上皮性卵巢癌的发生及早期诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景与目的]
     卵巢癌是妇科肿瘤中死亡率最高的恶性肿瘤。由于缺乏有效的早期筛查手段,早期症状及临床表现不典型,约85%的患者初诊时已属疾病晚期。上皮性卵巢癌(Epithelial ovarian cancer, EOC),是卵巢癌中最常见类型,也是妇科肿瘤中死亡率最高的肿瘤类型,其死亡率高于其他所有妇科肿瘤之和。原因主要有早期筛查手段缺乏,早期诊断治疗对于延长患者生存时间是非常重要的一个环节,但是卵巢癌发生的分子生物学机制仍是未解之谜,给卵巢肿瘤的早期诊断带来困难和挑战。上皮性卵巢癌中又以卵巢高分化浆液性乳头状癌是常见的病理类型,普遍认为这种类型有部分起源于卵巢表面上皮细胞。然而,到目前为止,还没有任何直接实验证据证明卵巢表面上皮细胞能够形成高分化浆液性乳头状癌。研究表明,人卵巢恶性肿瘤的组织学类型分化是受多种因素影响的,包括上皮细胞一系列基因型和表现型的改变,可归纳为多种因素共同产生的生物学现象。探索卵巢癌的发生机制具有深远的理论和现实意义。
     HER2/neu基因是一种原癌基因,位于17号染色体长臂上,编码185 KD跨膜蛋白,具有酪氨酸激酶活性,属于人类表皮生长因子受体家族。以往对于HER2/neu基因的研究,主要集中于对乳腺癌的诊断、预后及靶向治疗的效果,而在上皮性卵巢癌中研究较少。研究表明,HER2/neu基因扩增及蛋白的过度表达与卵巢癌的预后及治疗有密切联系。25-30%的乳腺癌和卵巢癌中发现HER2/neu基因扩增及蛋白的过度表达,并被认为是与预后不良相关的因素,HER2/neu基因通过多种机制参与卵巢癌的演进,HER2/neu蛋白高表达与卵巢癌的多种临床特征相关,如临床分期较晚、手术中发现巨大肿块几率高、病理学分化差、较高复发率、生存时间短和对以铂类药为主的化疗不敏感。
     上皮-间质转化(epithelial-mesenchymal transition, EMT)是指上皮细胞在形态学上发生向成纤维细胞或间充质细胞表型的转变并获得迁移的能力。其主要特征为上皮表型缺失和间质表型获得。EMT在肿瘤发生与转移以及多种慢性疾病的发生发展过程中也起着重要的作用,研究发现,上皮-间质转化是细胞发生分子转换,失去上皮特性而获得间质特性,继而具备运动性以挣脱细胞间黏附,并侵犯到其他部位的过程。此外,肿瘤微环境通过特异因子的作用影响着肿瘤细胞的生物学特性。
     为了探讨HER2/neu基因过表达对卵巢上皮性肿瘤(Epithelial ovarian cancer,EOC)形成的作用,以及基因作用对上皮性卵巢癌生成的意义;进一步揭示肿瘤发生过程中上皮间质转化作用(Epithelial-mesenchymal Transition,EMT)以及肿瘤细胞生长微环境(Tumor Microenvironment)的影响。本文进行了以下几个方面的研究:1.建立遗传背景明确的过表达HER2/neu基因的T29Nt、T80Nt卵巢癌细胞模型。2.建立实验动物模型,揭示遗传成分与腹膜腔微环境共同诱导作用对正常人类卵巢表面上皮向卵巢恶性肿瘤转化过程的影响。3.观察并检测肿瘤生物学特性,为更多的卵巢肿瘤研究建立可靠稳定的肿瘤细胞模型,为临床卵巢恶性肿瘤的早期诊断提供实验基础和理论依据。
     第一部分
     通过逆转录病毒介导将HER2/neu基因导入永生化人类卵巢肿瘤前细胞系
     [研究目的]
     构建表达HER2/neu基因的逆转录病毒,将逆转录病毒感染两个永生化的人卵巢上皮肿瘤前细胞系T29、T80,经过药物筛选获得稳定过表达HER2/neu基因的T29N、T80N永生化细胞系。观察稳定过表达HER2/neu基因的T29N、T80N细胞株形态特征,并通过软琼脂实验检测细胞进行活体外探测评价和定量分析细胞纯系化集落生长的潜力和生物学特性。
     [研究方法]
     1.将带有HER2/neu基因的pBabe-HER2/neu-neomycin质粒转染Phoenix amphotropic包装细胞,获得带有目的基因的重组载体病毒上清。
     2.用带HER2/neu基因的逆转录病毒感染两个永生化的人类卵巢表面上皮肿瘤前细胞系T29和T80,T29和T80为本实验室通过将SV40 T/t抗原和hTERT转染至人类卵巢表皮细胞系IOSE29和IOSE80中而获得的永生化细胞系。感染细胞恢复后经新霉素筛选,分别得到稳定过表达HER2/neu基因的T29N和T80N两个永生化细胞系。
     3.倒置显微镜下观察T29、T80、T29N、T80N活细胞形态特征,并比较不同细胞系之间、子代细胞系与亲代细胞系之间的细胞表型差异。
     4.采用Western-blot印迹蛋白检测技术,验证HER2/neu蛋白在逆转录病毒感染后细胞系T29N、T80N与亲代细胞及对照细胞间表达的差异。
     5.应用软琼脂实验方法,取同代T29、T80、T29N、T80N细胞进行实验,进行活体外探测评价和定量分析细胞纯系化集落生长的潜力。
     [研究结果]
     1.带有HER2/neu基因质粒转染病毒包装细胞,产生病毒上清感染T29、T80细胞系,获得T29N、T80N
     经过pBabe-HER2/neu-neomycin质粒转染Phoenix amphotropic包装细胞,培养产病毒细胞系,获得带有HER2/neu基因的病毒上清。通过逆转录病毒介导,将HER2/neu基因导入到T29和T80中,用新霉素筛选获得含建立HER2/neu cDNA的纯化系,分别命名为T29N和T80N细胞系。
     2.亲代细胞与T29N、T80N细胞的形态学特征
     倒置显微镜下观察培养瓶内活细胞形态分别为:T29细胞与亲本细胞IOSE29一样具有间质细胞形态学特征,细胞呈现:细胞间隙略大,稍稍分离,细胞成短梭形类似成纤维细胞的间质细胞形态。而T80细胞与亲本细胞IOSE80一样具有上皮细胞形态学特征,显微镜下观察,细胞呈现:细胞核圆形或椭圆形,位于细胞中央或稍偏位,染色质细致均匀,为较典型的上皮细胞形态。T29N和T80N细胞都呈现上皮样细胞形态,细胞核圆形或椭圆形,位于细胞中央或稍偏位,染色质增粗不均匀。
     3.T29N和T80N细胞系中HER2/neu蛋白表达
     通过Western-blot蛋白印迹检测,以HER2/neu蛋白高表达的卵巢癌细胞SKOV3为对照,T29和T80细胞系为HER2/neu低表达,T29N和T80N细胞系获得稳定HER2/neu蛋白过表达。其中β-actin为内参照,比较加样总蛋白的量。
     4.体外细胞形成集落能力的差异
     取同代的过表达HER2/neu基因的T29N和T80N细胞与T29、T80细胞进行软琼脂实验,结果发现过表达HER2/neu的T29N、T80N细胞株比T29、T80细胞具有更强的集落形成能力,生成的集落数约为3倍。
     [结论]
