基于时延相关解调与B样条模糊神经网络的轴承故障诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承作为各类旋转机械中最常用的通用零部件之一,也是旋转机械易损元件,因此滚动轴承故障诊断的理论、方法和应用得到特别的重视。
     振动分析是进行滚动轴承状态监测与故障诊断的重要手段。本文旨在研究滚动轴承的振动信号处理和模式识别的方法。为此,首先设计并搭建了滚动轴承故障诊断实验台,进行了大量实验;采集到滚动轴承正常状态、外圈故障和内圈故障的振动信号;对振动信号进行了常规的时域、FFT、倒频谱分析以及时延相关解调分析,通过对应的谱图初步诊断轴承的故障类型;构建BP网络和B样条模糊神经网络,将特征提取到的信号进行归一化处理,分别输入这两种网络进行模式识别,最终识别出滚动轴承的故障类型;最后利用.NET平台编写了滚动轴承状态监测诊断系统,以实现更好的人机交互。
     滚动轴承的振动信号呈现调制特征,因此对测得的振动信号进行解调是滚动轴承故障诊断的关键,常规分析和包络解调技术对此类信号进行分析时易受噪声影响,使得滚动轴承故障特征难以凸显。故本文采用时延相关解调法用于滚动轴承的故障诊断,这一方法的实现步骤是首先对测得的振动信号进行自相关分析,再对自相关函数进行时延,然后对时延后的自相关函数进行Hilbert变换解调。实验分析结果证实了时延相关解调技术是一种良好的降噪解调技术,并且文中对时延相关解调法的时延量做了研究,通过选择不同的时延量值进行比较分析,发现时延量在某区间内可以任意选取。
     抽取对振动信号分析后的有效特征,将其作为神经网络的输入。本文主要采用BP神经网络和B样条模糊神经网络进行识别,BP网络在进行识别时虽然效果比较良好,但缺点也表现出来:网络训练时表现出“黑箱”的性质,收敛速度慢等。而B样条模糊神经网络内部结构连接透明,在网络进行训练时能方便地根据实际需要调节网络结构,同时B样条模糊神经网络的局部学习和存储的特性使得收敛速度快,便于实现在线监测。通过这两种网络的对比发现B样条模糊神经网络在训练速度和识别率上均优于BP网络。
     最后利用.NET这一良好平台,设计并编写了滚动轴承状态监测诊断系统,将C#与Matlab联合应用实现良好的人机交互界面,让整个系统变得更智能且操作更简单。
As one of the most common parts of various rolling mechanical equipments, rolling bearing is very vulnerable. Therefore, great importance has been attached to the theories、methods and applications of failure diagnosis of rolling bearing.
     Vibration analysis is a very important means for condition monitoring and fault diagnosis. This paper aims at the research on the methods of signal processing and pattern recognition. Therefore, firstly, a experimental platform was set up for the failure diagnosis of rolling bearing, on which we have done a lot of experiments; Then the vibration signals on the condition of normal rolling bearing、rolling bearing with failure on the outer circle and rolling bearing with failure on the inner circle were collected. After Analyzing on the vibration signal based on analyzing methods of Time-domain、Cepstrum、FFT、Time-delayed correlation demodulation, we got the spectrum through which the type of the failure of rolling bearing was found. By constructing BP networks and B-spline neural networks, dealing with the character of the vibration signal through Unification and putting them into two different networks to recognize, we could finally recognize the real type of the failure of rolling bearing. By applying the .NET platform, a condition monitoring software designing for rolling bearing was completed to fulfill the task of Human-computer interactive more effectively.
