基于视觉记忆的目标检测算法:一个特征学习与特征联想的过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉目标检测是计算机视觉中最为基础的研究方向,其任务在于从图像中检测并定位目标物体。当前,目标检测在视频监控、人机交互、智能交通、辅助驾驶、医学图像分析等领域都有着重要的应用。大多目标检测算法将目标检测的问题简化为一个二分类问题,即通过训练学习得到目标的特征模型,然后判断待检测图片中滑动窗口内是否存在目标,如果存在则定位该目标位置。所以目标检测的主要步骤包括目标模型构建、目标搜索和目标分类。由于视觉图像会受到光照变化、背景干扰、目标遮挡等方面的影响,很多目标检测算法存在鲁棒性和实时性问题。但是,人类的视觉系统则可以在更为复杂的情况下完成目标检测任务。因此,模拟人类视觉完成目标检测的机理和机制,构建具有人类视觉智能的目标检测算法,是改进目标检测算法和提高其性能的重要途径。
     本文深度分析了人类视觉记忆机制在完成目标检测时的工作机理,结合研究团队提出的特征学习与特征联想的概念,通过构建基于视觉记忆的特征学习与特征联想模型,开展模拟人的视觉智能的目标检测算法研究。文章的主要工作及贡献包括:
     (1)构建了基于视觉记忆的特征学习与特征联想模型,并在此基础上构建了基于视觉记忆的目标检测算法框架。通过研究视觉记忆在完成目标检测时的工作机理,将视觉记忆描述为一个特征学习与特征联想的过程。结合长期视觉记忆和视觉工作记忆的工作机理,采用特征处理方式和视觉记忆必要特征对视觉记忆进行了模拟。其中特征处理方式是人类视觉系统为方便快速的搜索目标而提取特征时所采用的方法,视觉记忆必要特征则是对目标进行分类判别时所需的重要特征。
     (2)提出了一种基于选择性注意机制的显著性检测算法来模拟视觉记忆保存的特征处理方式。为了解决显著性检测算法会受到小尺度细节图像干扰的问题,基于目标的尺度、颜色和位置信息采用了分层的显著性计算方法,从而提取输入图像的显著图。并在此基础上,通过自适应阂值对显著图进行二值化,然后从得到的二值图中提取目标检测候选区域。
     (3)基于特征学习与特征联想的视觉记忆模型,构建了模拟人类视觉智能的目标检测算法。该算法采用了局部可变模型作为检测器,以目标的边缘和强度特征作为主要特征来模拟视觉记忆必要特征;同时还采用了基于选择性注意机制的显著性检测算法来提取目标检测候选区域,从而缩小了目标检测的搜索区域。通过多个数据集中对本文算法的测试和分析,结果显示本文算法在保证目标检测准确率的同时提高了目标检测算法的实时性,且对于不同场景的图像均具有一定的适用性。
     (4)针对目前大多视频摘要生成算法无法提供目标属性信息且容易丢失目标时间和空间信息的问题,本文构建了一种基于目标检测的视频摘要生成算法。该算法基于目标检测提取目标的关键帧,并由此生成包含目标所有信息的视频摘要,同时可根据目标的属性信息来进行检索。通过该算法生成的视频摘要,人们可以在实际视频监控平台中方便快捷的浏览和搜索监控视频。
     (5)构建了基于目标检测的图像质量评价算法。该算法提取图像的检测器得分和显著性得分来描述图像的清晰度、背景复杂度和图像中目标的完整性,并由此对图像质量进行评价。通过多个数据集对本文图像质量算法进行测试,结果显示本文算法符合人类视觉系统评价图像质量时的特性。
Object detection is one of the fundamental problems in computer vision and it focuses on detecting object from images. Object detection is widely used in many applications, such as video surveillance, human-computer interaction, intelligent traffic management, driver assistance system and medical image analysis. Today, most object detection methods prefer to simplify object detection into a binary classification problem:determine whether there is the set type of object in the sliding window or not. Thus, the main steps of an object detection method contain the construction of object model, object search strategy and the classification of object. For the reason that, image will change a lot when variable illumination, background interference or object occlusion happens. At this time, object detection method can not detect object in the image well and the detection process will be more time consuming. However, human visual system can complete the object detection well when facing the same problem. To improve the performance of object detection, it's an important way to research the mechanisms used by human visual system when detecting object and construct an object detection algorithm witch possessed the intelligence of human visual system.
