584.
    [88] Wang Y., Li B., Weise T., et al. Self-adaptive Learning based Particle Swarm Optimization [J]. Information Science, doi:10.1016/j.ins.2010.07.013.
    [89] Niu B., Zhu Y.L., He X.X., et al. MCPSO: A Multi-swarm Cooperative Particle Swarm Optimizer [J]. Applied Mathematics and Computation, 2007, 185, 1050-1062.
    [90] Peram T., Veeramachaneni K., Mohan C.K.. Fitness-distance-ratio based Particle Swarm Optimization [C]. Proceedings of the Swarm Intelligence Symposium, Indianapolis, Indiana, USA, 2003, 174-181.
    [91] Riget J., Vesterstr?m J.S.. A Diversity-guided Particle Swarm Optimizer—The ARPSO [R], Technical Report, Department of Computer Science, University of Aarhus, 2002.
    [92]纪震,周家锐,廖惠连,吴青华.智能单粒子优化算法[J],计算机学报,2010,33(3):556-561.
    [93] Brits R., Engelbrecht A.P ., Van den Bergh F... Niching Particle Swarm Optimizer [C]. Proceedings of the Conference on Simulated Evolution and Learning. Singapore, 2002, 692-696.
    [94] ParsoPoulos K.E., Vrahatis M.N.. On the Computation of all Global Minimizers through Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation 2004, 8(3): 211-224.
    [95] Schoeman I.L., Engelbrecht A.P.. Using Vector Operations to Identify Niches for Particle SwarmOptimization [C]. Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 2004, 361-366.
    [96] Al-Kazemi B., Mohan C.K.. Multi-Phase Discrete Particle Swarm Optimization [C]. Proceedings of the International Workshop on Frontiers in Evolutionary Algorithms, 2002, 622-625.
    [97]王俊伟,汪定伟.一种带有梯度加速的粒子群算法[J].控制与决策,2004,19(11):1298-1300.
    [98] Xie X.F, Zhang W., Yang Z.. Adaptive Particle Swarm Optimization on Individual Level [C]. Proceedings of the Sixth International Conference on Signal Processing, 2002, 2:1215-1218.
    [99] Schutte J.F., Groenwold A.A.. A Study of Global Optimization Using Particle Swarms [J]. Journal of Global Optimization, 2001.
    [100] Venter G., Sobieszczanski-Sobieski J.. Particle Swarm Optimization [J]. Journal of AIAA, 2003, 41(8): 1583-1589.
    [101] Kennedy J., Eberhart R.C.. A Discrete Binary Version of the Particle Swarm Algorithm [C]. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Piscataway, NJ, 1997, 4104-4109.
    [102]李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践,2004(04):130-135.
    [103] Salman A., Ahmad I., Al-Madani S.. Particle Swarm Optimization for Task Assignment Problem [J]. Microprocessors and Microsystems, 2002, 26(8):363-371.
    [104] Clerc M.. Discrete Particle Swarm Optimization Illustrated by the Traveling Salesman Problem [R]. Technical Report, hppt://clerc.maurice.free.fr/pso/, 2000.
    [105] Hu X., Ebherhat R.C., Shi Y.. Swarm Intelligence for Permutation Optimization: A Case Study on n-Queens Problem [C]. Proceedings of IEEE Swarm Intelligence Symposium, 2003, 243-246.
    [106] Eberhart R.C., Kennedy J.. A New Optimizer using Particle Swarm Theory [C]. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 1995, 39-43.
    [107] Engelbrecht A.P., Ismail A.. Training Product Unit Neural Networks [J]. Stability and Control: Theory and Applications, 1999, 2(1-2):59-74.
    [108] Juang C-F.. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Neural Network Design [J]. IEEE Transaction on Systems, Man, Cybernetics-Part B: Cybernetics, 2003,34(2): 997-1006.
