RNA干扰沉默HER2基因的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HER2(Her2/neu)原癌基因是人类表皮生长因子受体2(Human Epidermal Growth Factor Receptor-type 2)的编码基因,所编码的蛋白为185kDa,并具有酪氨酸激酶活性。HER2在人类乳腺癌、卵巢癌、NSCLC、胃癌、结直肠癌等多种癌症中存在扩增及过量表达,并与肿瘤的侵袭性表型及生存期短密切相关。HER2癌基因的致癌机制包括:抑制凋亡,促进存活;促进肿瘤新生血管生成;增加肿瘤细胞的侵袭力等。HER2在20-25%的浸润性乳腺癌中存在过表达,并具有以下特点:(1)HER2水平与乳腺癌的发病及预后具有很强的相关性;(2)HER2在人类癌细胞中的基因扩增水平远远高于正常组织;(3)HER2在肿瘤细胞中以很高的比例存在,高表达HER2的肿瘤通常显示均一的、强烈的免疫组化染色;(4)HER2过表达不仅见于肿瘤原发灶,在转移灶中也有过表达。上述特点提示,抗HER2治疗会以大多数的肿瘤细胞为靶点,而对正常组织的毒性较低,并可能对所有部位的肿瘤都有效。因而HER2在乳腺癌中已成为重要的治疗靶点。
     目前抗HER2治疗的策略有:(1)以HER2蛋白为靶点的治疗,包括外源性阻断抗体、干扰受体异二聚体化抗体、抗HER2疫苗、酪氨酸激酶抑制剂、细胞内单链抗体等,其中曲妥珠单抗(Trastuzumab,Herceptin)是已进入临床应用的人源化单克隆抗体,与化疗联合能增加有效率、延长疾病进展时间及生存期。(2)以HER2基因为靶点的治疗,包括HER2基因启动子转录抑制剂、反义寡核苷酸(antisense oligonucleotides,ASOs)、核酶技术、反义RNA技术等。每种策略各有其优缺点。
     RNA干扰(RNA interference,RNAi)现象是由与靶基因序列同源的双链RNA(double-stranded RNA,dsRNA)引发的广泛存在于生物体中的序列特异性基因转录后的沉默过程。利用RNAi技术可以使mRNA发生特异性的降解,导致其相应的基因沉默,这种转录后基因沉默机制(post-transcriptional gene silencing,PTGS)最终抑制蛋白表达。dsRNA在细胞内发挥作用的是21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs,siRNAs)。由于RNAi对染色体DNA序列的复制和转录过程不产生任何影响,具有高度的序列特异性和抑制基因表达的高效性,而且RNAi的效应可以在不同细胞间长距离传递和维持,或在某些生物中具有遗传性,所以迅速成为一种功能强大的研究哺乳动物中选择性抑制特异性基因表达和研究基因功能的工具。
     本研究目的:探讨RNAi技术沉默HER2基因的效果,以及HER2基因沉默对肿瘤细胞Taxol敏感性、Survivin、VEGF基因表达的影响。研究内容分两部分:
     1.siRNA表达质粒沉默HER2基因及其效果:GenBank查找HER2基因的mRNA序列(GenBank ID:NC-000017),根据siRNA的设计原则,设计出3个针对HER2进行干扰作用的靶点,进行Blast基因同源性分析以保证基因沉默的特异性,RNA Draw软件分析mRNA二级空间结构。靶序列1(基因序列23194-23214):5′-TCTCTGCGGTGGTTGGCATTC-3′,命名为H1;靶序列2(基因序列6945-6966):5′-GGGAAACCTGGAACTCACCTAC-3′,命名为H2;靶序列3(基因序列27229-27251):5′-AAGGGGCTGGCTCCGATGTATTT-3′,命名为H3;无义对照目标基因序列:5′-GACTTCATAAGGCGCATGC-3′,命名为CON。人工合成各单链DNA片段,退火形成发夹状siRNA DNA双链,插入到pGenesil-1 vector U6的BamHⅠ和EcoRⅠ之间。重组体转化大肠杆菌DH5α,筛选kana抗性克隆,提取质粒,分别对构建的表达载体pGenesil-1质粒(H1、H2、H3和CON)进行测序,经测序鉴定,确认得到的序列为所需序列。采用METAFECTENE转染试剂转染HER2高表达乳腺癌细胞株SK-BR-3及卵巢癌细胞株SK-OV-3,转染后72小时,实验细胞加入G418终浓度为250μg/ml的完全RPMI-1640培养液。筛选3周后大部分细胞死亡,存活的细胞为转染质粒稳定表达的细胞。细胞筛选出来后,采用RT-PCR和Western Blot法观察HER2基因的沉默效果;CCK-8比色分析检测细胞体外增殖活力及对Taxol的敏感性;流式细胞仪检测细胞周期。
     HER2特异性siRNA稳定转染SK-BR-3细胞后,SK-BR-3细胞形态学上表现为皱缩、变圆、脱落;筛选出的阳性克隆生长非常慢,难以形成单层贴壁状态,表明3个特异性HER2 siRNA对SK-BR-3细胞均有显著的生长抑制作用。但因细胞生长缓慢,未能扩大培养进行进一步检测。
     HER2特异性siRNA稳定转染SK-OV-3细胞后,细胞形态与亲本细胞相似,但生长速度较缓慢。RT-PCR和Western Blot检测结果显示:转染了特异性HER2 siRNA的细胞HER2 mRNA及p185蛋白水平均明显低于亲本细胞及转染无义对照序列的细胞;CCK-8比色分析显示HER2基因沉默的细胞存活分数明显低于HER2基因高表达的细胞(P=0.000);流式细胞仪细胞周期分析也显示,HER2基因沉默的细胞处于凋亡状态及非增殖期的比例明显增加(P均<0.01),而处于合成期的比例却显著减少(P≤0.001),细胞周期主要阻滞于G0/G1期。HER2基因沉默的SK-OV-3细胞Taxol剂量反应曲线右移,IC50值也明显升高,对Taxol的敏感性下降。
     2.HER2基因沉默对Survivin、VEGF基因表达的影响:采用RT-PCR和Western Blot法检测转染了特异性HER2 siRNA的SK-OV-3细胞Survivin与VEGF mRNA及相应蛋白的表达水平。结果显示HER2基因沉默的SK-OV-3细胞Survivin与VEGF mRNA及相应蛋白的表达均明显受抑制。
     结论:1.HER2特异性siRNA表达质粒对SK-BR-3细胞具有显著的生长抑制作用。
     2.HER2特异性siRNA表达质粒能够从mRNA及蛋白水平稳定、持久地沉默SK-OV-3细胞的HER2基因。
     3.HER2基因沉默可使SK-OV-3细胞增殖减慢,凋亡率增加,细胞周期阻滞于G0/G1期。
     4.HER2基因沉默可使SK-OV-3细胞对Taxol的敏感性下降。以HER2基因为靶点的RNAi治疗与Taxol化疗联合治疗卵巢癌需慎重。
     5.HER2基因沉默可在转录及翻译水平上抑制SK-OV-3卵巢癌细胞株Survivin与VEGF基因的表达。HER2的抑制凋亡、促进肿瘤新生血管生成作用至少部分是通过上调Survivin与VEGF基因来实现的。
The HER2 gene is a member of the epidermal growth factor (EGF)-receptor (EGFR) family and encodes a 185 kDa protein with tyrosine kinase activity. The amplification or enhanced transcription of the HER2 gene is associated with the oncogenesis or increased severity of several types of cancers. The HER2 protein can dimerize with other members of the EGFR family, and it is thought that overexpression of the HER2 gene product provides mitogenic signals to tumor cells, resulting in increased growth potential and rendering them resistant to apoptotic factors. Overexpression of HER2 occurs primarily through amplification of the wild-type HER2 gene and is associated with poor disease-free survival and may be associated with resistance to certain types of chemotherapy.