     On the basis of the concept of feature learning and feature imagination, this dissertation focuses on the mechanism of human visual memory and constructs the feature learning and feature imagination model based on human visual memory. Then we use this model to propose an object detection algorithm. Tested on some datasets, our object detection algorithm has been proved that it can speed up object detection without any decline in detection accuracy. On the other hand, this dissertation also discusses video synopsis and indexing method and image quality assessment method based on object detection, and analyzes their performance based on experiment. The main contents of this dissertation are listed as below:
     1. We study the human visual memory mechanism and describe it as a process of feature learning and feature imagination. We also describe and analyze two types of the saved feature of visual memory. The saved features of visual memory include mode of processing features and essential features for visual memory. The mode of processing features extracts visual features to make the search of object convenient, and the essential features of visual memory are the important features to classify the object. Thus we construct feature learning and feature imagination model based on visual memory.
     2. In order to simulate the mode of processing features in visual memory, we construct a saliency detection algorithm based on human visual selective attention mechanism. This algorithm uses scale, color and position information of object to propose a hierarchical saliency calculation method. And then, we use a binarization method based on adaptive threshold to binarize the saliency map and extract candidate detection area. Thus we reduced the search area of object detection and speed up object detection.
     3. Based on the feature learning and feature imagination model, we propose an object detection algorithm based on visual memory. The algorithm use deformable part model as the detector and simulate essential features of visual memory by extracting edge and intensity features of object. Our object detection algorithm can speed up object detection without any decline in detection accuracy.
     4. This dissertation proposes a video synopsis and indexing algorithm based on object detection. The video summary generated by our algorithm will not lose any spatial and temporal information of object, and can be retrieved by the property information of object. We analyze the performance of our algorithm based on the experiment in the video surveillance system.
     5. Image quality assessment is one of the hot research areas in the field of image processing. For the reason that human being is the final receiver of the image, the image quality assessment should match the characteristics of human visual system. The image quality assessment algorithm proposed in this dissertation extracts detector score and saliency score of image to describe the image clarity, complexness of background and completeness of the object in the image, and get the final image quality assessment. Tested on some datasets, our algorithm is proved to meet some characteristics of the human visual system.
引文
[1]Marr D, Vision A. A computational investigation into the human representation and processing of visual information[J]. WH San Francisco:Freeman and Company,1982.
    [2]Everingham M, Van Gool L, Williams C.K.I., Winn J., and Zisserman A, The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results, http://www.pascal-network.org/challenges/VOC/voc2012/.2012.
    [3]Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on. IEEE,2005,1:886-893.
    [4]Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part based models[J]. Pattern Analysis and Machine Intelligence,2009,32(9): 1627-1645.
    [5]Felzenszwalb P, McAllester D, Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part Model[C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage:IEEE Press,2008:1-8.
    [6]Felzenszwalb P F, Girshick R B, McAllester D. Cascade Object Detection with Deformable Part Models[C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco: IEEE Press,2010:2241-2248.
    [7]Felzenszwalb P F, Huttenlocher D P. Pictorial Structures for Object Recognition[J]. Int'l J. Computer Vision,2005,61(1):55-79.
    [8]Felzenszwalb P F, McAllester D A. The Generalized A* Architecture[J]. J. Artificial Intelligence Research,2007,29:153-190.
    [9]Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples:An incremental bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding,2007,106(1):59-70.
    [10]Tanner F, Colder B, Pullen C, et al. Overhead imagery research data set-an annotated data library & tools to aid in the development of computer vision algorithms[C]. Applied Imagery Pattern Recognition Workshop (AIPRW),2009 IEEE. IEEE,2009:1-8.
    [11]Ballan L, Bertini M, Del Bimbo A, et al. Combining generative and discriminative models for classifying social images from 101 object categories[C]. Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE,2012:1731-1734.
    [12]Itti L, Koch C. Computational Modelling of Visual Attention[J]. Nature Reviews Neuroscience,2001,2(3):194-203.
