HER2基因和mdr1基因高表达肿瘤细胞对力达霉素的药物敏感性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HER2受体是人类表皮生长因子受体家族四个成员之一,该受体被磷酸化后主要引起MAPK和P13K/Akt二个下游细胞信号通路的激活,在细胞的生长、分化和凋亡等生理活动中发挥重要作用。HER2在多种肿瘤中都有较高的表达,HER2高表达的肿瘤患者预示着对化疗的抗性、较高的恶性程度、较高的复发率和较短的生存期。肿瘤患者对化疗药物的敏感性还和肿瘤细胞HER2是否高表达有关系。
     肿瘤细胞多药抗药(multidrug resistance,MDR)是肿瘤化疗失败的重要原因,而由mdr1基因编码的P-gp(P-glycoprotein)蛋白介导的多药抗药则是经典的多药抗药机制。P-gp作为跨膜蛋白,对天然的疏水性抗肿瘤药物有较强的外排作用,导致细胞内药物浓度下降,降低了药物对肿瘤生长的抑制作用。
     力达霉素(Lidamycin,LDM)是本研究室从一株放线菌(Streptomycesglobisporus sp.C-1027)代谢产物中获得的对肿瘤细胞有强烈杀伤作用的大分子肽类抗肿瘤抗生素。本研究分别构建了HER2和mdr1基因的真核表达质粒,通过转染分别获得了HER2和mdr1高表达的肿瘤细胞株,并用来探讨力达霉素对HER2和mdr1高表达的肿瘤细胞的抗肿瘤活性。
     一、LDM与HER2高表达乳腺癌细胞药物敏感性的关系
     本研究构建了能在真核细胞表达HER2的真核表达质粒pcDNA3.1/HER2。把该质粒转染到HER2低表达的乳腺癌MCF-7细胞,获得了稳定高表达HER2的MCF-7/HER2细胞,同时获得了用空白质粒pcDNA3.1转染的作为对照的细胞株MCF-7/plasmid细胞。单克隆MCF-7/HER2细胞经RT-PCR和Western blot分析表明,HER2的mRNA和蛋白p185~(HER2)表达水平大约均是MCF-7/plasmid细胞的50倍。细胞免疫荧光分析证实了MCF-7/HER2细胞p185~(HER2)蛋白高表达并且
The HER2 gene is one of the most studied molecules in the field of cancer research. The HER2 gene encodes a 185-kDa transmembrane glycoprotein which belongs to the epidermal growth factor receptor family. The activated HER2 receptor can mediate the signal transduction of MAPK and PI3K/Akt pathways, which play a crucial role in cell growth, differentiation, and apoptosis. The HER2 gene is amplified and/or overexpressed in many types of human malignancies. Patients with overexpressed HER2 predict a reduced disease-free and overall survival, a poor clinical outcome. Overexpressing HER2 confers cancer cells increased resistance to various cancer therapies.
    Multidrug resistance (MDR) is one of the biggest obstacles to success in tumor chemotherapy. Overespressing of P-glycoprotein (P-gp) encoded by mdr1 gene is the classic mechanism of causing MDR. As an integral part of plasma membrane, P-gp acts as a drug efflux pump that actively extrudes drugs from tumor cells, thereby decreasing the concentration of chemotherapeutic agents in cancer cells.
    Lidamycin (LDM), an antibiotic produced by Streptomyces globisporus strain which was isolated in our lab, displayed extremely potent cytotoxicity against tumor cells.
    Plasmid pcDNA3.1/HER2 and pcDNA3.1/mdrl were conctructed, stably transfected breast cancer cell MCF-7/HER2 and hepatoma cancer cell HepG2/mdr1 was obtained respectively in this study. We explored the antitumor activity of Lidamycin on cancer cells overexpressing HER2 and mdrl gene.
    1. Chemosensitivity to Lidamycin in Cancer Cells Overexpressing HER2
    Using plasmid pcDNA3.1/HER2 and control plasmid we obtained transfected
引文
1. Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature, 1986; 319(6050): 230-4.
    2. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature, 1986; 45(5): 649-57.
    3. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J, 1996; 15(2): 254-64.4. Sliwkowski MX, Schaefer G, Akita RW, et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem, 1994; 269(20): 14661-5.
    5. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001; 2(2): 127-37.
    6. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 2000; 19(13): 3159-67.
    7. Schlessinger J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science, 2004; 306(5701): 1506-7.