    [109] Zhang C., Shao H., Li Y.. Particle Swarm Optimization for Evolving Artificial Neural Network [C]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2000, 2487-2490.
    [110] Eberhart R.C., Hu X... Human Tremor Analysis using Particle Swarm Optimization [C]. Proceedings of the IEEE. Congress on Evolutionary Computation, Washington, DC, USA, 1999: 1927-1930.
    [111] Liu B., Wang L., Jin Y.H., et al. An Effective PSO-based Memetic Algorithm for TSP [C]. International Conference on Intelligent Computing, Kunming, China, Lecture Notes in Control and Information Sciences, 2006, 345: 1151-1156.
    [112] Tasgetiren M.F., Liang Y.C., Sevkli M., et al. A Particle Swarm Optimization Algorithm for Makespan and Total Flowtime Minimization in the Permutation Flowshop Sequencing Problem [J]. European Journal of Operational Research, 2007, 177(3):1930-1947.
    [113] Li B.B., Wang L, Liu B. An effective PSO-based Hybrid Algorithm for Multi-objective Permutation Flowshop Scheduling [J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2008, 38(4): 818-831.
    [114] Chen W., Zhang W.G.. The Admissible Portfolio Selection Problem with Transaction Costs and an Improved PSO Algorithm [J]. Physics A 389, 2010, 2070-2076.
    [115] Zhang X.L., Zhang W.G, Xu W.J., et al. Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm [J]. Computational Economics, 2010, 36:191–200.
    [116] Jarboui B., Damak N., Siarry P. A.. A Combinatorial Particle Swarm Optimization for Solving Multi-mode Resource-constrained Project Scheduling Problems [J]. Applied Mathematics and Computation, 2008, 195(1): 299-308.
    [117] Kassabalidis I.N., El-Shurkawi M.A.. Marks R.J., et al. Dynamic Security Border Identification using Enhanced Particle Swarm Optimization [J]. IEEE Transaction on Power Systems, 2002, 17(3):723-729.
    [118] Gaing Z.L., Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints [J]. IEEE Transaction on Power Systems, 2003, 18(3):1187-1195.
    [119] Ting, T.O., Rao, M.V.C., Loo, C.K.. A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization [J]. IEEE Transaction on Power Systems, 2006, 21(1):411-418.
    [120] Yoshida H., Kawata K., Fukuyama Y., et al. A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment [J]. IEEE Transaction on Power Systems, 2001, 15(4):1232-1239.
    [121] Kannan S., Slochanal S.M.R., Subbaraj P., et al. Application of Particle Swarm Optimization Technique and Its Variants to Generation Expansion Planning [J]. Electric Power Systems Research, 2004, 70(3): 203-210.
    [122] Koay C.A., Srinivasan D.. Particle Swarm Optimization-based Approach for Generator Maintenance Scheduling [C]. Proceedings of the IEEE Swarm Intelligence Symposium, 2003, 167-173.
    [123] Abido M.A., Optimal Power Flow using Particle Swarm Optimization [J]. International Journal of Electrical Power and Energy Systems, 2002, 24(7):563-571.
    [124] Boeringer D.W., Werner D.H.. Particle Swarm Optimization versus Genetic Algorithm for Phased Array Synthesis [J]. IEEE Transaction on Antennas and Propagation, 2004, 52(3):771-779.
    [125] Schutte J.F., Groenwold A.A., Sizing Design of Truss Structures Using Particle Swarms [J]. Structural and Multidisciplinary Optimization, 2003, 25, 261-269.
    [126] Abido M.A., Optimal Design of Power-system Stabilizers using Particle Swarm Optimization [J]. IEEE Transactions on Energy Conversion, 2002, 17(3):406-413.
    [127] Krink T., L?vbjerg M.. The Life Cycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and Hillclimbers [J]. Lecture Notes in Computer Volume. 2002, 2439:621-630.
    [128] He S, Wu Q H, Wen J Y, et al. A Particle Swarm Optimizer with Passive Congregation [J]. BioSystems. 2004, 78:135-147.
