新型可吸收材料PLLA/PLLA-gHA的生物降解性及生物力学性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨折是骨科、颌面外科临床诊治中常见的疾病,目前常用的内固定系统金属固定系统,然而金属固定系统有许多弊端,因此许多学者致力于研究可吸收固定材料,以期得到最理想的内固定材料。羟基磷灰石(HA)/聚乳酸(PLA)复合材料作为新兴材料,具有良好的骨传导性、生物相容性、机械力学强度及适度的生物降解性而受到广泛关注。以往的合成HA/PLA的方法为物理方法,物理方法的原理是HA颗粒与PLA基质物理性结合,HA与PLA基体的界面结合力较差,一旦暴露在生理环境中, HA与聚合物基体的界面层首先遭到破坏,这样, HA粒子很快就从PLA基质中脱离下来,导致复合材料未等缺损完全修复而易于过早地失去其有效强度。因此探索一种能够提高HA与PLA之间黏附力的合成方法是当前研究热点。我们与中国科学院长春应用化学研究所合作,研制了一种制备新型PLLA/HA复合物的方法。PLLA在碘苯腈辛酸亚锡(Sn(Oct)2)催化下通过开环聚合将L-乳酸直接修饰在n-HA的羟基上,然后经修饰的羟基磷灰石(PLLA-gHA)进一步与PLLA基质混合制成新型PLLA/PLLA-gHA复合物。PLLA-gHA颗粒与非修饰的n-HA颗粒相比可以更均一的分散在氯仿溶液中,显示与PLLA基质更好的粘附性能。因此,PLLA/PLLA-gHA比简单PLLA/n-HA共混具有更好的力学性能。该合成方法国内、外尚未见报道,并已申请国家专利,具有独立知识产权。本实验在先期生物相容性及安全性实验取得预期结果基础上,重点从检测材料的生物降解性能、生物力学性能及促进骨折愈合等方面进行研究。新材料PLLA/PLLA-gHA与单纯PLLA材料做对比,进行体外、犬肌内种植、骨折固定等不同部位的材料大体外观观察,降解率和吸收率的测定,扫描电镜观察断面降解情况以评价材料的生物降解性能,通过大体观察骨折愈合情况,测试材料的弯曲强度,骨痂面积,X线成像,骨痂组织病理以评价新材料的生物力学性能和对骨折愈合的影响。结果表明,HA的加入使新材料PLLA/PLLA-gHA同单纯PLLA材料比较减缓了降解速度和吸收速度,有利于材料早期强度的保持,避免无菌性炎症的发生。PLLA/PLLA-gHA同PLLA材料比较具有更高的初始机械力学强度及适当的强度衰减速度,提供更加稳定的内环境,更加有利于骨折愈合。PLLA/PLLA-gHA接骨板完全可以满足犬下颌骨骨折固定的要求,并取得了预期的实验结果,为今后临床应用提供了实验基础。本实验证实新型PLLA/PLLA-gHA材料具备良好的机械性能及适当的降解性能,是一种理想的骨折固定材料。
Fracture is a common desease in orthopedics and dentofacial surgery.The basic principle in treatment of fracture are reposition, fixation, functional exercise early and any one is necessary. Accurate reposition and stable fixation are basic factors which are important in healing course of bone fracture. Internal fixation of fractures is classically performed using metallic devices. Although these are claimed to be inert, complications may occur as a result of their permanent presence in the body, such as migration, growth disturbances, stress shielding, infection, osteoporosis and secondary removal operation. To resolve all these problems, absorbable devices have been developed. Polylactide acid (PLA) is most favorite materail in all kinds of absorbable materials, because it has such good properties. (1) excellent biocompatibility, non-toxicity, non-antigenicity. Polylactide acid was certifide as a safe material by FDA. (2) Mechanic power is decline gradually during degradation. Stress force transmits to fracture line slowly which can stimulate healing of bone fracture and avoid stress shielding. (3) Complete absorption. Degradation product can be absorbed or expeled by body without second operation to taking it out.Comercial products of PLA existed and were used in clinic more than twenty-year,especially were used in cancellous bone fracture and non-loading bone fracture fixation whicn obtain excellent results.