     1.成功构建带有HER2/neu基因的逆转录病毒,并通过病毒感染获得稳定过表达HER2/neu的T29N、T80N永生化细胞株。
     2.T29N细胞呈现间质细胞形态,T80N细胞为上皮细胞形态。
     3.过表达HER2/neu的T29N、T80N株纯系化细胞比T29、T80细胞具有更强的集落形成能力。
     第二部分
     永生化细胞系T29N、T80N及移植瘤细胞系T29Nt、T80Nt的体内外实验研究
     [研究目的]
     分别将T29. T80、T29N、T80N细胞接种到裸鼠的皮下及腹膜腔内,比较这些细胞系在异种动物体内成瘤性及肿瘤生长速度。观察移植瘤细胞T29Nt和T80Nt的形态学特征,并将移植瘤细胞T29Nt和T80Nt再次接种到裸鼠皮下和腹膜腔内。观察生成的移植瘤的病理学特征,并检测新生肿瘤相关蛋白的表达。
     [研究方法]
     1.裸鼠致瘤实验,取对数生长期的T29, T80, T29N, T80N细胞用无血清培养基配制,分别取5×106个T29, T80, T29N, T80N细胞接种于4-6周龄雌性裸鼠皮下,每只两点,每2天观察一次裸鼠,观察肿瘤出现的时间和肿瘤的大小,测量肿瘤体积,绘出细胞生长曲线。皮下移植瘤直径达到1.5cm时,处死裸鼠,切取肿瘤组织,继续培养移植瘤细胞T29Nt和T80Nt,剩余组织以中性福尔马林固定,石蜡包埋,切片,HE染色。
     2.分别取5×106个T29, T80, T29N, T80N细胞接种于4-6周龄雌性裸鼠腹膜腔内接种。腹膜腔内细胞移植的裸鼠观察6个月后处理。
     3.取对数生长期的细胞用无血清培养基配制,取5×106个T29Nt, T80Nt细胞分别接种于4-6周龄雌性裸鼠皮下,每只两点;取5×106个T29Nt, T80Nt细胞分别接种于4-6周龄雌性裸鼠腹膜腔内。观察6个月后,处死实验裸鼠后,切取皮下移植瘤及腹腔移植瘤组织以中性福尔马林固定,石蜡包埋,切片,HE染色,观察组织形态。
     4.肿瘤组织石蜡切片用免疫组织化学染色方法检测各种蛋白表达,主要检测指标有HER2/neu、SV40大T抗原、p53、泛-细胞角蛋白、CA125、WT-1。用相应二抗进行反应。
     [研究结果]
     1.T29N、T80N细胞系裸鼠皮下移植瘤模型建立及皮下移植瘤生长曲线
     在异种动物接种试验中,T29N细胞经历4个月缓慢的生长在4只裸鼠皮下形成移植瘤,T80N细胞经历4个月缓慢的生长在9只裸鼠皮下形成移植瘤。所形成的移植瘤组织学为低分化肿瘤。对照组T29、T80细胞在裸鼠皮下没有形成移植瘤。
     2. T29N、T80N细胞系裸鼠腹膜腔内移植瘤实验情况
     T29N、T80N在腹腔腔内接种后观察6个月,没有观察到肿瘤生长,对照组T29、T80的腹腔内接种也没有任何肿瘤形成。
     3.移植瘤活细胞T29Nt和T80Nt细胞与其亲代细胞的形态学特征。
     T29N和T80N在裸鼠皮下形成的移植瘤细胞继续培养,肿瘤细胞命名为T29Nt和T80Nt。倒置显微镜下观察均呈上皮细胞形态
     4.T29Nt、T80Nt肿瘤细胞的裸鼠移植瘤模型建立
     T29Nt细胞经历6个月在3只裸鼠皮下形成移植瘤,T80Nt细胞经历6个月在3只裸鼠皮下形成移植瘤,生成低分化肿瘤T29Nt与T80Nt。而T29Nt在腹膜腔内接种观察6个月后有3只裸鼠生成高分化乳头状癌,并有大网膜、肝脏等多器官肿瘤转移。T80Nt在腹膜腔内接种观察6个月后有3只裸鼠形成转移肿瘤,且都伴有多器官转移,但是不同的是肿瘤组织为低分化卵巢癌。
     5. T29Nt、T80Nt移植瘤的HER2/neu等蛋白表达
     T29Nt和T80Nt肿瘤细胞在裸鼠腹膜腔内生成的肿瘤,HER2/neu蛋白、证明细胞起源的SV40大T抗原、p53、证明细胞上皮起源的泛-细胞角蛋白、人类卵巢癌常用标志物CA125、WT-1的免疫组化染色结果均为阳性。
     [结论]
     1.成功地将T29N和T80N在皮下形成的低分化移植瘤并获得T29Nt和T80Nt移植瘤细胞系。
     2.在裸鼠腹膜腔内,移植瘤细胞T29Nt可以生成类似于人类浆液性乳头状癌的高分化乳头状恶性肿瘤。
     3. HER2/neu蛋白的过度表达可能与卵巢浆液性乳头状癌的生成密切相关。
Background
     Ovarian cancer has the highest mortality of all the gynecologic malignancies worldwide. With no adequate screening tests, detection at an early stage remains the most significant prognostic factor. There are no gold standard screening methods for the early detection of ovarian cancer exist. Approximately 85% of patients with ovarian cancer are diagnosed at a late stage of the dieases. Epithelial ovarian cancer (EOC), the most common subgroup of ovarian cancer, is the deadliest gynecological cancer, accounting for more deaths than all other gynecological cancers combined. The high mortality rate for EOC is a result of technical obstacles to early detection of the disease and a high prevalence of distal metastasis at late stages of the disease, seventy percent of the cases occur distal metastasis. It is important for enlonging the survival time to have the early detection. However,the explaination of the etiology of epithelial ovarian cancer, is still doubted. The development of specific histotypes of human ovarian cancer is thought to be influenced by multiple factors, including genetic and epigenetic changes in epithelial cells.