    HER2 has become an important therapeutic target in breast cancer for several reasons. (1) HER2 levels correlate strongly with the pathogenesis and prognosis of breast cancer. (2) The level of HER2 in human cancer cells with gene amplification is much higher than that in normal adult tissues, potentially reducing the toxicity of HER2 -targeting drugs. (3) HER2 is present in a very high proportion of tumor cells, and tumors with high expression often show uniform, intense immunohistochemical staining, suggesting that anti- HER2 therapy would target most cancer cells in a given patient. (4) HER2 overexpression is found in both the primary tumor and metastatic sites, indicating that anti- HER2 therapy may be effective in all disease sites.
    HER2-targeting strategies include:(1) Strategies target HER2 protein, include exogenous blocking antibodies, heterdimerization disrupting antibodies, endogenous blocking antibodies induced by HER2 specific vaccines, tyrosine kinase inhibitors, single chain antibodies, etc. Trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2, is currently used for clinical therapy. Trastuzumab combined with chemotherapy increases response rates, time to progression, and survival. However, the majority of cancers that initially respond to trastuzumab begin to progress again within 1 year. (2) Strategies target HER2 gene, such as transcription repressors, antisense oligonucleotides, ribozymes, antisense RNA, etc. Each strategy has its advantages and disadvantages.
    RNA interference (RNAi) is a form of post-transcriptional gene silencing(PTGS) in which double-stranded RNA(ds RNA) induces degradation of the homologous endogenous transcripts, mimicking the effect of the reduction, or loss, of gene activity. Small interfering RNAs (siRNAs) of approximately 21-23bp mediate this sequence-specific mRNA degradation. RNAi blocks the expression of endogenous gene in a sequence-specific and high-effective manner. Its effects can be delivered between cells, even are hereditary. These characteristics make it a high-selective and powerful strategy for gene therapy and gene functional study.
    In our study, we constructed 3 siRNAs against separate regions of the HER2 mRNA, whose sequences are 5'-TCTCTGCGGTGGTTGGCATTC -3' (named H1), 5'-GGGAAACCTGGAACTCACCTAC -3' (named H2), 5'-AAGGGGCTGGCTCCGATGTATTT -3' (named H3), separately; and one nonsense control sequence 5'-GACTTCATAAGGCGCATGC -3' (named CON). They were directed into plasmids- pGenesil-1 vector. DNA sequencing of the plasmids verified the successful construction of 3 HER2-specific and one control siRNA vectors. Then, they were transfected into HER2- positive tumor cells, SK-BR-3 and SK-OV-3, with METAFECTENE. Positive clones of infected cells were selected for 21 days using G418 (250μg /ml). The ability of siRNAs to downregulate HER2 expression was detected by RT-PCR and Western blot. CCK- 8(Cell counting kit- 8) colorimetry was used for growth assays and taxol (paclitaxel) resistance detection. Cell cycle analysis was done with flow cytometry.
    After stable transfection with HER2-specific siRNAs, SK-BR-3 cells became wrinkled, rounded, some sheded from the growing surface under microscopy. The positive clones grew too slow to form a layer on the growing surface, which indicated significant growth suppression of HER2-specific siRNAs to SK-BR-3 cells. Further detections to these clones were not done because of the difficulty to acquire enough cells.
    Stable transfection with HER2-specific siRNAs in SK-OV-3 cells resulted in slower growth while similar morphology to parental cells. Detections with RT-PCR and Western Blot showed sequence-specific decrease in HER2 mRNA and protein levels. Survival fractions of HER2 gene silenced cells were statistically decreased compared with HER2 gene highly expressed cells (P =0.000). Cell cycle analysis showed increased numbers of HER2 gene silenced cells in non-proliferative and apoptotic stages (P all lower than 0.01), while decreased number in synthetic stage compared with those of HER2 gene highly expressed cells (P ≤0.001). The cell cycles of HER2 gene silenced cells mainly arrested at G0/G1. siRNAs treatment also resulted in markedly increased cellular taxol resistance in SK-OV-3 cells, consistent with a powerful RNA silencing effect.