    [13]Borji A, Sihite D N, Itti L. Salient Object Detection:A Benchmark[C]. Proc. European Conference on Computer Vision (ECCV), Florence:Springer Berlin Heidelberg,2012: 414-429.
    [14]Navalpakkam V, Itti L. An Integrated Model of Top-down and Bottom-up Attention for Optimal Object Detection[C]. Proc. IEEE Conference on Computer Vision and Pattern Recognition, New York:IEEE Press,2006,2:2049-2056.
    [15]Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]. Computer Vision and Pattern Recognition,2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE,2001,1:1-511-1-518 vol.1.
    [16]Viola P, Platt J, Zhang C. Multiple Instance Boosting for Object Detection[J]. Proc. Advances in Neural Information Processing Systems,2005:1417-1424.
    [17]Viola P, Jones M J. Robust real-time face detection[J]. International journal of computer vision,2004,57(2):137-154.
    [18]Lienhart R, Maydt J. An extended set of haar-like features for rapid object detection[C]. Image Processing.2002. Proceedings.2002 International Conference on. IEEE,2002,1: Ⅰ-900-Ⅰ-903 vol.1.
    [19]Leibe B, Leonardis A, Schiele B. Robust object detection with interleaved categorization and segmentation[J]. International journal of computer vision,2008,77(1-3):259-289.
    [20]Vapnik V. The nature of statistical learning theory[M]. springer,2000.
    [21]Vapnik V N. An overview of statistical learning theory[J]. Neural Networks, IEEE Transactions on,1999,10(5):988-999.
    [22]Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning:data mining, inference and prediction[J]. The Mathematical Intelligencer,2005,27(2):83-85.
    [23]Cortes C, Vapnik V. Support-vector networks[J]. Machine learning,1995,20(3):273-297.
    [24]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery,1998,2(2):121-167.
    [25]Chang C C, Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [26]ZHANG Xuegong. Introduction to Statistical Learning Theory and Support Vector Machines[J]. ACTA AUTOMATICA SINICA,2000,26(1):32-42.
    [27]DING Shi-fei, QI Bing-juan, TAN Hong-yan. An overview on Theory and Algorithm of Support Vector Machines[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
    [28]XU Jian-hua, ZHANG Xue-gong, LI Yan-da. Advances in Support Vector Machines[J]. Control and Decision,2004,19(5):481-493.
    [29]PENG Lu. Research on Classification Algorithm of Support Vector Machine and Its Application[D]. Wuhan:Wuhan University of Science and Technology,2007.
    [30]Maji S, Berg A C, Malik J. Classification using intersection kernel support vector machines is efficient[C]. Computer Vision and Pattern Recognition,2008. CVPR 2008. IEEE Conference on. IEEE,2008:1-8.
    [31]Scholkopf B, Sung K K, Burges C J C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. Signal Processing, IEEE Transactions on,1997,45(11):2758-2765.
    [32]Weston J, Watkins C. Multi-class support vector machines[R]. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May,1998.
    [33]Joachims T. Making large-scale svm learning practical[J]. In B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning. The MIT Press, Cambridge, MA, USA,1999.
    [34]Xu X, Wang Z, Chen Z. Visual tracking model based on featureimagination and its application. In:Proceedings-2010 2nd International Conference on Multimedia Information Networking and Security; vol.1. Nanjing:IEEE Press; 2010, p.370-374.
    [35]陈龙,智能设计.安全防范系统工程[M].清华大学出版社,1999.
    [36]Hansen D W, Pece A E C. Eye tracking in the wild[J]. Computer Vision and Image Understanding,2005,98(1):155-181.
    [37]Heckenberg D. Performance evaluation of vision-based high dof human movement tracking: A survey and human computer interaction perspective[C]. Computer Vision and Pattern Recognition Workshop,2006. CVPRW'06. Conference on. IEEE,2006:156-156.
    [38]Xia L, Chen C C, Aggarwal J K. Human detection using depth information by kinect[C]. Computer Vision and Pattern Recognition Workshops (CVPRW),2011 IEEE Computer Society Conference on. IEEE,2011:15-22.