     HER2/neu gene is an oncogene, which encodes a 185 kd trans-membrane protein partially homologous to epidermal growth factor receptor with intrinsic tyrosine kinase activity. This oncogene has been studied mainly in breast cancer where it has prognostic, predictive and therapeutic target value. The expression of HER2/neu in epithelial ovarian cancer has been less studied. Amplication of this gene has been found in 25-30% breast and ovarian cancer and correlate with poor prognosis. HER2/neu has been shown to be involved in the progression of ovarian cancer through multiple mechanisms. High expression of HER2/neu is associated with advanced cancer stages, higher frequency of surgical residual larger tumor, poor histological grade, higher recurrence frequency, shorter survival time and lower sensitivity to platinumbased chemotherapy.
     In this study, we generated T29Nt and T80Nt cell models using genetic modification of human ovarian surface epithelial cell lines in combination with a peritoneal microenvironment to describe the development of a novel murine model of high-grade papillary serous carcinoma. This murine model should be useful for studying the mechanisms involved in the development and histologic differentiation of human ovarian carcinoma. It may also help us to generate other ovarian epithelial cancer models with additional or different genetic modifications. This model should be helpful for defining pathways and identifying novel targets to improve the treatment and early detection of ovarian cancer.
     Objective
     To harvest the retrovirus-containing HER2/neu and infect two ovarian epithelial cell lines, T29 and T80, and select the cells. To design the resulting cells overexpressing HER2/neu as T29N and T80N cells. To observe the characters of theT29N and T80N cell lines and test if HER2/neu overexpression can increase the number of anchorage independent colonies that grew in soft agar in both the T29N and T80N cell lines.
     Methods
     1. HER2/neu was transfected into the Phoenix amphotropic cell line, and the retrovirus-containing HER2/neu cells were harvested.
     2. After a 24-h recovery from virus infection, the cells were selected by growing them in a medium containing neomycin then grown in the medium without neomycin,and obtained the T29N and T80N cells.
     3. Observe the T29, T29Nt, T80 and T80Nt cells by phase-contrast microscopy to compare the morphologic characteristics.
     4. HER2/neu expression was detected using Western blot analysis.
     5. We use Anchorage-independent cell growth assay to compare the cells growth character in vitro. Cells were suspended in 2 mL of growth medium with 0.35% agarose (Invitrogen), and the suspension was placed on 5 mL of solidified 0.7% agarose. Triplicate cultures of each cell type were maintained for 14 days at 37℃in a 5% CO2 atmosphere, and fresh medium was added at 7 days. The number of colonies that were larger than 50μm in diameter was counted on the 14th day. These experiments were repeated twice.
     Results
     1. We Harvested the retrovirus-containing HER2/neu cells were harvested for the experiments.
     2. We infected the retrovirus-containing HER2/neu into two immortalized nontumorigenic human ovarian surface epithelial cell lines T29 and T80. The cells were selected in medium containing neomycin (1 mg/ml) after recovery from virus infection.
     3. The resulted cells increased expression of the HER2/neu protein.
     4. The T29N cells have mesenchymal morphologic characteristics, and the T80N cells have an epithelial phenotype.
     5. HER2/neu overexpression increased the number of anchorage independent colonies that grew in soft agar in both the T29N and T80N cell lines.
     Conclusion
     1. The introduction of HER2/neu into two immortalized nontumorigenic human ovarian surface epithelial cell lines (T29 and T80) resulted in increased expression of the HER2/neu protein.
     2. The T29N cells showed mesenchymal morphologic characteristics, and the T80N cells have an epithelial phenotype.
     3. The HER2/neu overexpression T29N and T80N cell lines grew more anchorage independent colonies in soft agar than T29 and T80 cell lines.
     Objective
     Mice subcutaneously or intraperitoneally injected with T29, T80, T29N, T80N cells to compare the tumor development abilities of these defferent cell lines. To observe the characters of theT29Nt and T80Nt cell lines. Mice subcutaneously or intraperitoneally injected with T29Nt, T80Nt cells to compare the tumor development abilities of these defferent cell lines. To do the histopathologic examination and immunohistochemical analysis with the tumors grown.
     Methods
     1. Harvested, washed 5 x 10^6 cells from T29, T80, T29N, T80N cell lines twice and resuspended in 0.1 mL of saline. The T29, T80 and the T29-and T80-control cell suspensions were injected subcutaneously into 4-to 6-week-old BALB/c athymic nude mice. The mice were kept in a pathogen-free environment and checked every 2 days. The date on which grossly visible tumors first appeared and the size of the tumors were recorded. The mice were killed when tumors reached 1.5 cm in diameter. T29Nt and T80Nt cells were isolated from the T29N-and T80N-derived xenografts and cultured for the further experiments.
     2. Harvested, washed 5 x 10^6 cells from T29, T80, T29N, T80N cell lines twice and resuspended in 0.1 mL of saline. The T29, T80 and the T29-and T80-control cell suspensions were injected intro-peritoneally into 4-to 6-week-old BALB/c athymic nude mice. The mice were kept in a pathogen-free environment and checked every 2 days. The mice were observed for increased abdominal size, lethargy and jaundice and were killed when these signs occurred.
     3. Harvested, washed 5 x 10^6 cells from T29Nt, T80Nt cell lines twice and resuspended in 0.1 mL of saline. Each cell line was injected subcutaneously and introperitoneally into six 4-to 6-week-old BALB/c athymic nude mice individually. The mice were kept in a pathogen-free environment and checked every 2 days for 6 months. The date on which grossly visible tumors first appeared and the size of the tumors were recorded. The mice were killed when tumors reached 1.5 cm in diameter. The mice given intraperitoneal injections were observed for increased abdominal size, lethargy and jaundice and were killed when these signs occurred. Tumors from mice were fixed in 10% formalin and stained with hematoxylin and eosin. The histopathologic characteristics were examined by microscopy.
     4. The following antibodies were used for immunohistochemical analysis: monoclonal anti-HER2/neu, monoclonal anti-SV40 T antigen, monoclonal anti-p53 antigen, monoclonal anti-pan cytokeratin antigen, and mouse monoclonal anti-CA125, anti-WT-1 antigen. Secondary antibodies against each host were biotinylated.
     Results
     1. Four of the nine mice injected with the T29N cells developed subcutaneous tumors. Nine of the fourteen mice subcutaneously injected with the T80N cells developed subcutaneous tumors. Histopathologic examination of the tumors showed undifferentiated carcinomas.
     2. There were no tumors revealed in other mice either injected subcutaneously or intraperitoneally.
     3. The T29Nt and T80Nt both had an epithelial phenotype. Three of the six mice subcutaneously injected with the T29Nt and T80Nt cell lines respectively developed subcutaneous tumors. Histopathologic examination of these tumors revealed undifferentiated carcinomas. Three of the ten mice injected intraperitoneally with T29Nt and five of the nine mice injected with T80Nt developed tumors. Intraperitoneal inoculation of mice with T29Nt cells resulted in extensive tumor growth along the omentum. Interestingly, histologic examination revealed papillary carcinoma that was indistinguishable from human papillary serous ovarian carcinoma. These tumors also invaded the liver and pancreas. Tumors derived from the T80Nt cells grew along the peritoneal fat and the pancreas but remained undifferentiated.