    Knockdown of HER2 expression by siRNAs was also associated with decreased expression of apoptosis inhibitor survivin and the pro-angiogenic vascular endothelial growth factor(VEGF), suggesting that HER2 stimulates tumor growth at least in part by regulating apoptosis and angiogenesis. siRNA-mediated gene silencing of HER2 and decreasing the expressions of survivin and VEGF may be a useful therapeutic strategy for HER2-overexpressing breast or ovarian cancer.
    Conclusions: 1. Transfection with HER2-specific siRNA plasmids can suppress the growth of SK-BR-3 cells.
    2. Transfection with HER2-specific siRNA plasmids resulted in sequence-specific decrease in HER2 mRNA and protein levels stably and permanently in SK-OV-3 cells.
    3. HER2 gene silencing by HER2-specific siRNAs transfection resulted in antiproliferative and apoptotic responses in SK-OV-3 cells, caused cell cycle arrest at G0/G1.
    4. HER2 gene silencing also resulted in markedly increased cellular taxol resistance in SK-OV-3 cells.
    5. Knockdown of HER2 expression by siRNAs was also associated with decreased expression of apoptosis inhibitor survivin and the pro-angiogenic vascular endothelial growth factor(VEGF), suggesting that HER2 stimulates tumor growth at least in part by regulating apoptosis and angiogenesis.
引文
1. Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985; 230: 1132-9.
    2. Popescu NC, King CR, Kraus MH. Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 1989; 4(3): 362-6.
    3. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986; 319(6050): 226-30.
    4. Akiyama T, Kadooka T, Ogawara H, Sakakibara S. Characterization of the epidermal growth factor receptor and the erbB oncogene product by site-specific antibodies. Arch Biochem Biophys. 1986; 245(2): 531-6.
    5. Pauletti G, Godolphin W, Press MF, Slamon DJ. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996; 13(1): 63-72.
    6. Pierce JH, Amstein P, DiMarco E, et al. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene. 1991; 6(7): 1189-94.
    7. Lofts FJ, Gullick WJ. c-erbB2 amplification and overexpression in human tumors. Cancer Treat Res. 1992; 61: 161-79.
    8. Santin AD, Bellone S, Van Stedum S, et al. Determination of HER2/neu status in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol. 2005; 98(1): 24-30.
    9. Hogdall EV, Christensen L, Kjaer SK, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer. 2003; 98(1): 66-73.
    10. Schneider PM, Hung MC, Chiocca SM, et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 1989; 49(18): 4968-71.
    11. Scholl S, Beuzeboc P, Pouillart P. Targeting HER2 in other tumor types. Ann Oncol. 2001;12 Suppl 1:S81-7.
    12. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177-82.
    13. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):966-78.
    14. Ross JS, Fletcher JA, Bloom KJ, et al. HER-2/neu testing in breast cancer. Am J Clin Pathol. 2003;120 Suppl:S53-71. Review.
    15. Wright C, Nicholson S, Angus B, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992;65(1):118-21.
    16. Borg A, Baldetorp B, Ferno M, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 1994 Jun 30;81(2):137-44.
    17. Yamauchi H, O'Neill A, Gelman R, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997;15(7):2518-25.
    18. De Laurentiis M, Arpino G, Massarelli E, et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11(13):4741-8.
    19. Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology. 2001;61 Suppl 2:73-82. Review.
    20. Muss HB, Thor AD, Berry DA, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med. 1994;330(18): 1260-6.
    21. Petit T, Borel C, Ghnassia JP, et al. Chemotherapy response of breast cancer depends on HER-2 status and anthracycline dose intensity in the neoadjuvant setting. Clin Cancer Res. 2001;7(6):1577-81.
    22. Del Mastro L, Bruzzi P, Nicolo G, et al. HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. Br J Cancer. 2005;93(1):7-14.
    23. Dressier LG, Berry DA, Broadwater G, et al. Comparison of HER2 status by fluorescence in situ hybridization and immunohistochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J Clin Oncol. 2005;23(19):4287-97.
    24. Konecny GE, Thomssen C, Luck HJ, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96(15):1141-51.
    25. Eccles SA. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):393-406.
    26. Paik S, Hazan R, Fisher ER, et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol. 1990;5: 103-112.
    27. Niehans GA, Singleton TP, Dykoski D, Kiang DT. Stability of HER-2/neu expression over time and at multiple metastatic sites. J Natl Cancer Inst. 1993;85: 1230-1235.
    28. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639-48.
    29. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719-26.
    30. Mehra R, Burtness B. Antibody therapy for early-stage breast cancer: trastuzumab adjuvant and neoadjuvant trials. Expert Opin Biol Ther. 2006;6(9):951-62. Review.
    31. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673-84.
    32. Piccart-Gebhart MJ, Procter M, Leyland-Jones B , et al, the Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med. 2005; 353:1659-1672.
    33. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-11.
    34. Grishok A, Mello CC. RNAi (Nematodes: Caenorhabditis elegans). Adv Genet. 2002;46:339-60. Review.
    35. Putral LN, Gu W, McMillan NA. RNA interference for the treatment of cancer. Drug News Perspect. 2006;19(6):317-24.
    36. Ambrus JL Sr, Chadha KC, Islam A, et al. Treatment of viral and neoplastic diseases with double-stranded RNA derivatives and other new agents. Exp Biol Med (Maywood). 2006;231(8): 1283-6. Review.
    37. Choudhury A, Charo J, Parapuram SK, et al. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer. 2004;108(1):71-77.
    38. Faltus T, Yuan J, Zimmer B, et al. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia. 2004;6(6):786-795.
    39. Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004,279(6):4339-4345.