    [39]Ren Z, Meng J, Yuan J, et al. Robust hand gesture recognition with kinect sensor[C]. Proceedings of the 19th ACM international conference on Multimedia. ACM,2011: 759-760.
    [40]Trivedi M M, Gandhi T, McCall J. Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety[J]. Intelligent Transportation Systems, IEEE Transactions on,2007,8(1):108-120.
    [41]Fang C Y, Chen S W, Fuh C S. Automatic change detection of driving environments in a vision-based driver assistance system[J]. Neural Networks, IEEE Transactions on,2003, 14(3):646-657.
    [42]Meijering E, Smal I, Danuser G. Tracking in molecular bioimaging[J]. Signal Processing Magazine, IEEE,2006,23(3):46-53.
    [43]Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning[C]. Computer Vision and Pattern Recognition,2003. Proceedings.2003 IEEE Computer Society Conference on. IEEE,2003,2:Ⅱ-264-Ⅱ-271 vol.2.
    [44]Schneiderman H, Kanade T. Object detection using the statistics of parts[J]. International Journal of Computer Vision,2004,56(3):151-177.
    [45]Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection:The protector system[C]. Intelligent Vehicles Symposium,2004 IEEE. IEEE,2004:13-18.
    [46]Freeman W T, Roth M. Orientation histograms for hand gesture recognition[C]. International Workshop on Automatic Face and Gesture Recognition.1995,12:296-301.
    [47]Mikolajczyk K, Schmid C, Zisserman A. Human detection based on a probabilistic assembly of robust part detectors[M]. Computer Vision-ECCV 2004. Springer Berlin Heidelberg,2004:69-82.
    [48]Yuille A L, Hallinan P W, Cohen D S. Feature extraction from faces using deformable templates[J]. International journal of computer vision,1992,8(2):99-111.
    [49]Ramanan D, Sminchisescu C. Training deformable models for localization[C]. Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference on. IEEE,2006, 1:206-213.
    [50]Ott P, Everingham M. Shared parts for deformable part-based models[C]. Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on. IEEE,2011:1513-1520.
    [51]Pedersoli M, Vedaldi A, Gonzalez J. A coarse-to-fine approach for fast deformable object detection[C]. Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on. IEEE,2011:1353-1360.
    [52]Cho H, Rybski P E, Zhang W. Vision-based 3d bicycle tracking using deformable part model and interacting multiple model filter[C]. Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:4391-4398.
    [53]Parikh D, Zitnick C L. Finding the weakest link in person detectors[C]. Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on. IEEE,2011:1425-1432.
    [54]Torralba A. Contextual priming for object detection[J], International Journal of Computer Vision,2003,53(2):169-191.
    [55]Sadeghi M A, Farhadi A. Recognition using visual phrases[C]. Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on. IEEE,2011:1745-1752.
    [56]Murphy K, Torralba A, Freeman W. Using the forest to see the trees:a graphical model relating features, objects and scenes[J]. Advances in neural information processing systems, 2003,16:1499-1506.
    [57]Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
    [58]Felzenszwalb P, Huttenlocher D. Pictorial structures for object recognition. International Journal of Computer Vision,2005,61(1):55-79.
    [59]杨杨,李善平.分割位置提示的可变形部件模型快速目标检测[J].自动化学报,2012,38(4):540-548.
    [60]Frintrop S. Vocus:A visual attention system for object detection and goal-directed search. Ph.D. thesis; University of Bonn; 2006.
    [61]Everingham M, Van Gool L, Williams C.K.I., Winn J, and Zisserman A, The PASCAL Visual Object Classes Challenge 2009 (VOC 2009) Results, http://www.pascal-network.org/challenges/VOC/voc2009/,2009.
    [62]Everingham M, Van Gool L, Williams C.K.I., Winn J, and Zisserman A, The PASCAL Visual Object Classes Challenge 2010 (VOC 2010) Results, http://www.pascal-network.org/challenges/VOC/voc2010/,2010.
    [63]Everingham M, Van Gool L, Williams C.K.I., Winn J, and Zisserman A, The PASCAL Visual Object Classes Challenge 2011 (VOC 2011) Results, http://www.pascal-network.org/challenges/VOC/voc2011/,2011.
    [64]Cortes C, Vapnik V. Support-vector networks[J]. Machine learning,1995,20(3):273-297.