     The time delayed correlation demodulation is established in order to suppress the noise and demodulating the signal. The auto-correlation functions of vibration signals measured on bearing cases are first computed, which will reduce the noise greatly, but not change the modulation signature of the signals. Then the auto-correlation functions are delayed for some time lags in order to decrease the affection of noise before demodulated by Hilbert Transform. The effectiveness of this method id confirmed by simulated data and experimental data. Moreover, the faults on the outer ring, inner ring and rolling element can be recognized by the time delayed correlation demodulation. Experimental vibration signals measured from the rolling element bearings verify that time-delayed correlation demodulation is better than conventional methods, such as spectrum analysis and envelope analysis. In this paper the time-delayed size of the time-delayed correlation demodulation is investigated. Different time-delayed sizes have been analyzed, and their results are almost same. Therefore, the time-delayed size can be selected freely in one revolution.
     The effective character of the vibration signal was got out, it could be used for the input of neural networks. BP neural networks and B-spline neural networks is mainly applied for recognition. Although the result of the recognition of BP networks is comparatively good, its backwards seems to be evident, mainly due to its "BLACK BOX" character and slow convergence, while the inner result and interconnection of B-spline neural networks is transparent and the structure of the networks can be regulated conveniently according to the practical needs when training the networks, meanwhile the local study and the character of storage of B-spline neural networks make the fast convergence, which can be useful for the On-line monitoring. By comparing the two different networks we found that the training speed and the recognition rate of B-spline neural networks are superior to BP neural networks.
     Finally, by applying .NET platform, designing the software of the condition monitoring system of rolling bearing, using the C# and Matlab to realize the interface of Human-computer interactive, the whole system is becoming much more intelligent and operating the system is becoming much easier.
引文
[1]钟秉林 黄仁 机械故障诊断学 第二版 北京,机械工业出版社2002
    [2]廖伯瑜 机械故障诊断基础 冶金工业出版社 1995
    [3]高品贤 振动、冲击及噪声测试技术 成都 西南交通大学出版社 2004
    [4]王宏禹 非平稳随机信号分析与处理 国防工业出版社1999
    [5]韩立群 人工神经网络理论、设计及应用 北京 电子工业出版社 2002
    [6]韩捷 张瑞林 旋转机械故障机理及诊断技术 北京:机械工业出版1997
    [7]李国华,张永忠。机械故障诊断。化学工业出版社,1999
    [8]梅宏斌 滚动轴承振动监测与诊断——理论、方法、系统北京:机械工业出版社,1996
    [9]吴新余,周进泉,沈元隆信号与系统——时域、频域分析及MATLAB 软件的应用 北京:电子工业出版社1999
    [10]边肇祺,张学工等,模式识别,北京,清华大学出版社,2000
    [11]卢文祥 杜润生 工程测试与信息处理 华中理工大学出版社 1998
    [12]靳蕃 神经计算智能基础原理·方法 四川 西南交通大学出版社,2000
    [13]Yanghann Kim,ByoungDuk Lim and WanSup Cheoung.Fault detection in a ball bearing system using a moving window.Mechanical Systems and Signal Processing,1991,5(6):461-473
    [14]P.D.McFadden.Model for the vibration produced by a single point defect in a rolling element bearing.Journal of Sound and Vibration,1984,96:69-82
    [15]David Brie.Modelling of the spalled rolling element bearing vibration signal:an overview and some new results.Mechanical Systems and Signal Processing,2000,14(3):353-369
    [16]G.K.Chaturvedi and D.W.Thomas.Bearing fault detection using adaptive noise cancelling.ASME,J.Mech.Des.,1982,104:280-289
    [17]T.Williams,X.Ribadeneira and S.Billingto.Rolling element bearing diagnostics in run-to-failure lifetime testing.Mechanical Systems and Signal Processing,2001,15(5):979-993
    [18]P.D.McFadden and M.M.Toozhy.Application of synchronous averaging to vibration monitoring of rolling element bearing.Mechanical Systems and Signal Processing,2000,14(6):891-906
    [19]C.K. Mechefske and J. Mathew. Fault detection and diagnosis in low speed rolling element bearings Part I: The use of parametric spectra. Mechanical Systems and Signal Processing,1992, 6(4): 297-307
    [20] C.K. Mechefske and J. Mathew. Fault detection and diagnosis in low speed rolling element bearings Part II: The use of nearest neighbour classification. Mechanical Systems and Signal Processing, 1992, 6(4): 297-307
    [21]J.P Dron, L. Rasolofondraibe and F. Bolaers. High-resolution method in vibratory analysis:application to ball bearing monitoring and production machine. International Journal of Solids and Structures, 2001,38:4293-4313
    [22] Duncan L.Carter. A new method of processing rolling element bearing signals. httpa/www.vibroteck.cooomlarticlesldlcvi96/anew.htm.