    8. Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 1995; 378(6555): 394-8.
    9. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989; 244(4905): 707-12.
    10. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987; 235(4785): 177-82.
    11. Lohrisch C, Piccart M. An overview of HER2. Semin Oncol, 2001; 28(6 Suppl 18): 3-11.
    12. Tan M, Yao J, Yu D, et al. Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res, 1997; 57(6): 1199-205.
    13. Tsai CM, Chang KT, Perng RP, et al. Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst, 1993; 85(11): 897-901.
    14. Tsai CM, Yu D, Chang KT, et al. Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. J Natl Cancer Inst, 1995;, 87(9): 682-4.
    15. Yu D, Liu B, Tan M, et al. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms.??Oncogene, 1996; 13(6): 1359-65.
    16. Yu D, Liu B, Jing T, et al. Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene, 1998; 16(16): 2087-94.
    17. Pegram MD, Finn RS, Arzoo K, et al. The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene, 1997; 15(5): 537-47.
    18. Orr MS, O'Connor PM, Kohn KW. Effects of c-erbB2 overexpression on the drug sensitivities of normal human mammary epithelial cells. J Natl Cancer Inst, 2000; 92(12): 987-94.
    19. Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol, 1992; 10(7): 1049-56
    20. Muss HB, Thor AD, Berry DA, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med, 1994; 330(18): 1260-6.
    21. Tetu B, Brisson J. Prognostic significance of HER-2/neu oncoprotein expression in node-positive breast cancer. The influence of the pattern of immunostaining and adjuvant therapy. Cancer, 1994; 73(9): 2359-65.
    22. Petit T, Wilt M, Velten M, et al. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase Ⅱ alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer, 2004; 40(2): 205-11.
    23. Zhang F, Yang Y, Smith T, et al. Correlation between HER-2 expression and response to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin, and cyclophosphamide in patients with breast carcinoma. Cancer, 2003; 97(7): 1758-65.
    24. Molitemi A, Menard S, Valagussa P, et al. HER2 overexpression and doxorubicin in adjuvant chemotherapy for resectable breast cancer. J Clin Oncol, 2003; 21 (3): 458-62.25. Ocana A, Rodriguez CA, Cruz JJ. Integrating trastuzumab in the treatment of breast cancer. Current status and future trends. Clin Transl Oncol, 2005; 7(3): 99-100.
    26. Witters LM, Santala SM, Engle L, et al. Decreased response to paclitaxel versus docetaxel in HER-2/neu transfected human breast cancer cells. Am J Clin Oncol, 2003; 26(1): 50-4.
    27. Ciardiello F, Caputo R, Pomatico G, et al. Resistance to taxanes is induced by c-erbB-2 overexpression in human MCF-10A mammary epithelial ceils and is blocked by combined treatment with an antisense oligonucleotide targeting type Ⅰ protein kinase A. Int J Cancer, 2000; 85(5): 710-5.
    28. Tan M, Jing T, Lan KH, et al. Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell, 2002; 9(5): 993-1004
    29. Boudny V, Murakami Y, Nakano S, et al. Expression of activated c-erbB-2 oncogene induces sensitivity to cisplatin in human gallbladder adenocarcinoma cells. Anticancer Res, 1999; 19(6B): 5203-6.