     Though obtained excellent results, the bioabsorbable devices are not yet an ideal internal fixation system and many problems should be resolved. (1) Mechanic power is not strong enough strong for cortical bone repairing and no compression, so just fit to cancellous bone repairing. (2) There is still some kind of inflammatory reaction during the degradation course of the polymers. In order to improve the PLA material’s properties, hydroxyapatite (HA) was mixed into PLA materiaLs to produce HA/PLA composite. HA either raise mechanic strength or buffer the acid of degradation product of PLA. Osteoinductive of HA provides proper circumstance of osteocyte growth.
     There are many methods that produce HA/PLA composite including chemical method and physical method.The strategy of physical method is physical mixture of HA particle and PLA matrix. Interfacial adhesion between the HP particles and the PLLA matrix is not strong enough.
     After transplanted to humanbody the interfacial layer between the filler and the polymer matrix was destroyedfirstly, thus HA particles may easily disengage from the organic matrix, resulting in a sharp decrease of mechanical properties in a short time,so its mechanical properties are low and its load-bearing applications are limited.To reshape the surface of HA particle is the key points of chemical method. Grafting polymerization of LLactide on the surface of hydroxyapatite nano-crystals change the properties of HA in order to increase interfacial adhesion between HA particles and the PLLA matrix.Because of chemical binding,so it needs stronger force whicn can depart the HA particles from PLLA matrix.It shows increasing of mechanical intensity.It is a optimal method.
     A new type PLLA/PLLA-gHA composite which is pocessing self- intellectual property rights wsa produces by Changchun institute of applied chemistry Chinese Academy of sciences.A noveL method to modify the surface of n-HA particles and grafting Poly-L-Lactic acid (PLLA) to synthesis composite which was then mixed with PLLA matrix to form HA/PLLA composite.The first stage we study the biocompatibility and the results indicates that PLLA /PLLA-gHA composite has excellent biocompatibility.The mechanical propeties and rate of degradation are unknown.Whether it can fixed fracture effectiveLy and whetther it can avoid stress shielding and osteoporosis unknown either.So we test the mechanical propeties and degradable propeties of the new composite by fixing the mandible fractures of beagle dogs using PLLA/PLLA-gHA composite plate and compare with PLLA plate.We hope to provide the effective data.
     The experiment was divided into three parts:
     1、An introduction of the preparation of PLLA/PLLA-gHA and their properties. PLLA was directly grafted onto the hydroxyl group of the surface of n-HA particles by ring-opening polymerization of L-Lactide in the presence of stannous octanoate (Sn (Oct) 2) as cataLyst.And the PLLA-gHA was further blended with PLLA matrix to form PLLA/PLLA-gHA.
     2、Test velocity of degradation of PLLA/PLLA-gHA and PLLA.Put the PLLA/ PLLA-gHA plate and PLLA plate into madible fracture area, muscle and PBS solution, Taking out them at corresponding time to test absorption rate and degrad- ation rate of two materials. Transection of material was scanning by electronm- icroscope. The date were compared with statistics method.
     3、Mechanical properties of PLLA/PLLA-gHA and PLLA were tested. To study the influence of fracture healing course by two plates. To establish animal modles of mandible fracture .They were fixed by PLLA/PLLA-gHA pLate and PLLA plate either and taken X-RAYS and then execute them at 1st, 2send, 3th, 6th and 12th month postoperatively.Taken the plates out from the mandible, the plates were tested on the CCS-44100 type of electron omnipotent mechanics apparatus to get bending strength of two kind plates and mandible bone. Bony callus were taken hematoxylin and eosin stain (HE stain) to make histological test. The date were compared with statistics method.
     Main Results are as follows:
     1、In the study, we synthesized a new bone repairing material PLLA/PLLA-gHA, grafting with PLLA successfully modified the surface of HA nano-particles. The PLLA-gHA particles could be more uniformly dispersed into chloroform than the non-grafted one. When they are blended with PLLA they can be uniformly dispersed in the PLLA matrix and show improved adhesion with PLLA matrix.The PLLA/PLLA-gHA composites exhibit better mechanical properties than simple PLLA/HA blend.
     2、The sequence of degradation rate was bone fracture>muscle>vitro situation, The pLates were not absorbed absolutely at 12th month. The degradation rate and absorption rate of PLLA/PLLA-gHA composite was slower than that of PLLA material.There was evident difference between two kinds in statistics after 6th month.