    [129] Niu B., Zhu Y.L., et al. An Improved Particle Swarm Optimization Based on Bacterial Chemotaxis. Proceedings of the 6th World Congress on Intelligent Control and Automation [C]. Dalian, China, 2006, 3193-3197.
    [130] Silva A., Neves A., Costa E.. An Empirical Comparison of Particle Swarm and Predator Prey Optimisation [J]. Lecture Notes in Artificial Intelligence. 2002, 2464, 103-110.
    [131] Chen H.C., Zhu Y.L.. Optimization based on symbiotic multi-species coevolution [J]. Applied Mathematics and Computation 205, 2008, 47-60.
    [132] Ahmadjian V., Paracer S.. Symbiosis: An Introduction to Biological Associations, Oxford University Press, Oxford, 2000.
    [133] Douglas A. E.. Symbiotic Interactions [M], Oxford University Press, Oxford, 1994.
    [134]刘汉生,陈智兵,胡朝晖,林小涛.寄生虫及其宿主协同协同进化的研究进展[J].生态科学. 2003, 22(3):.261-264.
    [135]黄丽琴,郭宪国.寄生虫与宿主的协同进化关系[J].国际医学寄生虫病杂志. 2009, 36(1):49-54.
    [136]李文祥,王桂堂.寄生虫对宿主种群的调节[J].水生生物学报. 2002, 26(5):550-554.
    [137] Suganthan P.N., Hansen N., Liang J.J., et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization [R], Technical Report, Nanyang Technological University, Singapore, 2005, http://www.ntu.edu.sg/home/EPNSugan.
    [138] Salomon R..Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions [J]. BioSystems, 1996, 39, 263-278.
    [139] Rumelhard D.E., Hinton, G. E.. Willianms R. J.. Learning Representations by Back-Propagation Errors. Nature [J], 1986, 323:533-536.
    [140] Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989(2): 359-366
    [141] Blake C., Keogh E., Merz C.J.. UCI Repository of Machine Learning Databases [EB/OL]. www.ic.uci.edu/mlearn/MLRepository.htm, 1998.
    [142] Michie D., Spiegelhalter D.J., Taylor C.C. Machine Learning, Neural and Statistical Classification [M], Ellis Horwood, New York, 1994.
    [143] Giraldeau L.A., Caraco T.. Social Foraging Theory [M]. Princeton University Press, Princeton, New Jersey, 2000.
    [144] Charnov E L. Optimal Foraging: the Marginal Value Theorem [J].Theoretical Population Biology. 1976, 9:129-136.
    [145] Fretwell, D.S., Lucas, H.L., On Territorial Behavior and other Factors Influencing Habitat Distribution in Birds [J]. Acta Biotheoretica. 1970, 19:16–32.
    [146] Sutherland, W J, Parker G A. The Relationship between Continuous Input and Interference Models of Ideal Free Distributions with Unequal Competitors [J]. Animal Behaviour 1992, 44:345–355.
    [147] Hiagshitani M, Ishigame A, Yasuda K. Particle Swarm Optimization Considering the Concept of Predator-prey Behavior [C]. Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006:1541-1544.
    [148] Ratnaweera A, Halganmuge S. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients [J]. IEEE Transaction on Evolutionary Computation. 2004, 8(3):240-255.
    [149] Karaboga D.. An idea based on Honey Bee Swarm for Numerical Optimization [R], Technical Report-06,Erciyes University, Engineering Faculty, Computer Engineering Department , 2005.
    [150] Karaboga D., Akay B.. A Comparative Study of Artificial Bee Colony Algorithm [J], Applied Mathematics and Computation, 2009, 2(14):108-132.
    [151] Akay B., Karaboga D... A modified Artificial Bee Colony Algorithm for Real-parameter Optimization [J], Information Sciences, 2010, doi:10.1016/j.ins.2010.07.015.