    40. Yuan B, Latek R, Hossbach M , et al. siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 2004;32(Web Server issue): W130-4.
    41. Xiaowei Wang, Brian Seed. A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Research. 2003; 31(24): e154; pp.1-8.
    42. Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995; 81:611-20.
    43. Fire A, Xu S, Mello CC.et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806-l 1.
    44. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cell. Nature. 2000;404 (6775): 293-6.
    45. ScherrM, MorganMA, EderM. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. 2003; 10 (3): 245.
    46. Elbashir SM, Harborth J , LendeckelW, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411(6836):494.
    47. Bernstein E, CaudyAA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363.
    48. Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA. 2002;8(7):855.
    49. Hannon GJ. RNA interference. Nature. 2002;418(6894):244.
    50. Elbashir SM, LendeckelW, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188.
    51. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNAat 21 to 23 nucleotide intervals. Cell. 2000;101 (1):25.
    52. Zamore PD. RNA interference: listening to the sound of silence. Nat Struct Biol. 2001;8(9):746.
    53. Yang D, Lu H, Erickson JW, et al. Evidence that processed small dsRNAsmay mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol. 2000;10(19):1191.
    54. Philip J. Moos, F. A. Fitzpatrick. Taxane-mediated gene induction is independent of microtubule stabilization: Induction of transcription regulators and enzymes that modulate inflammation and apoptosis. PNAS. 1998;95(7),3896-3901.
    55. Shapiro T, Richardson G. Paclitaxel-induce "recall" soft tissue injury occurring at the site of previous extravesation with subseqent intrav- enous treatment in a different limb. J Clin Oncol, 1994,10:2237-2238.
    56. Yu D, Liu B, Tan M, et al. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1 -independent mechanisms. Oncogene. 1996;13(6):1359-65.
    57. Seidman AD, Baselga J, Yao TJ, et al. HER-2/neu overexpression and clinical taxane sensitivity: a multivariate analysis in patients with metastatic breast cancer (MCB) [abstract 80]. Proc ASCO 1996;15:104.
    58. Gianni L, Capri G, Mezzelani A, et al. HER-2/neu (HER-2) amplification and response to doxorubicin/paclitaxel (AT) in women with metastatic breast cancer [abstract 491]. Proc ASCO 1997;16:139a.
    59. Konecny GE, Thomssen C, Luck HJ, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96(15): 1141-51.
    60. Learn PA, Yeh IT, McNutt M, et al. HER-2/neu expression as a predictor of response to neoadjuvant docetaxel in patients with operable breast carcinoma. Cancer. 2005;103(11):2252-60.
    61. Van Poznak C, Tan L, Panageas KS et al. Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. J Clin Oncol 2002; 20: 2319-2326.
    62. A. Paradiso, A. Mangia, A. Chiriatti, et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Annals of Oncology 2005; 16(Supplement 4):iv14-iv19.
    63. Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998;58(13):2825-31.
    64. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-92.
    65. Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2001;61Suppl 2:14-21.
    66. Brader,1997; Ueno NT, Bartholomeusz C , et al. ElA-mediated paclitaxel sensitization in HER-2/neu-overexpressing ovarian cancer SKOV3.ipl through apoptosis involving the caspase-3 pathway. Clin Cancer Res. 2000;6(1):250-9.
    67. Aigner A, Hsieh SS, Malerczyk C, Czubayko F. Reversal of HER-2 over-expression renders human ovarian cancer cells highly resistant to taxol. Toxicology. 2000;144(l-3):221-8.
    68. Pegram M, Hsu S, Lewis G , et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene. 1999;18(13):2241-51.
    69. Abuharbeid S, Apel J, Zugmaier G , et al. Inhibition of HER-2 by three independent targeting strategies increases paclitaxel resistance of SKOV-3 ovarian carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol. 2005;371(2):141-51.
    70. Aigner A, Hsieh SS, Malerczyk C, Czubayko F. Reversal of HER-2 over-expression renders human ovarian cancer cells highly resistant to taxol. Toxicology. 2000;144(l-3):221-8.
    1. Zhou BP, Hung MC. Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin Oncol. 2003;30(5 Suppl 16):38-48. Review.
    2. Lacasse BC, Baird S, Korneluk RG, et al. The inhibition of apoptosis(1APs) and their emerging role in cancer. Oncogene. 1998;17(25):3247-3259.
    3. Kallio MJ, Nieminen M, Eriksson JE. Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB J 2001;15:2721-3.
    4. Giodini A, Kallio MJ, Wall NR, et al. Regulation of Microtubule Stability and Mitotic Progression by Survivin. Cancer Res. 2002; 62(9): 2462 - 2467.
    5. Span PN, Sweep FC, Wiegerinck ET, et al. Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem 2004;50:1986-93.
    6. Cohen C, Lohmann CM, Cotsonis G et al.. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis. Mod Pathol 2003; 16: 574-583.
    7. Ross JS, Fletcher JA, Bloom KJ, et al. HER-2/neu testing in breast cancer. Am J Clin Pathol. 2003;120 Suppl:S53-71. Review.
    8. Hogdall EV, Christensen L, Kjaer SK, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer. 2003;98(1):66-73.
    9. Span PN, Sweep FC, Wiegerinck ET, et al. Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem. 2004;50(11):1986-93.
    10. Ryan BM, Konecny GE, Kahlert S, et al. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol. 2006;17(4):597-604.
    11. Chu JS, Shcw JY, Huang CS. Immunohistochemical analysis of surviving expression in primary brcast cancers. J Forrnos Mcd Assoc 2004; 103: 925-931.
    12. Asanuma H, Tofigoc T, Kamiguchi K, et al. Survivin expression is regulated by coexprcssion of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res. 2005; 65(23): 11018-25.
    13. Xia W, Bisi J, Strum J, ct al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res. 2006; 66(3): 1640-7.
    14. Paley PJ, Staskus KA, Gebhard K, et al. Vascular endothelial growth factor expression in early stage ovarian. Cancer. 1997; 80(1): 98~106.