     3、Mechanical properties and ductility of PLLA/PLLA-gHA composite was stronger than that of PLLA material.The mechanical decLine rate of PLLA/PLLA-gHA composite was slower than that of PLLA material. The difference was evident. Observation of bone fracture healing, bony callus, X-rays and histological test showed that the cure of bone fractures which were fixed by PLLA/PLLA-gHA plate was better than that of PLLA plate, but the difference was not evident in statistics.
     ConcLusion
     The PLLA/PLLA-gHA composite showed good mechanical properties and proper degradation rate and decrease the rate of inflammatory complication.It meets requirement of fixing mandible fracture. It is good substitute material of bone fracture fixtion system.
引文
[1]程定超,译.医用生物可吸收性聚合物的发展趋势[J].国外医学,生物医学工程分册, 1992,15(5):281-288
    [2] BagbyG. W. Compression born-pLating. HistoricaL considerations. [J] J Bone Joint Sury (Am), 1977,59:625-631.
    [3]陆裕朴,胥少汀,葛宝丰,等.实用骨科学(M).北京:人民军医出版社, 1991,239-245.
    [4] Bostmano. Current Concepts Review. A AbsorbabLe impLants for the fixation of fractures. [J] J Bone Joint Sury (Am), 1991,73(1):148-153.
    [5]任杰,周新宇.羟基磷灰石/聚乳酸及其共聚物复合生物材料[J].上海生物医学工程, 2004,25(1):46-50
    [6]金丹,斐国献,王前.骨髓基质细胞与生物活性玻璃陶瓷和聚乳酸生物相容性的实验研究[J].中国修复重建外科杂志, 2000,1(14): 39-43
    [7] Rose FR, Oreffo RO. Bone tis sue engineering: Hope vs hype. Biochem Biophys Res Commun 2002;292(1):1-7
    [8]郝和平.医疗器械生物学评价标准实施指南[S].北京:中国标准出版社, 2002:55-155
    [9] Van SLiedregt A, Van BLitterswijk CA, HesseLing SC, et al. The effect of moLecuLar weight of poLyLactic acid on in vitro biocompatibiLity [J]. Adv Biomater, 1990,9:207-212.
    [10] Van SLiedregt A, Raddor AM, De Groot K, et al. In vitro biocompatibility testing of polylactides[J]. Mater Sci Mater Med, 1992,3:365-370
    [11] Gibbons DF, Bos RRM, Boering G, et al. Tissue response to predegraded poly (L-Lactide). In:PLank H, Dauner M, Renardyy M. Degradation phenomenon on polymeri BiomateriaLs [M]. New York: Spring, 1992:97-104
    [12] Leenslag JW, Pennings AJ, Bos RRm. Resorbable materials of poly (L-Lactide): in vivo and in vitro degradation [J]. Biomaterials, 1987,8:311-314
    [13]陈玉轩,吕春堂,雷德林,等.生物可吸收材料L/DL聚乳酸德生物相容性及体内降解[J].第四军医大学学报, 2000,21(4):417-420
    [14] Rozema FR, Bos RRM, Boering G, et al. Tissue response to predegraded poly (L-Lactide). In: Plank H, Dauner M, Renardyy M. Degradation phenomenon on polymeri Biomaterials [M]. New York: Spring, 1992:122-131
    [15] Holliger JO, Battistone GC.Biodegradable bone repair materials: synthetic polymers and ceramics. Clinorthop, 1986;207-290
    [16] EppLey BL, Morales L, Wood R, et al. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 2004,114:850-856
    [17] Rokkanen P, Bostman O, Vainionpaa S, et al. Absorbable devices in the fixation of fractures. J Trauma, 1996,40:123-130
    [18] KuLkarni RK, Pani KC, Neuman C, et al. Polylactic acid for surgical implants [J]. Archs Surg, 1966,93:839-843
    [19] Hakkarainen M, Albertsson A C, KarLsson S. Polym [J]. Degrad Stab, 1996, 52: 283-291