    [23]R.B. Randall, J.Antoni and S, Chobsaard. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mechanical Systems and Signal Processing, 2001,15(5):945 - 962
    [24]Y.F. Wang and P.J. Kootsookos. Modeling of low shaft speed bearing faults for condition monitoring. Mechanical Systems and Signal Processing, 1998, 12(3): 415-426
    [25] D. Ho and R.B. Randall. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing, 2000, 14(5):763-788
    [26]Jaehong Suh. On-line machinery health diagnosis and prognosis for predictive maintenance and quality assurance of equipment funtioning. Dissertation for the Degree of Doctor of Philosophy, the Pennsylvania State University, 2001
    [27] Peng Wang. Intelligent signal/image processing for fault diagnosis and prognosis.Dissertation for the Degree of Doctor of Philosop 冲, Georgia Institute of Technology, 2000
    [28] K. Mori, N. Kasashima and T. Yoshioka. Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals. Wear, 1996,195:162-168
    [29] R. Rubini, U. Meneghetti. Application of the envelope and wavelet transform analysis for the diagnosis of Incipient faults In ball bearings. Mechanical Systems and Signal Processing.2001, 15(2):287-302
    [30]Silva,J.L.H.;Marques Cardoso,A.J.Bearing failures diagnosis in three-phase induction motors by extended park's vector approach[CJ.Industrial Electronics Society,2005.IECON 2005.32nd Annual Conference of IEEE 6-10 Nov.2005 Page(s):2585-2590
    [31]Venkat Venkatasubramanian,Kng Chan.A neural network methodology for process fault diagnosis.Journal of American Institute of Chemical Engineers,1989,35(12):1993-2002.
    [32]B S Yang,T Han,J Lan.APT KOHONEN neural networks for fault diagnosis of rotating machinery.Mechanical Systems and Signal Processing.2004,18(3):645-657.
    [33]D.Bently.Predictive maintenance through the monitoring and diagnostics of rolling element bearings.Bently Nevada Co.,Application Note,1989,44:2-8.
    [34]Martin Brown,Chris Harris.Neurol'uzzy Adaptive Modelling and Control[M},Prentice HallInternational(UK)limited,1994:296-308
    [35]王红萍,机械设备故障诊断技术及应用 西安 西北工业大学出版社,2001
    [36]石博强,申众华,机械故障诊断的分形方法。冶金工业出版社,2001
    [37]程军圣,于德介。基于小波系数1-1-2维谱的滚动轴承故障诊断。振动与冲击,2001,20(3):29-31
    [38]张中明,卢文祥,杨叔子等.基于小波系数包络谱的滚动轴承故障诊断.振动工程学报,1998,11(3):65-69