    15. Chen CA, Cheng WF, Lee CN, ctal. Serum vascular endothelial growth factor in epithelial ovarian neoplasms: correlation with patient survival. Gynecol Oncol. 1999; 74(2): 235~240.
    16. GaspariniG. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000; 5(Suppl 1): 37-44.
    17. Konecny GE, Mcng YG, Untch M, et al Association between HER-2/ncu and vascular endothelial growth factor expression predicts clinical outcome in primary breast canccr patients. Clin Cancer Res 2004; 10: 1706-16.
    18. Linderholm B, Andcrsson J, Lindh B, et al. Overexpression of c-erb-B is related to higher expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) is an independent prognostic in primary node-positive breast cancer after adjuvant systemic treatment. Proc. Am. Soc. Clin. Oncol., 21: 429a 2002.
    19. Yang W, Klos K, Yang Y, ct al. ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma. Cancer (Phila.), 94: 2855-2861, 2002.
    20. Kostopoulos I, Arapantoni-Dadioti P, Gogas H, ctal. Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res Treat. 2006 Apr;96(3):251-61.
    21. Fuckar D, Dekanic A, Stifter S, et al. VEGF expression is associated with negative estrogen receptor status in patients with breast cancer. Int J Surg Pathol. 2006 Jan;14(1):49-55.
    22. Gown AM, Rivkin SE, Hunt HN, et al. Prognostic factor of vascular endothelial growth factor (VEGF) expression in node-positive breast cancer. Proc. Am. Soc. Clin. Oncol., 20: 427a 2001.
    23. Colozza M, Ludovini V, Gori S, et al. Are vascular endothelial growth factor (VEGF) and microvessel density (MVD) prognostic factors in stage I and II breast cancer patients? Proc. Am. Soc. Clin. Oncol., 21: 295b 2002.
    24. Vogl G, Bartel H, Dietze O, Hauser-Kronberger C. HER2 is unlikely to be involved in directly regulating angiogenesis in human breast cancer. Appl Immunohistochem Mol Morphol. 2006 Jun;14(2):138-45.
    25. Abendstein B, Daxenbichler G, Windbichler G, et al. Predictive value of uP A, PAI-1, HER-2 and VEGF in the serum of ovarian cancer patients. Anticancer Res. 2000 Jan-Feb;20(lB):569-72.
    26. Fukuda S, Pelus LM. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34~+ cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood. 2001;98:2091-2100.
    27. Yen L, You XL, Al Moustafa AE, et al. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene, 19: 3460-3469,2000.
    28. Epstein M, Ayala R, Tchekmedyian N, et al. HER-2/neu-overexpressing human breast cancer xenografts exhibit increased angiogenic potential mediated by vascular endothelial growth factor (VEGF). Breast Cancer Res. Treat. 2002;76(Suppl. 1): S143.
    29. Izumi Y, Xu L, di Tomaso E, et al. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279-80.
    30. Hui Guan, Shu-Fang Jia, Zhichao Zhou, et al. Herceptin Down-Regulates HER-2/neu and Vascular Endothelial Growth Factor Expression and Enhances Taxol-Induced Cytotoxicity of Human Ewing's Sarcoma Cells In vitro and In vivo. Clinical Cancer Research. 2005; 11:2008-2017.
    31. Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovinis-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004;279(6):4339-45.
    32. Wen XF, Yang G, Mao W, et al. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene. 2006 Nov 2;25(52):6986-96. Epub 2006 May 22.
    33. Vanhaesebroeck B , Leevers SJ , Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535-602.
    34. Hanada M, Feng J , Hemmings BA. Structure , regulation and function of PKB/ AKT-a major therapeutic target. BiochimBiophys Acta. 2004;1697(1-2):3-16.
    35. Arboleda MJ, Lyons JF, Kabbinavar FF, et al. Over expression of AKT2/protein kinase Bbeta leads to up-regulation of betal integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003;63:196-206.
    36. Lu Y, Zi X, Pollak M, Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab(Herceptin)on SKBR3 breast cancer cells. Int J Cancer. 2004; 108(3): 334-341.
    37. Le XF, Lammayot A, Gold D, et al. Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase-AKT signaling. J Biol Chem. 2005;280(3):2092-104.
    38. Sunghoon Km, Junghee K, Jingbo Q, et al. Phosphatidylinositol 3 — Kinase inhibition down—regulates survivin and facilitates trail—mediated apoptosis in neuroblastomas. J Pediatr Surg. 2004;39(4): 516-521.
    39. Papapetropoulos A, Fulton D, Mahboubi K et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000; 275:9102-9105.
    40. Carter BZ, Milella M, Altieri DC et al. Cytokine-regulated expression of survivin in myeloid leukemia. Blood. 2001; 97:2784-2790.
    41. Fukuda S, Pelus LM. Elevation of Survivin levels by hematopoietic growth factors occurs in quiescent CD34+ hematopoietic stem and progenitor cells before cell cycle entry. Cell Cycle. 2002;1:322-326.
    42. Wang D, Huang HJ, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res. 1999;59:1464-1472.
    43. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor la expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/Akt/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60:1541-1545.
    44. Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci. 2000;97:1749-1753.
    45. Rak J, Mitsuhashi Y, Sheehan C, et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in Ras-transformed epithelial cells and fibroblasts. Cancer Res. 2000;60:490-498.
    46. Tran J, Master Z, Yu JL, et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA. 2002;99:4349-4354.
    47. Blanc-Brude OP, Mesri M, Wall NR, et al. Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Clin Cancer Res. 2003;9:2683-2692.
    48. Tu SP, Jiang XH, Lin MC, et al. Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res. 2003 ;63: 7724-7732.
    49. Tran J, Rak J, Sheehan C, et al. Marked induction of the LAP family anti-apoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun. 1999;264:781-788.