    [20] Lee S H, Kim S H, Han Y K, Kim Y H. [J]. J Polym Sci, A Polym Chem, 2001, 39:973-985
    [21] Vert M, Y Doi. K Fukuda, et aL. Biodegradable Plastic and polymers [J]. 1994:11-23
    [22] Shih C. [J]. J Controlled Release, 1995,34:9-15
    [23] Batycky R P, Hanes J, Langer R, Edwards D A. [J]. J Pharm Sci, 1997,86: 1464-1477
    [24] Michel Vert, Jacques Mauduit, Li Suming. Biodegradation of PLA/PGA polymers: increasing complexity [J]. Biomaterials 1994,15(15):1209-1213
    [25]由英才,鲁格,申玉晖.聚乳酸的合成应用及降解研究[J].中国生物医学学报, 1985,(4):244-250
    [26] Robert P, Mauduit J, Frank. Biocopatibility and resorbability of apolylactic acid membrane forperiodantal guide tissue regeneration [J]. Biomaterials, 1993,14(5):353-358
    [27] Hironbu Fukuzaki, Masaku Yoshida. Synthesis of copoly (D, L-lactic acid) with relatively low molecular weight and in vitro degradation [J]. Eur Polym J,1989,25:1019-1025
    [28] Duek E A R, ZavagLia C A C, Belangero W D. [J]. Polymer, 1999,40:6465 -6473
    [29] Li SM, Garreau H, VertM. [J]. J Mater Sci: Mater inMed, 1990,1:131-139
    [30] Tsuji H. [J]. Polymer, 2002,43:1789-1796
    [31] Youxin L, Jorg M, Thomas K. [J]. Polymer, 1997, 38: 6197-6206
    [32] Martin O, Averous L. [J]. Polymer, 2001,42:6209-6219
    [33] Shinoda H, Asou Y, Kashima T, Kato T, Tseng Y, Yagi T. [J]. Polym Degrad Stab, 2003,80:241-250
    [34] AraM, WatanabeM, Imai Y. [J]. B iomaterials, 2002,23:2479-2483
    [35] Cam D, Marucci M. Influence of Residual Monomers and metalson poly (L-Lactide) thermal stability. [J] Polymer, 1997,38:1978-1991
    [36] ZHANG Lianhai, DENG Xiaomo. The former degrade behivor of biodegradable PLA/PCL and PELA/PECL-the relationship of phase structure and properties of degradation [J]. Journal of biomedical engineering, 1992,9(4):373-376
    [37]李建华,单学智,李世普.消旋聚乳酸/羟基磷灰石复合材料成骨性的体内实验研究[J].中国医药生物技术2007,2(5):360-364
    [38] Majola A, Vainionp S, Vihtonen K, et al. Absorption, biocompatibility and fixationproperties of polylactic acid in bone tissue: An experimental study in rat[J]. Clin Orthop, 1991,268:260-269.
    [39]赵耀明,张军,麦杭珍1直接缩聚法合成聚乳酸的研究[J]1合成维, 2001,30(3):3-6
    [40]吴景梅,吴若峰1溶液聚合法合成聚乳酸[J]1合成纤维工业, 2006,29(1):14-16
    [41] Ajioka M, Enomoto K, Suzuki K1, et al. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid[J]. Bull. Chem. Soc Jpn, 1995, 68(8):2125-2131
    [42] The Japan Steel Works, Ltd Process for producing Lactic acid polymers and a process for the direct production of shaped articles from Lactic acid polymers [P] US5574129,1996-11-12
    [43]任杰,王秦峰,张乃文1熔融缩聚法制备聚乳酸[J].塑料工业,2004,32(5):1-4
    [44] Woo S I, Kim B O, Jun H S1, et aL. Polymerization of aqueous lactic acid to prepare high molecular weight poly (Lactic acid) by chain-extending with hexamethylene diisocyanate[J]. Polym BuLL, 1995, 35(4):415-421
    [45]祖恩峰,杨青芳,朱峰,等1丙交酯合成方法的研究进展[J].粘接,2005,26(5):41-43
    [46]李守君,佟德成1聚L-丙交酯合成工艺条件研究[J].化工新型料, 2004, 32(4):36-38
    [47]徐溢,柳胜春1.合成丙交酯中微量水分分析[J]1.化学研究与应用, 1995,7(4):434-436
    [48]焦宁宁.聚乳酸及其共聚物合成技术进展[J].江苏化工, 2003,31(3):12-15
    [49]张贞浴,苏义华,张艳红,等.生物降解材料聚丙交酯的研究(Ⅱ)丙交酯单体的纯化方法研究[J].黑龙江大学自然科学学报, 1998,15(1):110-112