     4. Immunohistochemical staining for large T antigen was positive, demonstrating that the tumors were derived from the immortalized T29 and T80 cells rather than having developed spontaneously in the mice. The tumor cells were also positive for cytokeratin, verifying their epithelial cell origin, and positive for p53, demonstrating that their p53 stability was increased and its function was disabled due to its binding by T antigen. The cells were also positive for CA125, WT-1, which are common markers expressed in human ovarian cancer.
     Conclusion
     1. We successfully isolated T29N-and T80N-derived xenografts and named them T29Nt and T80Nt, which have epithelial phenotype.
     2. we also found that the peritoneal microenvironment and the genetic background of the cells play a critical role in the differentiation of papillary carcinoma, genetic modifications alone are not sufficient for development of this carcinoma; rather, a specific ovarian epithelial cell type and an appropriate tumor microenvironment are required.
     3. HER2/neu can lead to papillary differentiation of immortalized human ovarian epithelial cells.
引文
1. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr. A genetically defined model for human ovarian cancer. Cancer Res.2004 Mar 1;64(5):1655-63.
    2. Yang G, Cai KQ, Thompson-Lanza JA, Bast RC Jr, Liu J. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem.2004 Feb 6;279(6):4339-45. Epub 2003 Nov 18.
    3. Wu Y, Soslow RA, Marshall DS, Leitao M, Chen B. Her-2/neu expression and amplification in early stage ovarian surface epithelial neoplasms. Gynecol Oncol. 2004;95(3):570-5.
    4. Verri E, Guglielmini P, Puntoni M, Perdelli L, Papadia A, Lorenzi P, Rubagotti A, Ragni N, Boccardo F. HER2/neu oncoprotein overexpression in epithelial ovarian cancer:evaluation of its prevalence and prognostic significance. Clinical study. Oncology.2005;68(2-3):154-61.
    5. Suo Z, Karbovo E, Trope CG, Metodiev K, Nesland JM. Papillary serous carcinoma of the ovary:an ultrastructural and immunohistochemical study. Ultrastruct Pathol. 2004;28(3):141-7.
    6. O'Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinomas:significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am J Surg Pathol. 2005;29(8):1034-41.
    7.Hsieh CY, Chen CA, Chou CH, Lai KP, Jeng YM, Kuo ML, Wei LH. Overexpression of Her-2/NEU in epithelial ovarian carcinoma induces vascular endothelial growth factor C by activating NF-kappa B:implications for malignant ascites formation and tumor lymphangiogenesis. J Biomed Sci.2004;11(2):249-59.
    8.代聪伟,阎平.HER2/neu蛋白过度表达与卵巢癌研究进展.国外医学妇产科学分册2006,33(6):427-430
    9. Chen T, Wang Z, Wang R, et al. Polyethylenimine-DNA solid particles for gene delivery. J Drug Target,2007,15(10):714-720.
    10. Ghataorhe P, Kurian AW, Pickart A, et al. A carrier of both MEN1 and BRCA2 mutations:case report and review of the literature. Cancer Genet Cytogenet,2007,179(2):89-92.
    11. Schmutzler RK. Molecular genetics and clinics of hereditary breast cancer. Verh Dtsch Ges Pathol,2005,89:25-34.
    12. Marchini S, Marabese M, Marrazzo E, et al. DeltaNp63 expression is associated with poor survival in ovarian cancer. Ann Oncol,2007,12(5):367-369.
    13. Choi JH, Choi KC, Auersperg N, Leung PC. Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab 2004,89:5508-5516.
    14. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, Callahan MJ, Garner EO, Gordon RW, Birch C, Berkowitz RS, Muto MG, Crum CP. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma:Evidence for a causal relationship. Am J Surg Pathol 2007,31:161-169.
    15. Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF. Wnt signaling in ovarian tumorigenesis [J]. Int J Gynecol Cancer,2007,6(3):265-269.
    16. Landen CN, Klingelhutz A, Coffin JE, Sorosky JI, Sood AK. Genomic instability is associated with lack of telomerase activation in ovarian cancer. Cancer Biol Ther 2004,3:1250-1253.
    17. Kerner R, Sabo E, Gershoni-Baruch R, Beck D, Ben-Izhak O. Expression of cell cycle regulatory proteins in ovaries prophylactically removed from Jewish Ashkenazi BRCA1 and BRCA2 mutation carriers:Correlation with histopathology. Gynecol Oncol 2005,99:367-375.
    18. Sui L, Dong Y, Ohno M, et al:Implication of malignancy and prognosis of p27(kip1), Cyclin E, and Cdk2 expression in epithelial ovarian tumors. Gynecol Oncol 2001,83:56-63.
    19. Landen CN Jr, Birrer MJ, Sood AK. Early Events in the Pathogenesis of Epithelial Ovarian Cancer. J Clini Oncol 2008,26:995-1005
    20. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, et al. A genetically defined model for human ovarian cancer. Cancer Res 2004; 64:1655-63.
    21. Sens DA, Park S, Gurel V, Sens MA, Garrett SH, Somji S. Inorganic cadmium-and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci.2004 May;79(1):56-63.
    22.刘芳莉,于旸,傅松滨.三种不同生物学特性细胞在软琼脂中的生长表型分 析。中国肺癌杂志2008,2:51-54
    23. Rosen DG, Yang G, Liu G, Mercado-Uribe I, Chang B, Xiao XS, Zheng J, Xue FX, Liu J. Ovarian cancer:pathology, biology, and disease models. Front Biosci.2009 Jan 1;14:2089-102.
    1. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand.1969;77(4):758-60.
    2.高国兰,邹春芳,邹学森,陈文学.人卵巢上皮癌裸鼠皮下移植瘤模型的建立及生物学性状的鉴定。实用癌症杂志2004,19(5):454-457
    3. Kim TJ, Landen CN, Lin YQ Mangala LS, Lu C, Nick AM, Stone RL, Merritt WM, Armaiz-Pena G, Jennings NB, Coleman RL, Tice DA, Sood AK. Combined anti-angiogenic therapy against VEGF and integrin alphaVbeta3 in an orthotopic model of ovarian cancer. Cancer Biol Ther.2009; 8(23):2263-72.
    4. Silva EG, Tornos C, Deavers M, Kaisman K, Gray K, Gershenson D. Induction of epithelial neoplasms in the ovaries of guinea pigs by estrogenic stimulation. Gynecol Oncol.1998;71(2):240-6.