    30. Langton-Webster BC, Xuan JA, Brink JR, et al. Development of resistance to cisplatin is associated with decreased expression of the gp185c-erbB-2 protein and alterations in growth properties and responses to therapy in an ovarian tumor cell line. Cell Growth Differ, 1994; 5(12): 1367-72.
    31. Arteaga CL, Winnier AR, Poirier MC, et al. p185c-erbB-2 signal enhances cisplatin-induced cytotoxicity in human breast carcinoma cells: association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res, 1994; 54(14): 3758-65.
    32. Tanabe K, Kim R, Inoue H, et al. Antisense Bcl-2 and HER-2 oligonucleotide treatment of breast cancer cells enhances their sensitivity to anticancer drugs. Int J Oncol, 2003; 22(4): 875-81.
    33. Marty M, Cognetti F, Maraninchi D, et al. Randomized phase Ⅱ trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer??administered as first-line treatment: the M77001 study group. J Clin Oncol, 2005; 23(19): 4265-74.
    34. Lee S, Yang W, Lan KH, et al. Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res, 2002; 62(20): 5703-10.
    35. Pegram MD, Konecny GE, O'Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst, 2004; 96(10): 739-49.
    36. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene, 1999; 18(13): 2241-51.
    37. Merlin JL, Barberi-Heyob M, Bachrnann N, et al. In vitro comparative evaluation of trastuzumab (Herceptin) combined with paclitaxel (Taxol) or docetaxel (Taxotere) in HER2-expressing human breast cancer cell lines. Ann Oncol, 2002; 13(11): 1743-8.
    38. Gong SJ, Jin CJ, Rha SY, et al. Growth inhibitory effects of trastuzumab and chemotherapeutic drugs in gastric cancer cell lines. Cancer Lett, 2004; 214(2): 215-24.
    39. Guan H, Jia SE Zhou Z, et al. Herceptin down-regulates HER-2/neu and vascular endothelial growth factor expression and enhances taxol-induced cytotoxicity of human Ewing's sarcoma cells in vitro and in vivo. Clin Cancer Res, 2005; 11(5): 2008-17.
    40. Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004; 23(16): 2934-49.
    41. Chang E Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003; 17(3): 590-603.
    42. Huang H, Cheville JC, Pan Y, et al. PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem, 2001; 276(42): 38830-6.43. Jin W, Wu L, Liang K, Liu B, et al. Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br J Cancer, 2003; 89(1): 185-91.
    44. Hovelmann S, Beckers TL, Schmidt M. Molecular alterations in apoptotic pathways after PKB/Akt-mediated chemoresistance in NCI H460 cells. Br J Cancer, 2004; 90(12): 2370-7.
    45. Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003; 22(21): 3205-12.1. Mass RD. The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys, 2004; 58(3): 932-40.
    2. Karunagaran D, Tzahar E, Beedi RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J, 1996; 15(2): 254-64.
    3. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol, 2001; 12 Suppl 1: S3-8.
    4. Ocana A, Roddguez CA, Cruz JJ. Integrating trastuzumab in the treatment of breast cancer. Current status and future trends. Clin Transl Oncol, 2005; 7(3): 99-100.
    5. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a??single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol, 2002; 20(3):719-26.
    