    [65]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery,1998,2(2):121-167.
    [66]Chang C C, Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [67]Ratsch G, Onoda T, Muller K R. Soft margins for AdaBoost[J]. Machine learning,2001, 42(3):287-320.
    [68]Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade[J]. Advances in Neural Information Processing Systems,2002,2:1311-1318.
    [69]Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]. Computer Vision and Pattern Recognition,2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE,2001,1:1-511-1-518 vol.1.
    [70]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [71]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
    [72]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-493.
    [73]彭璐.支持向量机分类算法研究与应用[D].长沙:电器与信息工程学院,湖南大学,2007.
    [74]Maji, Berg, A.C, Malik, Classification Using Intersection Kernel Support Vector Machines is Efficient[C], Computer Vision and Pattern Recognition,2008, pp.1-8, June 2008.
    [75]Scholkopf B, Sung K K, Burges C J C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. Signal Processing, IEEE Transactions on,1997,45(11):2758-2765.
    [76]Weston J, Watkins C. Multi-class support vector machines[R]. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May,1998.
    [77]Joachims T. Making large-scale svm learning practical[J]. In B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning. The MIT Press, Cambridge, MA, USA,1999.
    [78]Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex[J]. Nature neuroscience,1999,2(11):1019-1025.
    [79]Walther D, Itti L, Riesenhuber M, et al. Attentional selection for object recognition-a gentle way[C]. Biologically Motivated Computer Vision. Springer Berlin Heidelberg,2002: 472-479.
    [80]Itti L, Koch C. Computational modelling of visual attention[J]. Nature reviews neuroscience, 2001,2(3):194-203.
    [81]Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on pattern analysis and machine intelligence,1998,20(11): 1254-1259.
    [82]Itti L. Real-time high-performance attention focusing in outdoors color video streams[C]. Electronic Imaging 2002. International Society for Optics and Photonics,2002:235-243.
    [83]Chikkerur S, Serre T, Tan C, et al. What and where:A Bayesian inference theory of attention[J]. Vision research,2010,50(22):2233-2247.
    [84]Schroll H, Vitay J, Hamker F H. Working memory and response selection:A computational account of interactions among cortico-basalganglio-thalamic loops[J]. Neural Networks, 2012,26:59-74.
    [85]Johnson J S, Spencer J P, Luck S J, et al. A dynamic neural field model of visual working memory and change detection[J]. Psychological Science,2009,20(5):568-577.
    [86]Frank M J, Loughry B, O'Reilly R C. Interactions between frontal cortex and basal ganglia in working memory:a computational model[J]. Cognitive, Affective,& Behavioral Neuroscience,2001,1(2):137-160.
    [87]Ostrovsky Y, Meyers E, Ganesh S, et al. Visual parsing after recovery from blindness[J]. Psychological Science,2009,20(12):1484-1491.
    [88]Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007,29(3):411-426.
    [89]Serre T, Kouh M, Cadieu C, et al. A theory of object recognition:computations and circuits in the feedforward path of the ventral stream in primate visual cortex[R]. MASSACHUSETTS INST OF TECH CAMBRIDGE MA CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING,2005.
    [90]Sperling G. A model for visual memory tasks[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society,1963,5(1):19-31.
    [91]Hollingworth A, Williams C C, Henderson J M. To see and remember:Visually specific information is retained in memory from previously attended objects in natural scenes[J]. Psychonomic Bulletin & Review,2001,8(4):761-768.
    [92]Han S H, Kim M S. Visual search does not remain efficient when executive working memory is working[J]. Psychological Science,2004,15(9):623-628.
    [931 Johnson J S, Spencer J P, Luck S J, et al. A dynamic neural field model of visual working memory and change detection[J]. Psychological Science,2009,20(5):568-577.
    [94]Downing P E. Interactions between visual working memory and selective attention[J]. Psychological Science,2000,11(6):467-473.
    [95]徐萧萧.基于特征学习与特征联想的视觉跟踪算法研究[D].中国科学技术大学,2010.
    [96]Jobson D J, Rahman Z U, Woodell G A. Properties and performance of a center/surround retinex[J]. Image Processing, IEEE Transactions on,1997,6(3):451-462.