    5.陈爱平,王和,彭芝兰,高国兰,白绍槐。人卵巢癌裸鼠移植瘤和腹水瘤模型的建立及形态学观察,肿瘤,2001,21(2):82
    6. Malik ST, East N, Boraschi D, Balkwill FR. Effects of intraperitoneal recombinant interleukin-1 beta in intraperitoneal human ovarian cancer xenograft models: comparison with the effects of tumour necrosis factor. Br J Cancer.1992 May;65(5):661-6
    7.岳静,李静,刑辉。三种人卵巢癌动物模型的生物学特性比较。现代妇产科进展,2002,11(5):334
    8. Hanna N, Davis TW, Fidler IJ. Environmental and genetic factors determine the level of NK activity of nude mice and affect their suitability as models for experimental metastasis. Int J Cancer.1982 15;30(3):371-6.
    9. Skates SJ, Menon U, MacDonald N, et al. Calculation of the risk of ovarian cancer from serial CA125 values for preclinical detection in postmenopausal women. J Clin Oncol 2003; 21:206-210.
    10. Limaye A, Connor AJ, Huang X. The comparison and analysis between traditional smear and membrane fluid based thin layer method. Arch Pathol Lab Med.2003,127(2):200—204.
    11. Jarboe E, Folkins A, Nucci MR, et al. Serous carcinogenesis in the fallopian tube: a descriptive classification. Int J Gynecol Pathol 2008; 27:1-9.
    12. Kobel M, Hunstman DG, Gilks CB. Critical molecular abnormalities in high-grade serous carcinoma of the ovary. Expert Rev Mol Med 2008,10:22.
    13. Boublikova L, Kalinova M, Ryan J. Wilms tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia:a wide range of WT 1 expression Levels, its impact on prognosis and minimal residual disease monitoring. Leukemia,2006, 20(2):254—263.
    14. Domfeh AB, Carley AL, Striebel JM. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol,2008, 21(10):1217—1223.
    15. Phelan SA, Lindberg C, Call KM. Wilms'tumor gene WT1 mRNA is down regulated during induction of erythroid and megakaryocytic diferentiatiou of K562 cells. Cell Growth Differ,1994,5(6):677—686.
    16. Wang ZY, Qiu QQ, Deuel T F. The Wilms'tumor gene product WT1 activates or supresses transcription through seperate functional domains. Biol Chem,1993, 268(13):9172—9175.
    17. Hylander B, Repasky E, Shrikant P. Expression of Wilms tumor gene (WT1) in epithelial ovarian cancer. Gynecol Oncol,2006,101(1):12-17.
    18. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology 2005;46:468.
    19 Gilks CB, Ionescu D, Kalloger S, et al. Tumor cell type can be reproducibly diagnosed and is of independent significance in patients with maximally debulked ovarian carcinoma. HUM PATHOL 2008;39:1239-51.
    20. Kobel M, Kalloger SE, Boyd N, et al. Ovarian carcinoma subtypes are different diseases:implications for biomarker studies. PLOS Med 2008;5:e232.
    21. Kobel M, Kalloger SE, Carrick J, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol 2009;33:14.
    22. C. Blake Gilks, Jaime Prat. Ovarian carcinoma pathology and genetics:recent advances. Human Pathology.2009,40:1213-1223.
    23. Felip E, Del Campo JM, Rubio D. Overexpression of cerbB2 in epithelial ovarian' cancer. Prognostic value and relationship with response to chemotherapy. Cancer. 1995;75:2147-52.
    24. Auranen A, Gre'nman S, Kleni PJ. Immunohistochemically detected p53 and HER2 expression and nuclear DNA content in familial epithelial ovarian carcinomas. Cancer 1997;79:2147-53.
    25. Goff BA, Muntz HG, Greer BE. Oncogene expression:long term compared with short term survival in patients with advanced epithelial ovarian cancer. Obstet Gynecol 1998;92:88-93.
    26. Nijman HW, Kenemans P, Poort-Keesom RJ. Influence of the chemotherapy in the expression of p53, HER2 and proliferation markers in ovarian cancer. Eur J Obstet Gynecol Reprod Biol 1999;83:201-6.
    27. Anreder MB, Freeman SM, Merogi A, et al. P53, c-erbB2, and PCNA status in benign, proliferative and malignant surface epithelial neoplasms. Arch Pathol Lab Med 1999; 123:310-6.
    28. Davidson B, Gotlieb WH, Ben-Baruch G, et al. E-cadherin complex protein expression and survival in ovarian carcinoma. Gynecol Oncol 2000;79:362-71.
    29. Valverde JJ, Martin M, Garcia-Asenjo JA, et al. Prognostic value of DNA quantification in early epithelial ovarian carcinoma. Obstet Gynecol 2001; 97: 409-16.
    30. Ferrandina G, Ranelliti FO, Lauriola L, et al. Cyclooxygenesa-2 (Cox-2), epidermal growth factor receptor (EGFR), and HER2 expression in ovarian cancer. Gynecol Oncol 2002;85:305-10.
    31. O'Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between lowgrade and high-grade ovarian serous carcinomas:significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am J Surg Pathol 2005; 29:1034-41.
    32. Cloven NG, Kyshtoobayeba A, Burger RA, et al. In vitro chemoresistance and biomarker profiles are unique for histologic subtypes of epithelial ovarian cancer. Gynecol Oncol 2004;92:1601-66.
    33. Lassus H, Leminen A, Vayrynen A, et al. ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol 2004;92:31-9.
    34. Nielsen JS, Jakobsen E, Holound B, Bertelsen K, Jakobsen A. Prognostic significance of P53, Her-2, and EGFR overexpression in borderline and epithelial ovarian cancer. Int J Gynecol Cancer 2004; 14:1086-96.
    35. Kupryja'nczyk J, Madry R, Plisiecka-Hatasa J, Bar J, Kraszewska E, Ziotkowska I, et al. TP53 status determines clinical significance of ERBB2 expression in ovarian cancer. Br J Cancer 2004;91:1916-23
    36. Hornung R, Urs E, Serenella E, et al. Analysis of potential prognostic factors in 111 patients with ovarian cancer. Cancer Lett 2004;206:97-106.
    37. Atalay G, Cardoso F, Awada A, et al. Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR)family and its downstream effectors in breast cancer. Ann Oncol,2003,14(9):1346-1363.
    38.陈一枯,赵志光,朱雪琼,吕杰强.上皮性钙黏附素、β-连环素与HER2/neu蛋白在卵巢上皮性肿瘤表达及意义。肿瘤学杂志,2009:15(5):440-444
    39. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT et al. A genetically defined model for human ovarian cancer. Cancer Res 2004; 64:1655-1663
    40. Maines-Bandiera SL, Kruk PA, Auersperg N. Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am J Obstet Gynecol,1992; 167: 729-35.
    41.Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med,2005; 11:63-70.
    42. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell,2002; 1:53-62.
    43. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414 (6859):105-111.
    44. BonnetD, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a p rim itive hematopoietic cell[J]. Nat Med,1997,3(7): 730-737.