    [50]张子勇,陈燕琼.丙交酯单体的制备及纯化[J]1.高分子材料科学与工程, 2003,19(2):52-56
    [51] Zhang X C, Wyas U P, Pichora DL, et al. An investigation of the synthesis and thermal stability of poly (D, L-lactide) [J]. Polymer Bulletin, 1992,27: 623- 629
    [52]吴昊,胡佩,徐小丁.生物降解高分子材料——聚乳酸合成及降解的研究进展[J].西部皮革, 2005,(2):36-40
    [53]娄玲,尹静波,高战团,等. L-丙交酯和聚L-乳酸的制备与性能[J].高分子材料科学与工程, 2003,19(2):72-75
    [54]卢泽俭,廖凯荣,李洪权,等.高强度聚(L-乳酸)骨折内固定器件研制I高相对分子质量聚(L-乳酸)的合成[J].中山大学学报(自然科学版), 1999,38(5):36-39
    [55] Pihlajamaki H, Bostman O, Hirvemalo E, et al. Absorbable pins of self-reinforced poly-L lactic acid for fixation of fractures and osteotomies[J]. J Bone Joint Surg Br, 1992,74(6):853-857
    [56] Pihlajamki H, Bostman O, Hirvemalo E, et aL. Absobable pins of self- reinforced poly-L lactic acid for fixation of fractures and osteotomies [J]. J Boen Joint Surg Br. 1992,74(6);853-857
    [57] Kuikarni RK, Moore EG, Hegyeui AF, et al. J oral surg 1972,70;344-347
    [58] Mstsusue Y, Yamamuro T, Oka M, et al. Invitro and invivo studies on bioab- sorble ultra-high-strength poly-L-Lactiderods [J]. Biomed Mater Res, 1992,13; 1553-1567
    [59] Jukkala-Partio K, PLhjonen T, Laitinen O, et aL. Biodegradation and stenth retention of poly-L-Lactide screws invivo. An experimental Long-term study in sheep. AnnChirGy-naecol, 2001,90(3);219-224
    [60] Rokkanen P, Bostman O, Hirvensalo E, et al. Absorbable implants infixation of fractures, osteomies, arthrodeses ahd Ligaments [J]. Acta OrthopAscand (suppl), 1994,260:19-20.
    [61] Bucholz RW, Heny S, Henleg MB.Fixation with biobsorbable screws for the treatment of the ankle [J]. Boen Joint Surg (AM), 1994,76;319-325
    [62] Vert M, Christel P, Chabot F, et al. Macromolecular biomaterial Boca Raton. CRC Press, 1984,119-142
    [63] Kim YK, Kim SG. Plastic Reconstr Surg, 2002,110(1);25-31
    [64] Eppley BL, J Cranifac Surg. 2000,11(4):377-385
    [65] Haers PE, Sailer HF. J Craniomaxillofac Surg, 1998,26(6):363-372
    [66] Majewski WT, Yu JC, Ewart C, et al. Ann Plast Surg, 2003,48(5):471-476
    [67] Wittwer G, Adeyemo Wl, Voracek M, et al. Bioresorbable poly-L/DL-Lactide (P[L/DL]LA70/30) plates are reliable for repairing large inferior orbital wall bony defects: a pilot study. J Oral Maxillofac Surg. 2006,64(1):47-55
    [68] Enislidis G, Yerit K, Wittwer G, et al. Self-reinforced biodegradable plates and screws for fixation of zygomatic fractures.J Craniomaxillofac Surg. 2005, 33(2):95-102
    [69] Wittwer G, Adeyemo WL, Yerit K, et al. Complications after zygoma fracture fixation: Is threr a difference between biodegradable materials and how do they compare with titanium osteosynthesis? Oral Surg Oral Med Oral pathol Oral Radiol Endod.2006,101(4):419-425.
    [70] Bozic KJ, Perez LE, WiLson DR, et al. Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation. J Hand Surg. 2001;26:755-761.
    [71] Waris E, Ashammakhi N, Happonen H, et al. Bioabsorbable miniplating versus metallic fixation for metacarpal fractures. Clin Orthop Relat Res. 2003; 410:310-319.