    [39]何晓霞,沈玉娣,张西宁,连续小波变换在滚动轴承故障诊断中的应用。机械科学与技术,2001,20(4):571-574
    [40]史东峰,鲍明,屈梁生。小波包络分析在滚动轴承诊断中的应用,中国机械工程2000,11(12):1382-1385
    [41]林京 连续小波变换及其在滚动轴承故障诊断中的应用。西安交通大学学报学报,1999,33(11)
    [42]王新晴,王耀华,熊云。基于小波除噪与时-频指数分布的故障诊断新技术。解放军理工大学学报,2001,vol12(2):59-61
    [43]王士同,模糊系统、模糊神经网络及其应用程序设计 上海 上海科学技术文献出版社1998.8 13-15
    [44]高宏力 硕博士论文 切削加工过程中刀具磨损的智能监测技术研究,西南交通大学,2005
    [45]曹伟青 硕士论文 B样条模糊神经网络在刀具故障诊断中的应用,西南 交通大学,2005
    [46]傅殷勤 小波理论的研究及滚动轴承的故障诊断哈尔滨工业大学博士学位论文
    [47]李中原 旋转机械矢双谱分析故障诊断应用研究 硕士论文 郑州大学
    [48]李惠彬 齿轮振动和减速机在线监测与故障诊断的实验研究 清华大学博士学位论文,1999
    [49]孟涛 齿轮与滚动轴承故障的振动分析与诊断 西北工业大学博士论文2003
    [50]刘建文 基于共振解调与人工神经网络的轴承智能诊断技术研究 硕士学位论文 西南交通大学2006
    [51]Rangwala S,Dornfeld D.Intergration og Sensors via Neural Networks for Detection of Tool Wear States.American Society of Mechanical Engineers,Production Engineering Dicision,1987,25:109-120
    [52]张智星,孙春在,水谷英二 神经—模糊和软件计算,西安:2000
    [53]Simon Haykin著,叶世伟,史忠植译,神经网络原理,北京:机械工业出版社,2004年
    [54]葛宪福 振动信号分析在旋转机械故障诊断中的应用 硕士学位论文 华北电力大学2007年
    [55]孔亚林 硕士学位论文 基于振动信号的滚动轴承故障诊断方法研究 大连理工大学2005年
    [56]N.Tandon,A,Choudhury.A review of vibration and acoustic measurem--ent methods for the detection of defects in rolling element bearings.Tribology International,1999,32:46
    [57]黄涛、张辉AE技术对滚动轴承故障诊断的研究石油华工高等学校学报1996,9(1):49-52
    [58]陈春潮、李孟源、王恒迪 铁路货车轴承的声发射故障诊断及分析 轴承2006(1):36-38
    [59]吴艳、许宝杰、徐小力 声发射用于旋转机械故障诊断的实验研究 北京机械工业学院学报 2005,20(3):5-8
    [60]李凤英、沈玉娣、熊军滚动轴承故障的声发射检测技术 无损检测 2005,27(11):583-586
    [61]赵亚伟 到频谱在计算机辅助诊断系统中的实现 黑龙江科技学院学报。2001(2):26-29
    [62]芮执元 徐龙云 李贵明 基于倒频谱理论的滚动轴承故障检测 轴承 2007(1):35-37
    [63]赵伟 用冲击脉冲法诊断滚动轴承故障 轴承2006(5):31-33
    [64]李光,丛培田 基于共振解调的滚动轴承故障诊断的研究与实现 机械工程师 2006(10):129-131
    [65]王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术.航空动力学报,2005,20(4):606-612
    [66]刘金朝 丁夏完 王成国 自适应共振解调法及其在滚动轴承故障诊断中的应用 振动与冲击 2006,26(1):38-41
    [67]杨宇 于介德 积军圣 基于Hilbert边际谱的滚动轴承故障诊断方法振动与冲击 2007,24(1):70-72
    [68]王宇 陆爽 分形技术在轴承故障诊断中的应用 现代电子技术 2007(1):88-89
    [69]陆爽 李萌 基于双谱估计的轴承非线性振动信号模式识别 仪器仪表学报 2006(s3):2140-2142
    [70]李中原 韩捷 李志农 双谱分析及其在滚动轴承故障诊断中的应用 中国工程机械学报2005,7(3):365-368
    [71]祝海龙,屈梁生.自组织包络解调及其在轴承诊断中的应用.西安交通大学学报,2000,34(7):77-81
    [72]王焱,朱善安基于经验模态分解的轴承故障诊断 机电工程2007(10):77-78
    [73]陈进 齿轮和滚动轴承的状态检测与故障诊断 西北工业大学硕士学位论文 2006
    [74]孟涛 廖明夫 利用时延相关解调法诊断滚动轴承的故障 航空学报2004,24(1):41-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700