    6. Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer, 2002; 9(2):75-85.
    
    7. Cho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003; 421(6924):756-60.
    
    8. Agus DB, Gordon MS, Taylor C, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol, 2005; 23(11):2534-43.
    
    9. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004; 304(5676): 1497-500.
    
    10. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 2004; 350(21):2129-39.
    
    11. Kim S, Schiff BA, Yigitbasi OG, et al. Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol Cancer Ther, 2005; 4(4):632-40.
    
    12. Burris HA 3rd, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol, 2005; 23(23):5305-13.
    
    13. Campos S, Hamid O, Seiden MV, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol, 2005; 23(24):5597-604.
    
    14. Nunes M, Shi C, Greenberger LM. Phosphorylation of extracellular signal-regulated kinase 1 and 2, protein kinase B, and signal transducer and activator of transcription 3 are differently inhibited by an epidermal growth factor receptor inhibitor, EKB-569, in tumor cells and normal human keratinocytes. Mol Cancer Ther, 2004; 3(l):21-7.
    
    15. Zhang L, Hung MC. Sensitization of HER-2/neu-overexpressing non-small celllung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene, 1996; 12(3): 571-6.
    16. Zhang L, Lau YK, Xia W, et al. Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res, 1999; 5(2): 343-53.
    17.黄云虹 力达霉素克服肿瘤细胞多药抗药性的研究以及新型抗肿瘤生化调节剂的探索 中国协和医科大学博士论文 2002
    18. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst, 2004; 96(12): 926-35.
    19. Gee JM, Harper ME, Hutcheson IR, et al. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology, 2003; 144(11): 5105-17.
    20. Pegram MD, Konecny GE, O'Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst, 2004; 96(10): 739-49.
    21. Pegram MD, Pienkowski T, Northfelt DW, et al. Results of two open-label, multicenter phase Ⅱ studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst, 2004; 96(10): 759-69.
    22. Zhang L, Chang CJ, Bacus SS, et al. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res, 1995; 55(17): 3890-6.
    23. Zhang L, Lau YK, Xi L, et al. Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties. Oncogene, 1998; 16(22): 2855-63.
    24. Schulte TW, An WG, Neckers LM. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun, 1997; 239(3): 655-9.25. Webb CP, Hose CD, Koochekpour S, et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res, 2000; 60(2): 342-9.
    26. Schnur RC, Corman ML, Gallaschun RJ, et al. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem, 1995; 38(19): 3806-12.
    27. Basso AD, Solit DB, Munster PN, et al. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002; 21(8): 1159-66.
    28. Munster PN, Basso A, Solit D, et al. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB-and schedule-dependent manner. Clin Cancer Res, 2001; 7(8): 2228-36.
    29. Solit DB, Basso AD, Olshen AB, et al. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res, 2003; 63(9): 2139-44.
    30. Nguyen DM, Lorang D, Chen GA, et al. Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg, 2001; 72(2): 371-8.
    31. Bagatell R, Beliakoff J, David CL, et al. Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int J Cancer, 2005; 113(2): 179-88.1. Baker EK, E1-Osta A. The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res, 2003; 290(2): 177-94.
    2. Sparreboom A, Danesi R, Ando Y, et al. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat, 2003; 6(2): 71-84.
    3. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 1976; 455: 152-162
    4. Ueda K, Clark DE Chen CJ, et al. The human multidrug resistance (mdr1) gene??cDNA cloning and transcription initiation. J Biol Chem, 1987; 262(2):505-8.
    
    5. Ruetz S, Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell, 1994; 77(7): 1071-81.
    
    6. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell, 1991; 66(l):85-94.
    
    7. Israeli D, Ziaei S, Gonin P, et al. A proposal for the physiological significance of mdr1 and Bcrpl/Abcg2 gene expression in normal tissue regeneration and after cancer therapy. J Theor Biol, 2005; 232(l):41-5.
    
    8. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol, 1999; 39:361-98.
    
    9. Jamroziak K, Smolewski P, Cebula B, et al. Relation of P-glycoprotein expression with spontaneous in vitro apoptosis in B-cell chronic lymphocytic leukemia. Neoplasma, 2004; 51(3): 181-7.
    
    10. Jamroziak K, Robak T. Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology, 2004; 9(2):91-105.
    
    11. Torigoe K, Harada T, Kusaba H, et al. Localization of 67 exons on a YAC contig spanning 1.5 Mb around the multidrug resistance gene region of human chromosome 7q21.1. Genomics, 1998; 49(l):14-22.
    
    12. Torigoe K, Sato S, Kusaba H, et al. A YAC-based contig of 1.5 Mb spanning the human multidrug resistance gene region and delineating the amplification unit in three human multidrug-resistant cell lines. Genome Res, 1995; 5(3):233-44.
    
    13. Tada Y, Wada M, Kuroiwa K, et al. MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res, 2000; 6(12):4618-27.
    
    14. Desiderato L, Davey MW, Piper AA. Demethylation of the human MDR1 5' region accompanies activation of P-glycoprotein expression in a HL60 multidrug resistant subline. Somat Cell Mol Genet, 1997; 23(6):391-400.
    15. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene, 2003; 22(47):7512-23.
    