    [72] Gerald TL, Richard AK. Biomechanical FaiLure of Metacarpal Fracture Resorbable Plate Fixation. Ann Plast Surg, 2002,49(2):202-206
    [73]徐高峰.生物降解材料在临床骨科的应用.国外医学生物医学工程分册, 2003,26(3):137-141
    [74]杨小平,曾融生,廖贵清等.电热塑形可吸收夹板在颌骨坚强内固定中的应用.中国口腔颌面外科杂志, 2006,4(2):109-112
    [75]魏世成,郑谦,赵宗林,等.超高分子量聚D, L乳酸小夹板螺钉行颧弓骨折内固定的动物实验研究[J].华西口腔医学杂志, 1999,17(1):63-68
    [76] Kallella I, Laine P, Sunonen R, et al. Skeletal stability follow in mandibular advancement and rigid fixation with polylactide biodegradable screw[J]. Int J Oral Maxillofac Surg 1998,27:3-8
    [77]戴毅敏,陈新梅,毛天球,等.基因重组人骨形成蛋白-2与珊瑚/聚乳酸复合异位诱导成骨的实验研究.口腔医学纵横杂志, 2002,18(1):14-18.
    [78] Jiro Ishihara, Takeshi Kanamori. Plasticizedpoly (Lactic acid) compositions, their manufacture, and materiaLs from them. [P]. JP 2000086877,2000-03-28.
    [79] Nadia Ljungberg, Bengt Wess. The effects of plasticizers on the dynamic mechanical and thermal properties of poLl (Lactic acid). Journal of AppLied Polymer Science, 2002,86 (5):1227-1234.
    [80] Nadia Ljungberg, Didier Colombini, Bengt Wess. Plasticization of poly (Lactic acid) with oligomeric malonate esteramides; Dynamicmechanical and thermal film properties. Journal of Applied Polymer Science, 2005,96(4):992-1002.
    [81]孟祥英.生物可降解PLA-b-PEG嵌段共聚物的研究进展.山东教育学院学报,2005,3.
    [82] Charles R N, Scott M H, KriistiS A. Synthesis and Characterization of Photcrosslinkable, Degradable Poly (vinyl alcohol) -based Tissue Engin- eering Scaffolds. Biomaterials, 2002,23:3617-3626.
    [83]曹雪波.马来酸酐改性聚乳酸的力学性能研究.高分子材料科学与工程, 2002,1(18):1-8.
    [84]陈长春,程海涛,孙康,等.生物可吸收性甲壳素纤维增强聚乳酸复合材料体内体外降解性研究.生物医学工程, 2000,17(2):117-121.
    [85]郑谦,魏世成,田卫东等.可吸收接骨板行下颌骨骨折内固定的临床疗效观察.四川大学学报(医学版), 2003;34(1):171-172
    [86] Rose FR, Oreffo RO. Bone tis sue engineering: Hope vs hype. Biochem Biophys Res Commun 2002;292(1):1-7
    [87]蒋毅,尹光福,周大利,等.羟基磷灰石/聚乳酸复合人工骨修复材料的研究进展[J].国外医学:生物医学工程分册, 2004,27(4):238-241
    [88]寇士军,李亚滨1天津工业大学学报, 2004,23(4):54-59
    [89] Calandrelli L, De Rosa G, Errico ME, et al. Novel graft PLLA-based Copolymers: Potential of their Application to Particle Technology. J. Bio. Mat. Res, 2002,62(2):244-253
    [90] Zhang Rui-yun, Ma PX. Poly (a-hydroxylacids) /hydroxyapatite porous comp- osites for bone-tissue engineering. I. Preparation and morphology [J]. JB iomed Mater Res, 1999,44:455-465.
    [91] Nakahara H, Coldberg VM. Caplan AI.Culture expanded preiosteal derived cells exhibit osteochondrogenic protential in porous calcium phosphate ceram- ecs in vivo [J]. Clin Orthop, 1992,276:291-298.
    [92] Yoshikawa T, Ohgushi H, Tamai S.Immediate bone forming capability of prefabricated osteogenic hydroxyapatite [J]. J Biomed Mater Res, 1996,32(3): 481-485.