    1. Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985; 230: 1132-9.
    2. Popescu NC, King CR, Kraus MH. Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 1989; 4(3): 362-6.
    3. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986; 319(6050): 226-30.
    4. Akiyama T, Kadooka T, Ogawara H, Sakakibara S. Characterization of the epidermal growth factor receptor and the erbB oncogene product by site-specific antibodies. Arch Biochem Biophys. 1986; 245(2): 531-6.
    5. Hynes NE, Stem DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta. 1994; 1198(2-3): 165-84.
    6. Schechter AL, Stem DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185, 000-Mr tumour antigen. Nature. 1984; 312(5994): 513-6.
    7. Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-reeeptor interactions. FEBS Lett. 1997; 410(1): 83-6. Review.
    8. Scott GK, Dodson JM, Montgomery PA, et al. p185HER2 signal transduction in breast cancer cells. J Biol Chem. 1991; 266(22): 14300-5.
    9. Alroy I, Yarden Y. Biochemistry of HER2 oncogenesis in breast cancer. Breast Dis. 2000; 11: 31-48. Review.
    10. Lemmon MA, Schlessinger J. Transmembrane signaling by receptor oligomerization. Methods Mol Biol. 1998; 84: 49-71. Review.
    11. Hung MC, Lau YK. Basic science of HER-2/neu: a review. Semin Oncol. 1999; 26(4 Suppl 12): 51-9. Review.
    12. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000; 19(13): 3159-67. Review.
    13. Mansour SJ, Matten WT, Hermann AS, et al. Transformation of mammalian ceils by constitutively active MAP kinase kinase. Science. 1994; 265(5174): 966-70.
    14. Carraway KL 3rd, Soltoff SP, Diamonti AJ, Cantley LC. Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfeeted with erbB2/neu and erbB3. J Biol Chem. 1995; 270(13): 7111-6.
    15. Muthuswamy SK, Siegel PM, Dankort DL, et al. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol. 1994; 14(1): 735-43.
    16. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1987; 84(20): 7159-63.
    17. Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992; 24(2): 85-95.
    18. Chazin VR, Kaleko M, Miller AD, Slamon DJ. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene. 1992; 7(9): 1859-66.
    19. Davies BR, Platt-Higgins AM, Schmidt G, Rudland PS. Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTV-TGFalpha transgenic rats. Am J Pathol. 1999; 155(1): 303-14.
    20. Davies BR, Warren JR, Schmidt G, Rudland PS. Induction of a variety of preneoplasias and tumours in the mammary glands of transgenic rats. Biochem Soc Symp. 1998; 63: 167-84. Review.
    21. Sacco MG, Gribaldo L, Barbieri O, et al. Establishment and characterization of a new mammary adenocarcinoma cell line derived from MMTV neu transgenic mice. Breast Cancer Res Treat. 1998; 47(2): 171-80.
    22. Drebin JA, Link VC, Stem DF, et al. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell. 1985; 41(3): 697-706.
    23. Roh H, Pippin JA, Green DW, et al. HER2/neu antisense targeting of human breast carcinoma. Oncogene. 2000; 19(53): 6138-43. Review.
    24. Venter DJ, Tuzi NL, Kumar S, Gullick WJ. Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: immunohistological assessment correlates with gene amplification. Lancet. 1987; 2(8550): 69-72.
    25. Pauletti G, Godolphin W, Press MF, Slamon DJ. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996; 13(1): 63-72.
    26. Pierce JH, Amstein P, DiMareo E, et al. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene. 1991; 6(7): 1189-94.
    27. Lofts FJ, Gullick WJ. c-erbB2 amplification and overexpression in human tumors. Cancer Treat Res. 1992; 61: 161-79.
    28. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997; 16(7): 1647-55.
    29. Brerman PJ, Kumagai T, Berezov A, et al. HER2/Neu: mechanisms of dimerization/oligomerization. Oncogene. 2002; 21(2): 328.
    30. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 1999; 274(13): 8865-74.
    31. Le XF, Pruefer F, Bast RC Jr. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kipl via multiple signaling pathways. Cell Cycle. 2005; 4(1): 87-95.
    32. Lin YZ, Clinton GM. A soluble protein related to the HER-2 proto-oncogene product is released from human breast carcinoma cells. Oncogene. 1991; 6(4): 639-43.
    33. Katsumata M, Okudaira T, Samanta A, et al. Prevention of breast tumour development in vivo by downregulation of the p185neu receptor. Nat Med. 1995; 1(7): 644-8.
    34. Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res. 2000;60(3):560-5.
    
    35. Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004;279(6):4339-45.
    
    36. Eccles SA. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):393-406.
    37. Yang W, Klos K, Yang Y, et al. ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma. Cancer. 2002;94(11):2855-61.
    38. Izumi Y, Xu L, di Tomaso E, et al. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279-80.
    39. Lindberg LE, Hedjazifar S, Baeckstrom D. c-erbB2-induced disruption of matrix adhesion and morphogenesis reveals a novel role for protein kinase B as a negative regulator of alpha(2)beta(1) integrin function. Mol Biol Cell. 2002;13(8):2894-908.
    40. Madan R, Smolkin MB, Cocker R, et al. Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma. Hum Pathol. 2006;37(1):9-15.
    41. Murthy SK, Magliocco AM, Demetrick DJ. Copy number analysis of c-erb-B2 (HER-2/neu) and topoisomerase Ilalpha genes in breast carcinoma by quantitative real-time polymerase chain reaction using hybridization probes and fluorescence in situ hybridization. Arch Pathol Lab Med. 2005;129(1):39-46.
    42. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta. 1994;1198(2-3):165-84. Review.
    43. Santin AD, Bellone S, Van Stedum S, et al. Determination of HER2/neu status in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol. 2005;98(1):24-30.