    45. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res,2003, 63(18):5821-5828.
    46. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci USA,2003,100 (7):3983-3988.
    47. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface ep ithelium:biology, endocrinology, and pathology[J]. Endocr Rev,2001,22 (2): 255-288
    48. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J].Nat Rev Cancer,2005,5(4):275-284.
    49. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA.The epithelial mesenchymal transition generates cells with p roperties of stem cells [J]. Cell,2008,133 (4):704-715.
    50. Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, Ward CM. Epithelial mesenchymal transition events during human embryonic stem cell differentiation [J]. Cancer Res,2007,67 (23):11254-11262.43. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere-and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res,2007; 67:8671-81.
    51. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere-and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res, 2007; 67:8671-81.
    52. Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell,2007; 11: 321-33.
    53. Auersperg N, Maines-Bandiera SL, Dyck HG. Ovarian carcinogenesis and the biology of ovarian surface epithelium. J Cell Physiol,1997;173:261-5.
    54. Auersperg N, Maines-Bandiera SL, Dyck HG, Kruk PA. Characteri-zation of cultured human ovarian surface epithelial cells:phenotypic plasticity and premalignant changes. Lab Invest,1994; 71:510-8.
    55. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma:Evidence for a causal relationship. Am J Surg Pathol,2007; 31:161-9.
    56.Shan W, Liu J. Inflammation:a hidden path to breaking the spell of ovarian cancer. Cell Cycle.2009 Oct 1;8(19):3107-11.
    57. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25:585-621.
    58. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer:senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005; 118:485-96.
    59. Campisi J, d'Adda di Fagagna F. Cellular senescence:when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40.
    60. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer.2007 Feb;7(2):139-47.
    1. Jemal A, Siegel R, Ward E, et al:Cancer statistics,2007. CA Cancer J Clin 57: 43-66,2007
    2. Bonome T, Lee JY, Park DC, et al:Expression profiling of serous low malignant potential, lowgrade, and high-grade tumors of the ovary. Cancer Res 65:10602-10612,2005
    3. Auersperg N, Wong AS, Choi KC, et al:Ovarian surface epithelium:Biology, endocrinology, and pathology. Endocr Rev 22:255-288,2001
    4. Kowalski LD, Kanbour Al, Price FV, et al:A case-matched molecular comparison of extraovarian versus primary ovarian adenocarcinoma. Cancer 79:1587-1594, 1997
    5. Naora H:Developmental patterning in the wrong context:The paradox of epithelial ovarian cancers. Cell Cycle 4:1033-1035,2005
    6. Murdoch WJ. Carcinogenic potential of ovulatory genotoxicity. Biol Reprod 2005.73(4):586-590.
    7. Kowalski LD, Kanbour AI, Price FV, et al:A case-matched molecular comparison of extraovarian versus primary ovarian adenocarcinoma. Cancer 79:1587-1594,1997
    8. Halperin R, Zehavi S, Langer R, et al:Primaryperitoneal serous papillary carcinoma:A new epidemiologic trend? A matched-case comparison with ovarian serous papillary cancer. Int J Gynecol Cancer 11:403-408,2001
    9. Chen LM, Yamada SD, Fu YS, et al:Molecular similarities between primary peritoneal and primary ovarian carcinomas. Int J Gynecol Cancer 13:749-755, 2003
    10. Lacy MQ, Hartmann LC, Keeney GL, et al:C-erbB-2 and p53 expression in fallopian tube carcinoma. Cancer 75:2891-2896,1995
    11. Pere H, Tapper J, Seppala M, et al:Genomic alterations in fallopian tube carcinoma:Comparison to serous uterine and ovarian carcinomas reveals similarity suggesting likeness in molecular pathogenesis. Cancer Res 58:4274-4276,1998
    12. Halperin R, Zehavi S, Hadas E, et al:Immunohistochemical comparison of primary peritoneal and primary ovarian serous papillary carcinoma. Int J Gynecol Pathol 20:341-345,2001
    13. Kindelberger DW, Lee Y, Miron A, et al:Intraepithelial carcinoma of the fimbria and pelvicserous carcinoma:Evidence for a causal relationship. Am J Surg Pathol 31:161-169,2007
    14. Finch A, Metcalfe K, Lui J, Springate C, Demsky R, Armel S, Rosen B, Murphy J, Elit L, Sun P, Narod S. Breast and ovarian cancer risk perception after prophylactic salpingo-oophorectomy due to an inherited mutation in the BRCA1 or BRCA2 gene. Clin Genet.2009 Mar;75(3):220-4.
    15. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, Callahan MJ, Garner EO, Gordon RW, Birch C, Berkowitz RS, Muto MG, Crum CP. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma:Evidence for a causal relationship. Am J Surg Pathol.2007 Feb;31(2):161-9.
    16. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, Callahan MJ, Garner EO, Gordon RW, Birch C, Berkowitz RS, Muto MG, Crum CP. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma:Evidence for a causal relationship. Am J Surg Pathol.2007 Feb;31(2):161-9.
    17. Fleming JS, Beaugie CR, Haviv I, et al:Incessant ovulation, inflammation and epithelial ovarian carcinogenesis:Revisiting old hypotheses. Mol Cell Endocrinol 247:4-21,2006
    18. Gadducci A, Cosio S, Gargini A, et al:Sexsteroid hormones, gonadotropin and ovarian carcinogenesis:A review of epidemiological and experimental data. Gynecol Endocrinol 19:216-228,2004
    19. Capen CC:Mechanisms of hormonemediated carcinogenesis of the ovary. Toxicol Pathol 32:1-5,2004
    20. Fathalla MF:Incessant ovulation:a factor in ovarian neoplasia? Lancet 2:163, 1971
    21. Whittemore AS, Harris R, Itnyre J:Characteristicsrelating to ovarian cancer risk: Collaborative analysis of 12 US case-control studies. Ⅱ. Invasive epithelial ovarian cancers in white women. Am J Epidemiol 136:1184-1203,1992
    22. Risch HA, Marrett LD, Howe GR:Parity, contraception,infertility, and the risk of epithelial ovarian cancer. Am J Epidemiol 140:585-597,1994
    23. Riman T, Dickman PW, Nilsson S, et al:Risk factors for invasive epithelial ovarian cancer:Results from a Swedish case-control study. Am J Epidemiol 156:363-373,2002
    24. Gwinn ML, Lee NC, Rhodes PH, et al:Pregnancy, breast feeding, and oral contraceptives and the risk of epithelial ovarian cancer. J Clin Epidemiol 43:559-568,1990
    25. Nasca PC, Greenwald P, Chorost S, et al:An epidemiologic case-control study of ovarian cancer and reproductive factors. Am J Epidemiol 119:705-713,1984
    26. Fredrickson TN:Ovarian tumors of the hen. Environ Health Perspect 73:35-51, 1987
    27. Land JA:Ovulation, ovulation induction andovarian carcinoma. Baillieres Clin Obstet Gynaecol 7:455-472,1993
    28. Risch HA:Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst 90:1774-1786,1998
    29. Schildkraut JM, Schwingl PJ, Bastos E, et al:Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol 88:554-559,1996
    30. Whittemore AS, Harris R, Itnyre J:Characteristics relating to ovarian cancer risk: Collaborative analysis of 12 US case-control studies.Ⅱ. Invasive epithelial ovarian cancers in white women. Am J Epidemiol 136:1184-1203,1992
    31. Brinton LA, Lamb EJ, Moghissi KS, et al:Ovarian cancer risk after the use of ovulationstimulating drugs. Obstet Gynecol 103:1194-1203,2004
    32. Shih Ie M, Kurman RJ. Ovarian tumorigenesis:a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004; 164:1511-8.
    33. Singer G, Oldt R,3rd, Cohen Y, Wang BG, Sidransky D, Kurman RJ, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 2003; 95:484-6.