    [93] Halperin WP. Quantum size affects inmetal particle.Rev Mod Phys. 1986, 58(3): 532-539
    [94] Karch J, Birringer R, GLeiter H. Ceramics ductile at low temperture. Nature, 1987,330:516-518
    [95] Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodicallypolarized electrodes. J. Mater Sci Mater In Medicine, 1998,(9): 727-729
    [96] Yubao L, Wijn JD, KLein CPAT, et al. Preparation and characterization of nanograde osteopatatite-like rod crystals.J.Mater Sci Mater In Medicine, 1994,(5):252-255
    [97] Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite. J. Mater. Sci. 1987,22:4247-4250
    [98] Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J. Chem Tech BiotechnoL. 1981,31:15-24
    [99] Moreno E C, Varughese K. CrystaL growth of caLcium apatite from dilute solutions. J. Crystal Growth, 1981,53:20-30
    [100] Fujishiro Y, Yabaki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J. Chem Tech Biotechnol, 1993,57:349-353
    [101]冯凌云,李世普,陈闻杰.羟基磷灰石溶胶对W-256癌肉瘤细胞和艾氏腹水瘤细胞增殖的影响.中国有色金属学报, 1999,9(3):651-654
    [102]陈闻杰.羟基磷灰石溶胶稳定性研究及其抑制癌机理初探: [学位论文],武汉:武汉工业大学, 1997
    [103] Lim G K, Wang J, Ng S C, et al. Nanosized hydeoxyapatite powders from micromulsions and emulsions stabilized by abiodegradable surfactant. J. Mater Chem, 1999,(9):1635-1639
    [104] Hideki Aoki. Science and Medical Applications of Hydroxyapatite [M]. Takayam a Press System Center Co, Inc. 1991:165-177.
    [105] M. Jarchoetal. Hydroxyapatite Synthesis and Characterization in Dense Polycrystalline Form [J]. J. MaterSci. 1976,11:2027-2035.
    [106]李世普.生物医用材料导论[M].武汉工业大学出版社. 2000,9:88-123.
    [107] Yamashima.Reconstruction of surgical skull defects with hydroxylapatite ceramic buttons and granules [J]. Acta Neurochir (Wien), 1988,90:157-161.
    [108] Yamashima. Cranioplasty with hydroxyapatite ceramic plate that can easily be trimmed during surgery [J]. Acta Neurochir (Wien), 1989,96:149-154.
    [109] Dumbach J, Rodemer H, Spitzer W J, et aL. Limits of osseous reconstruction of the mandible with autologous spongios ahydroxyapatite granules and titaniummesh especially after radiotherapy [J]. Forstschr- Kiefer-Gesichtschir, 1994,39:93-99.
    [110] Harvey M, Porous, Block Hydroxyapatite as an Interpositional bone graft substitute in orthognathic surgery J.Plastic and Reconstructive Surgery, 1989,83: 985-991.
    [111]黄洪章, Paul Mercier.羟基磷灰石增高下颌牙槽嵴及其延展术[J].中华口腔医学杂志, 1996,31:34.
    [112]兰建宏,鲁步超,寇强勇,等. HA-TI种植体修复牙列缺损疗效的观察[J].中国口腔种植学杂志, 1997,2:134.
    [113] NenadI, Simonida T, MomciLo D, et al. Synthesis and properties of hydroxyapatite/poLy-L-Lactide composite biomaterials [J]. Biomaterials, 19 99,20(9):809- 816
    [114] Deng Xian-mo, Hao Jian-yuan, Wang Chang-sheng. Preparation and Mechanical properties of nanocomosites of poly (D, L-Lactide) with Cadefici- ent hydroxyapatite nanocrystals [J]. Biomaterials, 2001,22:2867-2873.
    [115]全大萍,卢泽俭,李世普,等:聚DL-丙交酯/羟基磷灰石(PDLLA/HA)复合材料(Ⅰ):制备及力学性能[J].中国生物医学工程学报, 2001,20(6):485-488
    [116] Deng XM, Hao J Y, Wang C S, et al. Biomaterial, 2001,22:2867-2873.
    [117]程俊秋,段可,等.化学研究与应用, 2001,5(13):517-520.
    [118]龚华俊,杨小平,隋刚,等.功能高分子学报, 2005,18:99-104.
    [119]王华林,李延红,翟林峰,等.高分子材料科学与工程, 2006,22(3):247- 249.
    [120]李亚军,阮建明.中南工业大学学报, 2002,33(3):261-265.
    [121] Todo M, Park S D, Arakawa K, et al. Composites: Part A, 2006,37(12):2221 -2225.
    [122] Hong Z H, Zhang P B, Qiu X Y, et al. Biomaterials, 2005,26:6296-6304.