    16. Xu YJ, Li DD, Zhen YS. Mode of action of c-1027,a new macromolecular antitumor antibiotic with highly potent cytotoxicity, on human hepatoma Bel-7402 cells. Cancer Chemother Pharmacol, 1990;27:41-46
    
    17. Jiang B, Li DD, Zhen YS. Induction of apoptosis by enediyne antitumor antibiotic c-1027 in HL-60 human promyleocytic leukemia cells. Biochem Biophys Res Commun, 1995;208:238-244
    
    18. Sugimito Y, Otani T, Oier S, et al. Mechanism of action of a new macromolecular antitumor antibiotic, c-1027. J. Antibiotic, 1990; 43:417-421
    
    19. Nicolaou KC, Smith AL, Yue EW. Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci USA, 1993; 90(13):5881-8.
    
    20. Schor NF, Tyurina YY, Fabisiak JP, et al. Selective oxidation and externalization of membrane phosphatidylserine: Bcl-2-induced potentiation of the final common pathway for apoptosis. Brain Res, 1999; 831(1-2): 125-30.
    
    21. Nicolaou KC, Dai WM, Tsay SC, et al. Designed enediynes: a new class of DNA-cleaving molecules with potent and selective anticancer activity. Science, 1992; 256(5060): 1172-8.
    1. Shih C, Padhy LC, Murray M, et al.. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 1981; 290(5803): 261-264.
    2. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth??factor receptor and v-erb-B oncogene protein sequences. Nature, 1984; 307(5951):521-7.
    
    3. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature, 1984; 312(5994):513-6.
    
    4. Prenzel N, Fischer OM, Streit S, et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer, 2001; 8(1):11-31.
    
    5. Cho HS, Leahy DJ. Structure of the extracellular region of HER3 reveals an interdomain tether. Science, 2002; 297(5585): 1330-3.
    
    6. Garrett TP, McKern NM, Lou M, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell, 2002; 110(6):763-73.
    
    7. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002; 110(6):775-87.
    
    8. Graus-Porta D, Beerli RR, Daly JM, et al. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J, 1997; 16(7):1647-55.
    
    9. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J, 1998; 17(12):3385-97.
    
    10. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem, 1999; 274(13):8865-74.
    
    11. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett, 1999; 447(2-3):227-31.
    
    12. Pinkas-Kramarski R, Shelly M, Guarino BC, et al. ErbB tyrosine kinases and the two neuregulin families constitute a ligand-receptor network. Mol Cell Biol, 1998; 18(10):6090-101.
    
    13. Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene,1995; 10(9):1813-21.
    
    14. Sweeney C, Lai C, Riese DJ 2nd, et al. Ligand discrimination in signaling throughan ErbB4 receptor homodimer. J Biol Chem, 2000; 275(26): 19803-7.
    
    15. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2000; 103(2):211-25.
    
    16. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys, 2004; 58(3):903-13.
    
    17. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001; 2(2):127-37.
    
    18. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003; 17(3):590-603.
    
    19. Lee RJ, Albanese C, Fu M, et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol, 2000; 20(2):672-83.
    
    20. Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3beta regulates cyclin Dl proteolysis and subcellular localization. Genes Dev, 1998;12(22):3499-511
    
    21. Wen Y, Hu MC, Makino K, et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res, 2000; 60(24):6841-5.
    
    22. Waterman H, Yarden Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett, 2001; 490(3):142-52.
    
    23. Fiorini M, Alimandi M, Fiorentino L, et al. Negative regulation of receptor tyrosine kinase signals. FEBS Lett, 2001; 490(3): 132-41.
    
    24. Fiorini M, Ballaro C, Sala G, et al. Expression of RALT, a feedback inhibitor of ErbB receptors, is subjected to an integrated transcriptional and post-translational control. Oncogene, 2002; 21(42):6530-9.
    