    34. Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008; 26:995-1005.
    35. Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol 2004; 28:496-504.
    36. Okuda T, Otsuka J, Sekizawa A, Saito H, Makino R, Kushima M, et al. p53 mutations and overexpression affect prognosis of ovarian endometrioid cancer but not clear cell cancer. Gynecol Oncol 2003; 88:318-25.
    37. Skirnisdottir I, Seidal T, Karlsson MG, Sorbe B. Clinical and biological characteristics of clear cell carcinomas of the ovary in FIGO stages Ⅰ-Ⅱ. Int J Oncol 2005; 26:177-83.
    38. Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998; 58:2095-7.
    39. Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary:possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000; 60:7052-6.
    40. Moreno-Bueno G, Gamallo C, Perez-Gallego L, de Mora JC, Suarez A, Palacios J. beta-Catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagn Mol Pathol 2001; 10:116-22.
    41. Sagae S, Kobayashi K, Nishioka Y, Sugimura M, Ishioka S, Nagata M, et al. Mutational analysis of beta-catenin gene in Japanese ovarian carcinomas: frequent mutations in endometrioid carcinomas. Jpn J Cancer Res 1999; 90:510-5.
    42. Wright K, Wilson P, Morland S, Campbell I, Walsh M, Hurst T, et al. beta-catenin mutation and expression analysis in ovarian cancer:exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int J Cancer 1999; 82:625-9.
    43. Cheng W, Liu J, Yoshida H, Rosen D, Naora H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 2005; 11:531-7.
    44. Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol 1998; 197:141-54.
    45. Shih leM, Kurman RJ. Ovarian tumorigenesis:a proposed model based on morphological and molecular genetic analysis. Am J Pathol.2004 May; 164(5): 1511-8.
    46. Gallardo A, Matias-Guiu X, Lagarda H, Catasus L, Bussaglia E, Gras E, Suarez D, Prat J. Malignant mullerian mixed tumor arising from ovarian serous carcinoma: a clinicopathologic and molecular study of two cases. Int J Gynecol Pathol. 2002 Jul;21(3):268-72.
    47. Shih YC, Kerr J, Hurst TG, Khoo SK, Ward BG, Chenevix-Trench G. No evidence for microsatellite instability from allelotype analysis of benign and low malignant potential ovarian neoplasms. Gynecol Oncol.1998 Jun;69(3):210-3.
    48. Pohl G, Ho CL, Kurman RJ, Bristow R, Wang TL, Shih IeM. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res.2005 Mar 1;65(5):1994-2000.
    49. Hanahan D, Weinberg RA:The hallmarks of cancer. Cell 100:57-70,2000
    50. Han L, Landen C, Trevino J, et al:Antiangiogenic and anti-tumor effects of Src inhibition in ovarian carcinoma. Cancer Res 66:8633-8639,2006
    51. Ishizawar R, Parsons SJ:C-Src and cooperating partners in human cancer. Cancer Cell 6:209-214,2004
    52. Silva CM:Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23:8017-8023,2004
    53. Wiener JR, Windham TC, Estrella VC, et al:Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol 88:73-79,2003
    54. Pengetnze Y, Steed M, Roby KF, et al:Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun 309:377-383,2003
    55. Bartlett JM, Langdon SP, Simpson BJ, et al:The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 73:301-306,1996
    56. Leary JA, Edwards BG, Houghton CR, et al:Amplification of HER-2/neu oncogene in human ovarian cancer. Int J Gynecol Cancer 2:291-294,1992
    57. Singer G, Oldt R,3rd, Cohen Y, et al:Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484-486,2003
    58. Suzuki M, Saito S, Saga Y, et al:Mutation of K-RAS protooncogene and loss of heterozygosity on 6q27 in serous and mucinous ovarian carcinomas. Cancer Genet Cytogenet 118:132-135,2000
    59. Sui L, Dong Y, Ohno M, et al:Implication of malignancy and prognosis of p27(kipl), Cyclin E, and Cdk2 expression in epithelial ovarian tumors. Gynecol Oncol 83:56-63,2001
    60. Dhar KK, Branigan K, Parkes J, et al:Expression and subcellular localization of cyclin Dl protein in epithelial ovarian tumour cells. Br J Cancer 81:1174-1181, 1999
    61. Barrette BA, Srivatsa PJ, Cliby WA, et al:Overexpression of p34cdc2 protein kinase in epithelial ovarian carcinoma. Mayo Clin Proc 72:925-929,1997
    62. Bao R, Connolly DC, Murphy M, et al:Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst 94:522-528,2002
    63. Yu Y, Xu F, Peng H, et al:NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A 96:214-219,1999
    64. Michalovitz D, Halevy O, Oren M:p53 mutations:Gains or losses? J Cell Biochem 45:22-29,1991
    65. Skilling JS, Squatrito RC, Connor JP, et al:p53 gene mutation analysis and antisense-mediated growth inhibition of human ovarian carcinoma cell lines. Gynecol Oncol 60:72-80,1996
    66. Marks JR, Davidoff AM, Kerns BJ, et al:Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res 51:2979-2984,1991
    67. Kerner R, Sabo E, Gershoni-Baruch R, et al:Expression of cell cycle regulatory proteins in ovaries prophylactically removed from Jewish Ashkenazi BRCA1 and BRCA2 mutation carriers:Correlation with histopathology. Gynecol Oncol 99:367-375,2005
    68. Cheng JQ, Godwin AK, Bellacosa A, et al:AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A 89:9267-9271,1992
    69. Hu L, Hofmann J, Lu Y, et al:Inhibition of phosphatidylinositol 3-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 62:1087-1092,2002
    70. Dinulescu DM, Ince TA, Quade BJ, et al:Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63-70,2005
    71. Deregowski V, Delhalle S, Benoit V, et al:Identification of cytokine-induced nuclear factorkappaB target genes in ovarian and breast cancer cells. Biochem Pharmacol 64:873-881,2002
    72. Huang S, Robinson JB, Deguzman A, et al:Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60:5334-5339,2000
    73. Landen CN, Klingelhutz A, Coffin JE, et al:Genomic instability is associated with lack of telomerase activation in ovarian cancer. Cancer Biol Ther 3:1250-1253, 2004
    74. Poremba C, Heine B, Diallo R, et al:Telomerase as a prognostic marker in breast cancer:High-throughput tissue microarray analysis of hTERT and hTR. J Pathol 198:181-189,2002
    75. Donninger H, Bonome T, Radonovich M, et al:Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene 23:8065-8077,2004
    76. Yang G, Rosen DG, Mercado-Uribe I, et al:Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis 28:174-182, 2007