    [97]Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision,2004,60(2):91-110.
    [98]Vedaldi A, Gulshan V, Varma M, et al. Multiple kernels for object detection[C]. Computer Vision,2009 IEEE 12th International Conference on. IEEE,2009:606-613.
    [99]Hou X, Zhang L. Saliency detection:A spectral residual approach[C]. Computer Vision and Pattern Recognition,2007. CVPR'07. IEEE Conference on. IEEE,2007:1-8.
    [100]Walther D, Koch C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006,19(9):1395-1407.
    [101]Margolin R, Zelnik-Manor L, Tal A. Saliency for image manipulation[J]. The Visual Computer,2013,29(5):381-392.
    [102]Vikram T N, Tscherepanow M, Wrede B. A saliency map based on sampling an image into random rectangular regions of interest[J]. Pattern Recognition,2012,45(9):3114-3124.
    [103]Riche N, Mancas M, Duvinage M, et al. RARE2012:a multi-scale rarity-based saliency detection with its comparative statistical analysis[J]. Signal Processing:Image Communication,2013,28(6):642-658.
    [104]Powers D M W. Evaluation:from precision, recall and F-measure to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2011,2(1):37-63.
    [105]Rodner E, Denzler J. One-shot learning of object categories using dependent Gaussian processes[M]. Pattern Recognition. Springer Berlin Heidelberg,2010:232-241.
    [106]Harzallah H, Jurie F, Schmid C. Combining efficient object localization and image classification[C]. Computer Vision,2009 IEEE 12th International Conference on. IEEE, 2009:237-244.
    [107]Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows:Object localization by efficient subwindow search[C]. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,2008:1-8.
    [108]Pritch Y, Ratovitch S, Hendel A, et al. Clustered synopsis of surveillance video[C]. Advanced Video and Signal Based Surveillance,2009. AVSS'09. Sixth IEEE International Conference on. IEEE,2009:195-200.
    [109]Boiman O, Irani M. Detecting irregularities in images and in video[J]. International Journal of Computer vision, vol.74, no.1, pp.17-31,2007.
    [110]Zhong H, Shi J, Visontai M. Detecting unusual activity in video[C]. Computer Vision and Pattern Recognition,2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE,2004,2:II-819-II-826 Vol.2.
    [111]Ferman A M, Tekalp A M. Multiscale content extraction and representation for video indexing[C]. Voice, Video, and Data Communications. International Society for Optics and Photonics,1997:23-31.
    [112]Oh J, Wen Q, Hwang S, et al. Video abstraction[M]. Hershey, PA:Idea Group Inc. and IRM Press,2004.
    [113]Simakov D, Caspi Y, Shechtman E, et al. Summarizing visual data using bidirectional similarity[C]. Computer Vision and Pattern Recognition,2008. CVPR 2008. IEEE Conference on. IEEE,2008:1-8.
    [114]Pritch Y, Rav-Acha A, Peleg S. Nonchronological video synopsis and indexing[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008,30(11): 1971-1984.
    [115]Weng Y, Jiang J. Real-time and automatic close-up retrieval from compressed videos[J]. International Journal of Automation and Computing,2008,5(2):198-201.
    [116]Li L, Huang W, Gu I Y H, et al. Foreground object detection from videos containing complex background[C]. Proceedings of the eleventh ACM international conference on Multimedia. ACM,2003:2-10.
    [117]Chen Z H, Guo M W, Zhao Y Z, Zhang C B. A moving object detection method based on frog's eye, CHN. Patent, CN 103077533,2012.
    [118]Chen Z H, Guo M W, Xiang J P, Zhang C B, Zhao Y Z. A vehicle monitoring method and system, CHN. Patent, CN 103021186,2012.
    [119]Yu Z, Wu H R, and Winkler S, et al. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE,2002,90(1): 154-169.
    [120]Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter,2002,9(3):388-392.
    [121]Wang Z, Alan C B, and Hamid R S. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612.
    [122]Yan Q, Xu L, Shi J, et al. Hierarchical saliency detection[C], Computer Vision and Pattern Recognition (CVPR),2013 IEEE Conference on. IEEE,2013:1155-1162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700