    25. Azios NG, Romero FJ, Denton MC, et al. Expression of herstatin, an autoinhibitor of HER-2/neu, inhibits transactivation of HER-3 by HER-2 and blocks EGF activation of the EGF receptor. Oncogene, 2001; 20(37):5199-209.
    
    26. Lee H, Akita RW, Sliwkowski MX, et al. A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res, 2001; 61(ll):4467-73.
    
    27. Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 1995; 378(6555):394-8.
    28. Lohrisch C, Piccart M. An overview of HER2. Semin Oncol, 2001; 28(6 Suppl 18):3-11.
    
    29. Winston JS, Ramanaryanan J, Levine E. HER-2/neu evaluation in breast cancer, are we there yet? Am J Clin Pathol, 2004; 121 Suppl:S33-49.
    
    30. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature, 2004; 431(7008):525-6.
    
    31. Tsai CM, Chang KT, Perng RP, et al. Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst, 1993; 85(ll):897-901.
    
    32. Tsai CM, Yu D, Chang KT, et al. Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. J Natl Cancer Inst, 1995; 87(9):682-4.
    
    33. Yu D, Liu B, Tan M, et al. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1 -independent mechanisms. Oncogene, 1996;13(6):1359-65
    
    34. Yu D, Liu B, Jing T, et al. Overexpression of both p185c-erbB2 and p170mdr-l enders breast cancer cells highly resistant to taxol. Oncogene, 1998;16(16):2087-94.
    
    35. Pegram MD, Konecny GE, O'Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst, 2004; 96(10):739-49.
    
    36. Pegram MD, Finn RS, Arzoo K, et al. The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene, 1997;15(5):537-47
    
    37. Orr MS, O'Connor PM, Kohn KW. Effects of c-erbB2 overexpression on the drug sensitivities of normal human mammary epithelial cells. J Natl Cancer Inst, 2000; 92(12):987-94
    
    38. Piccart MJ, Di Leo A, Hamilton A. HER2. a 'predictive factor' ready to use in the daily management of breast cancer patients? Eur J Cancer, 2000; 36(14):1755-61.
    
    39. Yamauchi H, Stearns V, Hayes DF. The Role of c-erbB-2 as a predictive factor in breast cancer. Breast Cancer, 2001; 8(3): 171-83.
    
    40. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol, 2001; 19(8):2334-56.
    41. Bast RC Jr, Ravdin P, Hayes DE et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol, 2001; 19(6): 1865-78.
    42.朱建华,江泽飞,宋三泰。HER-2过表达与乳腺癌内分泌治疗临床疗效的关系.国外医学肿瘤学分册,2003;30(2):113—115。
    43. Van Poznak C, Tan L, Panageas KS, et al. Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. J Clin Oncol, 2002; 20(9): 2319-26.
    44. Sjostrom J, Collan J, von Boguslawski K, et al. C-erbB-2 expression does not predict response to docetaxel or sequential methotrexate and 5-fluorouracil in advanced breast cancer, Eur J Cancer. 2002; 38(4): 535-42
    45. Hamilton A, Larsimont D, Paridaens R, et al. A study of the value of p53, HER2, and Bcl-2 in the prediction of response to doxorubicin and paclitaxel as single agents in metastatic breast cancer: a companion study to EORTC 10923. Clin Breast Cancer, 2000; 1 (3): 233-40.
    46. Harris LN, Yang L, Liotcheva V, et al. Induction of topoisomerase Ⅱ activity after ErbB2 activation is associated with a differential response to breast cancer chemotherapy. Clin Cancer Res, 2001; 7(6): 1497-504.
    47. Yu D, Hung MC. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene, 2000; 19(53): 6115-21.
    48. Drebin JA, Link VC, Stem DF, et al. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell, 1985; 41(3): 697-706.
    49. Drebin JA, Link VC, Weinberg RA, et al. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acad Sci U S A, 1986; 83(23): 9129-33.
    50. Drebin JA, Link VC, Greene MI. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene, 1988; 2(3): 273-7.
    51. Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediates anti-tumor effects in vivo. Oncogene, 1988; 2(4): 387-94.
    52. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2??antibody for human cancer therapy. Proc Natl Acad Sci USA, 1992; 89(10):4285-9.
    