    44. Santin AD, Bellone S, Siegel ER, et al. Racial differences in the overexpression of epidermal growth factor type II receptor (HER2/neu): a major prognostic indicator in uterine serous papillary cancer. Am J Obstet Gynecol. 2005;192(3):813-8.
    45. Schneider PM, Hung MC, Chiocca SM, et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 1989;49(18):4968-71.
    46. Scholl S, Beuzeboc P, Pouillart P. Targeting HER2 in other tumor types. Ann Oncol. 2001;12 Suppl 1:S81-7.
    47. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):966-78.
    48. Ross JS, Fletcher JA, Bloom KJ, et al. HER-2/neu testing in breast cancer. Am J Clin Pathol. 2003;120 Suppl:S53-71. Review.
    49. Sun JM, Han W, Im SA, et al. A combination of HER-2 status and the St. Gallen classification provides useful information on prognosis in lymph node-negative breast carcinoma. Cancer. 2004;101(ll):2516-22.
    50. Penault-Llorca F, Cayre A. [Assessment of HER2 status in breast cancer]. Bull Cancer. 2004;91 Suppl 4:S211-5. Review. French.
    51. Nicholson S, Wright C, Sainsbury JR, et al. Epidermal growth factor receptor (EGFr) as a marker for poor prognosis in node-negative breast cancer patients: neu and tamoxifen failure. J Steroid Biochem Mol Biol. 1990;37(6):811-4.
    52. Wright C, Nicholson S, Angus B, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992;65(1):118-21.
    53. Borg A, Baldetorp B, Femo M, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 1994 Jun 30;81(2):137-44.
    54. Yamauchi H, O'Neill A, Gelman R, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997;15(7):2518-25.
    
    55. Lipton A, Ali SM, Leitzel K, et al. Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol. 2002;20(6):1467-72.
    56. De Laurentiis M, Arpino G, Massarelli E, et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11(13):4741-8.
    57. Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology. 2001;61 Suppl 2:73-82. Review.
    58. Muss HB, Thor AD, Berry DA, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med. 1994;330(18):1260-6.
    59. Thor AD, Berry DA, Budman DR, et al. erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst. 1998;90(18):1346-60.
    60. Paik S, Bryant J, Park C, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90(18):1361-70.
    61. Petit T, Borel C, Ghnassia JP, et al. Chemotherapy response of breast cancer depends on HER-2 status and anthracycline dose intensity in the neoadjuvant setting. Clin Cancer Res. 2001;7(6):1577-81.
    62. Ravdin PM. Is Her2 of value in identifying patients who particularly benefit from anthracyclines during adjuvant therapy? A qualified yes. J Natl Cancer Inst Monogr.2001;(30):80-4.
    63. Del Mastro L, Bruzzi P, Nicolo G, et al. HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. Br J Cancer. 2005;93(1):7-14.
    64. Dressier LG, Berry DA, Broadwater G, et al. Comparison of HER2 status by fluorescence in situ hybridization and immunohistochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J Clin Oncol. 2005;23(19):4287-97.
    
    65. Rozan S, Vincent-Salomon A, Zafrani B, et al. No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int J Cancer. 1998;79(1):27-33.
    66. Clahsen PC, van de Velde CJ, Duval C, et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J Clin Oncol. 1998;16(2):470-9.
    67. Niskanen E, Blomqvist C, Franssila K, et al. Predictive value of c-erbB-2, p53, cathepsin-D and histology of the primary tumour in metastatic breast cancer. Br J Cancer. 1997;76(7):917-22.
    68. Alfred DC, Swanson PE. Testing for erbB-2 by immunohistochemistry in breast cancer. Am J Clin Pathol. 2000;113(2):171-5.
    69. Di Leo A, Isola J. Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer. 2003;4(3):179-86. Review.
    70. Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol. 1992;10(7):1049-56.
    71. Stal O, Sullivan S, Wingren S, et al. c-erbB-2 expression and benefit from adjuvant chemotherapy and radiotherapy of breast cancer. Eur J Cancer. 1995;31A(13-14):2185-90.
    72. Colozza M, Sidoni A, Mosconi AM, et al; Italian Oncology Group for Clincal Research. HER2 overexpression as a predictive marker in a randomized trial comparing adjuvant cyclophosphamide/methotrexate/5-fluorouracil with epirubicin in patients with stage I/II breast cancer: long-term results. Clin Breast Cancer. 2005;6(3):253-9.
    73. Yu D, Liu B, Tan M, et al. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1 -independent mechanisms. Oncogene. 1996;13(6):1359-65.
    74. Konecny GE, Thomssen C, Luck HJ, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96(15):1141-51.
    75. Learn PA, Yeh IT, McNutt M, et al. HER-2/neu expression as a predictor of response to neoadjuvant docetaxel in patients with operable breast carcinoma. Cancer. 2005;103(11):2252-60.
    76. Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografls. Cancer Res. 1998;58(13):2825-31.
    77. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-92.
    78. Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2001;61 Suppl 2:14-21.
    79. Paik S, Hazan R, Fisher ER, et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol. 1990;8: 103-112.
    80. Niehans GA, Singleton TP, Dykoski D, Kiang DT. Stability of HER-2/neu expression over time and at multiple metastatic sites. J Natl Cancer Inst. 1993;55: 1230-1235.
    81. Chen JS, Lan K, Hung MC. Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist Updat. 2003;6(3):129-36.
    82.Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639-48.
    83. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002; 20(3): 719-26.
    84. Mehra R, Burtness B. Antibody therapy for early-stage breast cancer: trastuzumab adjuvant and neoadjuvant trials. Expert Opin Biol Ther. 2006; 6(9): 951-62. Review.
    85. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005; 353(16): 1673-84.
    86. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al, the Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med. 2005; 353: 1659-1672.
    87. Agus DB, Akita RW, Fox WD, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002; 2(2): 127-37.
    88. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004; 64(7): 2343-6.