    [123] Hong Z, Zhang P, He C, et al. Nano-compos ite of poly (L-Lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 2005;26(32):6296-6304
    [124] Qiu XY, Chen L, Hu JL, et al. Surface-modified hydroxyapatite Linked by L-Lacticacid oligomer in the absence of catalys t. J Polymer Sci: Part A: Polymer Chemis try 2005;43(21):5177-5185
    [125] Qiu X Y, Hong Z K, Hu J L, et al. Mocromoleculars, 2005,6:1193-1199.
    [126] Zhang SM, Liu J, Zhou W, et al. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation compos ites. Current Appl Phys 2005;5:516-518
    [127] Borum L, WiLson OC. Surface modification of hydroxyapatite. Part II. SiLica. Biomaterials 2003;24(21):3681-3688
    [128] Liu Q, de Wijn JR, Bakker D, et al. Polyacids as bonding agents in hydroxyapatite polyes ter-ether (Polyactive 30/70) compos ites. J Mater Sci Mater Med 1998;9(1):23-30
    [129] Wang X, Li Y, Wei J, et al. Development of biomimetic nano-hydroxyap- atite/poly (hexamethylene adipamide) compos ites. Biomaterials 2002;23(24): 4787-4791
    [130] Dong GC, Sun JS, Yao CH, et al. A s tudy on grafting and characterization of HMDI-modified calcium hydrogenphosphate.Biomaterials 2001;22(23):3179 -3189
    [131] Seisuke K. Application of hydroxyapetite-sol as drug carrier[J]. Biomed Mater Eng, 1994,4(4):283-290
    [132]万涛,江昕,周文娟等.聚D, L-乳酸/羟基磷灰石复合纤维的制备.武汉理工大学学报, 2003,25(7):22-24
    [133] Hong Z, Qiu X, Sun J, et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. [J]. PoLymer, 2004,45:6699-6706
    [134] Hong ZK, Zhang PB, He CL, et al. Nano-composite of poly (L-Lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005, 26(32),6296-6304.
    [135]绍英,路来金,荣莉等.聚L-乳酸/聚L-乳酸接枝的羟基磷灰石复合材料的生物相容性.吉林大学学报(医学版), 2007,33(1):57-60
    [136] Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly (DL Lactic acid) size dependence. Biomaterials, 1995,16(4):305-311
    [137]全大萍,郭晓东,郑启新,等.羟基磷灰石/聚DL乳酸复合材料在不同植入部位降解机制研究.中国生物医学工程学报, 2001,20(3):200-205
    [138] Mainil-VarLet P, Curtis R, GogoLewski S. Effect of invivo and invitro degradationon molecular and mechanical properties of various low molecular weitht polylactides [J]. J Biomed Mater Res, 1997,36:360 380.
    [139] Shih C. [J] Controlled Release, 1995,34:9-15
    [140] Zhongkui Hong, Peibiao Zhang, Chaoliang He et al. Nano-composite of poLy (L-Lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005,26(32),6296-6304.
    [141] Hong, Zhongkui; Qiu, Xueyu; Sun, Jingru et al. Grafting poLymerization of L-Lactide on the surface of hydroxy- apatite nano-crystals. Polymer, 2004, 45(19), 6699-6706.
    [142] Matsusue Y, Hanafusa S, Yamamuro T. Tissue recation of bioabsorbable ultra high strenth poly (L Lactide) rod[J]Clin Orthop, 1995;317:246.
    [143]李建华,单学智,李世普.消旋聚乳酸/羟基磷灰石复合材料成骨性的体内实验研究.中国医药生物技术, 2007,2(5):360-364
    [144]刘彦普,周树夏,斯方杰,等.下颌骨骨折加压与非加压固定的评价[J].实用口腔医学杂志, 2002,18(3):201-205.
    [145] Duc, CuiFZ, FcNeNgQL, et al. Tissueres ponseto nano Hydroxyapatite/collage ncom positeim PLAN tsinm Arrow Cavity. [J] biomed Materres, 1998,42:540-548.
    [146] Webster TJ, Ergu NC, DO remus RH, et al. Enhanced functions of osteoblasts on nanophasecer amics. Biomaterials, 2000,21:1803-1810.
    [147] Gogolewski S. Liquid induced crystallization and annealing of polyester ure thane elastomers [J]. Colloid Polym Sci, 1978,256:323-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700