    [152] Tereshko V., Loengarov A.. Collective Decision-making in Honeybee Foraging Dynamics [J]. Computational Information Systems, 2005.
    [153]王凌,李文锋,郑大钟.基于一类混合策略的模型参数估计和控制器参数整定研究[J].控制与决策,2001,16:530-534.
    [154]王凌,李令莱,郑大钟.非线性系统参数估计的一类有效搜索策略[J].自动化学报,2003,29:953-958.
    [155] Tizhoosh H.R.. Opposition-based Learning: A New Scheme for Machine Intelligence [C]. Proceedings of International Conference of Modeling Control and Automation, Vienna, Austria, 2005, 1:695-701.
    [156]陈魁.试验设计与分析[M].北京:清华大学出版社,2005,7.
    [157] Leung Y.W., Wang Y.. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization [J], IEEE Transaction on Evolutionary Computation, 2001, 5(1):41-53.
    [158]胡大伟,陈诚.遗传算法和禁忌搜索算法在配送中心选址和路线问题中的应用[J].系统工程理论与实践,2007,9:171-176.
    [159]姜大立,杨西龙.易腐物品配送中心连续选址模型及其遗传算法[J].系统工程理论与实践,2003,23(2):62-67.
    [160] Murray A.T., Church R.L.. Applying Simulated Annealing to Local-tion-planning Models [J]. Journal of Heuristics, 1996, 2 (1): 31-53.
    [161]王燕,蒋笑梅.配送中心全程规划[M].北京:机械工业出版社,2004.
    [162]郜振华.配送中心选址模型与算法研究[D].南京:东南大学,2005.
    [163] Cooper L.. Location allocation problems [J]. Operation Research, 1963, 11(1): 331-343.
    [164]楚湘华.粒子群优化算法及其在配送中心选址中的应用[D].深圳:深圳大学,2009.
    [165]张卫国.现代投资组合理论—模型、方法与应用[M].北京:科学出版社,2007.
    [166] Konno H.,Yamazaki H.. Mean Absolute Deviation Portfolio Optimization Model and Its Application to Tokyo Stock Market [J]. Management. Science, 1991, 37:519–531.
    [167] Speranze M.G.. Linear Programming Models for Portfolio Optimization [J]. Finance, 1993, 14:107-123.
    [168] Yong M.R..A Minmax Portfolio Selection Rule with Linear Programming Solution [J]. Management Science, 1998, 44:673-683.
    [169] Cai X.Q., Teo K.L., Yang X.Q., et al. Portfolio Optimization under a Minmax Rule [J]. Management Science, 2000, 46:957-972.
    [170]王春峰.金融市场风险管理[M].天津:天津大学出版社,2001.
    [171]刘小茂,李楚霖,王建华.风险资产组合的均值-CVaR有效前沿(Ⅰ)[J].管理工程学报,2003,17(1):29-33.
    [172]刘小茂,李楚霖,王建华.风险资产组合的均值-CVaR有效前沿(Ⅱ)[J].管理工程学报,2005,19(1):1-5.
    [173]林旭东.正态条件下均值-CVaR有效前沿的研究[J].管理科学,2004,17(3):52-55.
    [174] Rockafellar, R.T., Uryasev S.. Optimization of Conditional Value at Risk [J]. Journal of Risk, 2000, 2: 21-41.
    [175] Kitayama S., Arakawa M., Yamazaki K.. Penalty Function Approach for the Mixed Discrete Nonlinear Problems by Particle Swarm Optimization [J]. Structural and Multidisciplinary Optimization, 2006, 32:191-202.
    [176] Michalewicz Z., Schoenauer M.. Evolutionary Algorithms for Constrained Parameter Optimization Problems [J]. Evolutionary Computation Journal, 1996, 4(1):1-32.
    [177]常先英.粒子群优化算法的改进及应用[D].广州:华南理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700