    89. Chen SY, Yang AG, Chen JD, et al. Potent antitumour activity of a new class of tumour-specific killer cells. Nature. 1997; 385(6611): 78-80.
    90. Jia LT, Zhang LH, Yu CJ, et al. Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res. 2003; 63(12): 3257-62.
    91. Zhao J, Zhang LH, Jia LT, et al. Secreted antibody/granzyme B fusion protein stimulates selective killing of HER2-overexpressing tumor cells. J Biol Chem. 2004; 279(20): 21343-8.
    92. Xu YM, Wang LF, Jia LT, et al. A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J Immunol. 2004; 173(1): 61-7.
    93. Dols A, Meijer SL, Hu HM, et al. Identification of tumor-specific antibodies in patients with breast cancer vaccinated with gene-modified allogeneie tumor cells. J Imrnunother. 2003; 26(2): 163-70.
    94. Disis ML, Schiffrnan K, Guthrie K, et al. Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein--based vaccine. J Clin Oncol. 2004; 22(10): 1916-25.
    95. Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J Clin Immunol. 2004; 24(5): 571-8.
    96. Ishihara Y, Harada M, Azuma K, et al. HER2/neu-derived peptides recognized by both cellular and humoral immune systems in HLA-A2+ cancer patients. Int J Oncol. 2004; 24(4): 967-75.
    97. Wang P, Munger CM, Joshi AD, et al. Cytotoxicity of cord blood derived Her2/neu-specifie cytotoxic T lymphoeytes against human breast cancer in vitro and in vivo. Breast Cancer Res Treat. 2004; 83(1): 15-23.
    98. Zhang L, Lau YK, Xia W, et al. Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res. 1999; 5(2): 343-53.
    99. Ruey-Long Hong, William H. Spohn and Mien-Chic Hung. Curcumin Inhibits Tyrosine Kinase Activity of p185~(neu) and Also Depletes p185~(neu). Clin Cancer Res. 1999; 5: 1884-1891.
    100. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oneol. 2006; 33(4): 369-85. Review.
    101. [No authors listed]. ECOG E1100: a phase Ⅱ trial of trastuzumab and gefitinib in patients with metastatic breast cancer that overexpress HER2/neu (erbB-2). Clin Adv Hematol Oncol. 2003; 1(4): 237.
    102. Hamid O. Emerging treatments in ontology: focus on tyrosine kinase (erbB) receptor inhibitors. J Am Pharm Assoe (Wash DC). 2004; 44(1): 52-8. Review.
    103. Johnston SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drags Today (Bare). 2006; 42(7): 441-53. Review.
    104. Graus-Porta D, Beerli RR, Hynes NE. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol. 1995; 15(3): 1182-91.
    105. Alvarez RD, Barnes MN, Gomez-Navarro J, et al. A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase Ⅰ trial. Clin Cancer Res. 2000; 6(8): 3081-7.
    106. Chen H, Hung MC. Involvement of co-activator p300 in the transcriptional regulation of the HER2/neu gene. J Biol Chem. 1997; 272: 6101-6104.
    107. Yu D, Shi D, Scanlon M, et al. Reexpression of neu-encoded oncoprotein counteracts the tumor-suppressing but not the metastasis-suppressing function of E1A. Cancer Res. 1993; 53: 5784-5790.
    108. Yu D, Suen TC, Yan DH , et al. Transcriptional repression of the neu protooncogene by the adenovirus 5 E1A gene products. Proc Natl Acad Sei U S A. 1990; 87(12): 4499-503.
    109. Chen H , Yu D ,Chinnadurai G, et al . Mapping of adenovirus 5 E1A domains responsible for suppression of neu-mediated transformation via transcriptional repression of neu. Oneogene. 1997; 14: 1965-1971.
    110. Roh H, Pippin J, Boswell C, Drebin JA. Antisense oligonucleotides specific for the HER2/neu oncogene inhibit the growth of human breast carcinoma cells that overexpress HER2/neu. J Surg Res. 1998; 77(1): 85-90.
    111. Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res. 2000; 60(3): 560-5.
    112. Rait AS, Pirollo KF, Rait V, et al. Inhibitory effects of the combination of HER-2 antisense oligonucleotide and chemotherapeutic agents used for the treatment of human breast cancer. Cancer Gene Ther. 2001; 8(10): 728-39.
    113. Wiechen K, Dietel M. c-erbB-2 anti-sense phosphorothioate oligodeoxynucleotides inhibit growth and serum-induced cell spreading of P 185c-erbB-2-overexpressing ovarian carcinoma cells. Int J Cancer. 1995; 63(4): 604-8.
    114. Funato T, Kozawa K, Fujimaki S , et al. Increased sensitivity to cisplatin in gastric cancer by antisense inhibition of the her-2/neu (c-erbB-2) gene. Chemotherapy. 2001;47(4):297-303.
    115. Rait AS, Pirollo KF, Ulick D, et al. HER-2-targeted antisense oligonucleotide results in sensitization of head and neck cancer cells to chemotherapeutic agents. Ann N Y Acad Sci. 2003;1002:78-89.
    116. Fire A, Xu S, Montgomery MK , et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-ll.
    117. Grishok A, Mello CC. RNAi (Nematodes: Caenorhabditis elegans). Adv Genet. 2002;46:339-60. Review.
    118. Putral LN, Gu W, McMillan NA. RNA interference for the treatment of cancer. Drug News Perspect. 2006;19(6):317-24.
    119. Ambrus JL Sr, Chadha KC, Islam A, et al. Treatment of viral and neoplastic diseases with double-stranded RNA derivatives and other new agents. Exp Biol Med (Maywood). 2006;231(8):1283-6. Review.
    120. Choudhury A, Charo J, Parapuram SK, et al. Small interfering RNA(siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer. 2004;108(1):71-77.
    121. Faltus T, Yuan J, Zimmer B, et al. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia. 2004;6(6):786-795.
    122. Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004,279(6):4339-4345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700