    53. Baselga J, Albanell J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol, 2001; 12 Suppl 1:S35-41.
    
    54. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol, 1999; 17(9):2639-48.
    
    55. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol, 2002; 20(3):719-26.
    
    56. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 2001; 344(11):783-92.
    
    57. Motoyama AB, Hynes NE, Lane HA. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res, 2002; 62(ll):3151-8.
    
    58. Agus DB, Akita RW, Fox WD, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002; 2(2): 127-37.
    
    59. Cho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003; 421(6924):756-60.
    
    60. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst, 2001; 93(24): 1852-7.
    
    61. Pegram MD, Pienkowski T, Northfelt DW, et al. Results of two open-labels, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst, 2004; 96(10):759-69
    
    62. Argiris A, Wang CX, Whalen SG, et al. Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin Cancer Res, 2004; 10(4): 1409-20.
    
    63. Gatzemeier U, Groth G, Butts C, et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol, 2004; 15(1): 19-27.
    
    64. Langer CJ, Stephenson P, Thor A, et al. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern CooperativeOncology Group study 2598. J Clin Oncol, 2004; 22(7): 1180-7.
    
    65. Ziada A, Barqawi A, Glode LM, et al. The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate, 2004; 60(4):332-7.
    
    66. Lara PN Jr, Chee KG, LonGDMate J, et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer, 2004; 100(10):2125-31.
    
    67. Agus DB, Gordon MS, Taylor C, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol, 2005; 23(11):2534-43.
    
    68. Franklin MC, Carey KD, Vajdos FF, et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004; 5(4):317-28.
    
    69. Agus DB, Akita RW, Fox WD, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002; 2(2): 127-37.
    
    70. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res, 2004; 64(7):2343-6.
    
    71. Burns HA 3rd, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol, 2005; 23(23):5305-13.
    
    72. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther, 2001; l(2):85-94.
    
    73. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene, 2002; 21(41):6255-63.
    
    74. Wood ER, Truesdale AT, McDonald OB, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res, 2004; 64(18):6652-9.
    
    75. Stamos J, Sliwkowski MX, Eigenbrot C, et al. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem, 2002; 277(48):46265-72.
    76. Mullin RJ, Murray DM, Onori JA, et al. Xenograft response to combination therapy with the ErbB1-ErbB2 tyrosin kinase inhibitor GW572016. Proc Am Assoc Cancer Res, 2004; 45:3823
    
    77. Burris HA 3rd, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol, 2005; 23(23):5305-13.
    
    78. Spector NL, Xia W, Burris H 3~(rd), et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol, 2005; 23(11):2502-12.
    
    79. Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol, 2001; 28(5 Suppl 16):80-5.
    
    80. Fry DW, Bridges AJ, Denny WA, et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc Natl Acad Sci USA, 1998; 95(20): 12022-7.
    
    81. Allen LF, Lenehan PF, Eiseman IA, et al. Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin Oncol, 2002; 29(3 Suppl 11): 11-21.
    
    82. Nelson JM, Fry DW. Akt, MAPK (Erk1/2), and p38 act in concert to promote apoptosis in response to ErbB receptor family inhibition. J Biol Chem, 2001; 276(18): 14842-7.
    
    83. Murakami M, Sasaki T, Yamasaki S, et al. Induction of apoptosis by ionizing radiation and CI-1033 in HuCCT-1 cells. Biochem Biophys Res Commun, 2004; 319(1): 114-9.
    
    84. Nemunaitis J, Eiseman I, Cunningham C, et al. Phase 1 clinical and pharmacokinetics evaluation of oral CI-1033 in patients with refractory cancer. Clin Cancer Res, 2005; ll(10):3846-53.
    
    85. Rabindran SK. Antitumor activity of HER-2 inhibitors. Cancer Lett, 2005; 227(l):9-23.
    
    86. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 2005; 5(5):341-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700