    77. Zhou C, Liu J:Inhibition of human telomerase reverse transcriptase gene expression by BRCA1 in human ovarian cancer cells. Biochem Biophys Res Commun 303:130-136,2003
    78. Sorlie T, Perou CM, Tibshirani R, et al:Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869-10874,2001
    79. Wang E, Ngalame Y, Panelli MC, et al:Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 11:113-122,2005
    80. Folkman J:Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27-31,1995
    81. Folkman J:The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65-71, 1992 112. Frumovitz M, Sood A:Vascular Endothelial Growth Factor (VEGF) Pathway as a Therapeutic Target in Gynecologic Malignancies. Gynecol Oncol 104:768-778,2007
    82. Frumovitz M, Sood A:Vascular Endothelial Growth Factor (VEGF) Pathway as a Therapeutic Target in Gynecologic Malignancies. Gynecol Oncol 104:768-778, 2007
    83. Connolly DT, Heuvelman DM, Nelson R, et al:Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470-1478,1989
    84. Senger DR, Galli SJ, Dvorak AM, et al:Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983-985,1983
    85. Yoneda J, Kuniyasu H, Crispens MA, et al:Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90:447-454,1998 116. Paley PJ, Staskus KA, Gebhard K, et al: Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80:98-106,1997
    87. Cooper BC, Ritchie JM, Broghammer CL, et al:Preoperative serum vascular endothelial growth factor levels:Significance in ovarian cancer. Clin Cancer Res 8:3193-3197,2002
    88. Xu L, Fidler IJ:Interleukin 8:an autocrine growth factor for human ovarian cancer. Oncol Res 12:97-106,2000
    89. Lokshin AE, Winans M, Landsittel D, et al:Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol 102:244-251,2006
    90. Davidson B, Goldberg I, Reich R, et al:AlphaⅤ-and betal-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol 90:248-257,2003
    91. Thaker PH, Deavers M, Celestino J, et al:EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145-5150,2004
    92. Landen CN, Jr., Chavez-Reyes A, Bucana C, et al:Therapeutic EphA2 Gene Targeting In vivo Using Neutral Liposomal Small Interfering RNA Delivery. Cancer Res 65:6910-6918,2005
    93. Landen CN, Jr., Lu C, Han LY, et al:Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 98:1558-1570,2006
    94. Jung YD, Ahmad SA, Akagi Y, et al:Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer Metastasis Rev 19:147-157,2000
    95. Lu C, Bonome T, Li Y, et al:Gene alterations identified by expression profiling in tumorassociated endothelial cells from invasive ovarian carcinoma. Cancer Res 67:1757-1768,2007
    96. Belotti D, Paganoni P, Manenti L, et al:Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells:Implications for ascites formation. Cancer Res 63:5224-5229,2003
    97. Naylor MS, Stamp GW, Davies BD, et al:Expression and activity of MMPS and their regulators in ovarian cancer. Int J Cancer 58:50-56,1994
    98. Herrera CA, Xu L, Bucana CD, et al:Expression of metastasis-related genes in human epithelial ovarian tumors, Int J Oncol 20:5-13,2002
    99. Kamat AA, Fletcher M, Gruman LM, et al:The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res 12:1707-1714,2006
    100. Huang S, Van Arsdall M, Tedjarati S, et al:Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94:1134-1142,2002
    101. Thaker PH, Han LY, Kamat AA, et al:Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939-944, 2006
    102. Sood AK, Bhatty R, Kamat AA, et al:Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 12:369-375,2006
    103. Antoni MH, Lutgendorf SK, Cole SW, et al:The influence of bio-behavioral factors on tumor biology:Pathways and mechanisms. Nat Rev Cancer 6:240-248,2006
    104. Ben-Hur H, Gurevich P, Huszar M, et al:Apoptosis and apoptosis-related proteins (Fas, Fas ligand, Blc-2, p53) in lymphoid elements of human ovarian tumors. Eur J Gynaecol Oncol 21:141-145,2000
    105. Paul P, Rouas-Freiss N, Khalil-Daher I, et al:HLA-G expression in melanoma:A way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A 95:4510-4515,1998
    106. Bukovsky A:Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc Res Tech 69:482-500,2006
    107. Nash MA, Ferrandina G, Gordinier M, et al:The role of cytokines in both the normal and malignant ovary. Endocr Relat Cancer 6:93-107,1999
    108. Zhang L, Conejo-Garcia JR, Katsaros D, et al:Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203-213,2003
    109. Coukos G, Conejo-Garcia JR, Roden RB, et al:Immunotherapy for gynaecological malignancies. Expert Opin Biol Ther 5:1193-1210,2005
    110. Fidler IJ:The pathogenesis of cancer metastasis:The'seed and soil'hypothesis revisited. Nat Rev Cancer 3:453-458,2003
    111. Emerich J, Konefka T, Dudziak M, et al:[The value of peritoneal cytology in the staging of ovarian cancer]. Ginekol Pol 68:74-77,1997
    112. Hood JD, Cheresh DA:Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91-100,2002
    113. Carreiras F, Rigot V, Cruet S, et al:Migration properties of the human ovarian adenocarcinoma cell line IGROV1:importance of alpha(v) beta3 integrins and vitronectin. Int J Cancer 80:285-294,1999
    114. Sundfeldt K:Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol Cell Endocrinol 202:89-96,2003
    115. Halder J, Kamat AA, Landen CN, Jr., et al:Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 12:4916-4924,2006
    116. Sundfeldt K, Piontkewitz Y, Ivarsson K, et al:E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer 74:275-280,1997
    117. Hede K. Environmental protection:studies highlight importance of tumor microenvironment. J Natl Cancer Inst,2004,96(15):1120-1121.
    118. Brown JM. Tumor microenvironment and the response to anticancer therapy.Cancer Biol Ther,2002,1(5):453-458.
    119. Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nat Rev Cancer,2003,3(6):453-458.
    120. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer:senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005; 118:485-96.
    121. Campisi J, d'Adda di Fagagna F. Cellular senescence:when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40.
    122. Shan W, Yang G, Liu J. The inflammatory network:bridging senescent stroma and epithelial tumorigenesis. Front Biosci 2009; 14:4044-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700