用元胞自动机模型模拟教学楼疏散过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,安全问题越来越受到人们的广泛关注,尤其是在地震、火灾等或其他紧急事件突发的情况下,在学校、超市等人口密集的公共场所,人员疏散问题越来越成为人们重点关注的对象。这些场所人流量大,人员密集,隐藏着很大的安全隐患,一旦紧急事件发生,如果疏散不力,极有可能由于发生人群的拥挤踩踏而造成大量人员的伤亡及建筑物的损坏,因此安全隐患问题已成为了人们关注的热点。在对人员的疏散进行研究的时候,如果进行大规模的实际演练,势必造成大量人力和财力的浪费,且疏散人员的行为和建筑结构较复杂,很难实施,所以近几年来越来越多的科学家通过计算机模拟人员从大型建筑物内疏散,通过计算人员离开危险区域所用的时间及分析人员在疏散过程中的行为、心理、及生理等因素的特点进行仿真研究,根据人员疏散结果和实际情况,对建筑物的结构设计、人员的安全防范,提出切合实际的、合理化的科学建议。
     本文的主要工作共分为三个部分:
     第一部分,采用Von-Neumann邻居及扩展的Moore邻居并通过改变更新时步的方法实现了多速混合行人流的建模,对双出口教室内的三种不同最大速度行人的疏散过程进行了模拟研究,根据教室的实际情况重新定义了位置危险度,该模型能很好地再现了混合行人流的疏散全过程,利用串行更新的二维元胞自动机模型,采用不同最大速度的行人运动规则对大型教室里的行人进行了模拟疏散和研究,结果表明由于教室内障碍物的存在,最大速度大的行人在疏散过程所用的疏散时间和最大速度小的差别不明显,行人堵塞主要集中在课桌之间和走道内;疏散时间主要和走道门的宽度、行人的数量有关;两门之间的距离和门的宽度对疏散时间影响不大。
     第二部分,利用偏向随机行走格子气模型中的方向选择概率的计算方法,建立二维元胞自动机的行人流疏散模型,对某一层教学楼的疏散过程进行了模拟和研究。结果得出了疏散时间与楼梯的数量、楼道宽度、楼梯宽度以及行人在楼道、楼梯偏向强度的关系。该模拟结果对教学楼的设计具有一定的指导意义。
     第三部分,对一种两层楼的行人疏散进行了模拟和研究。将三维的立体问题简化成二维的平面问题,运用元胞自动机,建立一种新的行人运动规则模型,主要考查了楼梯的长度、楼梯的宽度、楼道的宽度、房间门的宽度对疏散时间的影响。结果表明楼梯的长度、楼道的宽度、房间门的宽度对平均疏散时间影响不大,而楼梯的宽度对平均疏散时间影响较大。
     对行人疏散领域的研究具有非常重要的意义,运用控制变量法,通过对一定场所内的行人进行疏散的模拟和演化,得出最优的方案。根据这个方案,设计者对建筑物的整体结构进行合理化的设计,在紧急情况发生的情况下,使行人的疏散时间最短;同时使相关部门制定安全防范措施,提高人们的防范意识,减少不必要的人员伤亡。
     最后,对全文的工作进行了总结和概括,并且指出一些有待研究的问题,对今后的研究方向进行了展望。
In recent years, security has become the hotspot. Especially in the earthquake, fire or other emergency incidents such as emergencies, in schools, stadiums and other crowded public places, people have increasingly focused on evacuation issue. These places are traffic flow, personnel-intensive, large hidden security risks. Once the earthquake, fire and other emergency incidents occur and evacuation is carried out ineffective, a stampede among the crowd likely takes place, which results in a large number of casualties and damages to buildings. So people pay close attention to the issue of pedestrian safety evacuation. If you study the evacuation problem, you focus on the actual large-scale staff training, which will cause considerable waste of human and financial resources, and evacuation personnel, psychological and architectural structures, the environment varies, which is very difficult to implement. In this case, scientists generally simulate the evacuation of large buildings through the computer modeling. They carry out the simulation by calculating the time the staff spend in leaving the danger zone and analyzing the behavior, psychological, and physiological factors of the staff in the evacuation process. According to the results of the evacuation and the actual situation, the realistic rationalization of scientific advice will be put forward which benifits the structural design of buildings and the personnel of security.
     The main work of this paper is divided into three parts:
     The first part, a multi-speed mixed-line pedestrian flow modeling has been achieved, using Von-Neumann neighborhood and expansion of the Moore neighbors, and by changing the update-step approach. In double-outlet of the classroom the simulation study on three different maximum speed of pedestrian evacuation process was carried out. Based on the actual situation in the classroom the position of risk has been re-defined. The model can reproduce the hybrid line of the whole process flow of evacuation. Using the serial updating of two-dimensional cellular automaton model and adopting different maximum speed of pedestrians movement rules, large classroom pedestrian evacuation simulation and studies has been carried out, which shows that owing to the presence of obstacles in the classroom, it is not obvious difference between a maximum speed of major pedestrian evacuation process used in the evacuation time and the maximum speed of small. Pedestrian congestion mainly focuses on between the desks and hallways. Evacuation time mainly relates to the aisle width of the door and the number of pedestrians. The distance between the two doors and the width of the door has little effect on the evacuation time.
     The second part,two-dimensional cellar automata evacuation model of pedestrian flow has been established, using lattice gas model of biased random walk in the direction of selection probability calculation methods, which simulates and researches a certain layer of the evacuation process of teaching building. The results obtained evacuation time and the number of stairs, corridor width, stair width, and pedestrians in the corridor, stairs bias strength of relationship. The simulation results has a certain significance of the teaching building design.
     The third part,a two-storey pedestrian evacuation was carried out to simulate and study. Three-dimensional problem can be reduced into a two-dimensional problem. With the use of cellular automata, a new model of pedestrian movement rules has been established, mainly examined the length of the stairs, stair width, the width of the corridor, the width of the room door on the time of evacuation. The results show that the length of the stairs, corridor width, the width of the room door have little effect on the average evacuation time, while the width of the stairs has a greater impact on the average evacuation time.
     The research in the field of pedestrian evacuation is of great importance. The use of controlled variable method, an optimal solution has come out through a pedestrian evacuation simulation and evolution in a certain place. According to this program, the designer rationalizes the design of the overall structure of the building. In the case of an emergency, the time of pedestrian evacuation has been shortest. At the same time the relevant departments develop safety precautions to raise people's awareness of prevention and to reduce unnecessary casualties.
     Finally, I have summarized the work of the full text and come to a summarization, and pointed out some issues to be examined, and predicted the future research direction.
引文
[1]方正,卢兆明.试论建筑物人员疏散的量化研究.武汉大学学报(工学版).2002,2:71-75.
    [2].袁理明,范维澄.建筑火灾人员安全疏散时间的预测.自然灾害学报。1997,6(2):29-33.
    [3].肖国清,温丽敏,陈宝智.建筑物火灾疏散中人的行为研究的回顾与发展.中国安全科学学报,2001,11(3):50-53.
    [4]刘茂,王振.行人和疏散动力学研究现状及进展.安全与环境学报,2006,(zl):121-125.
    [5]刘文利,熊洪,李晓东.地下商业街建筑人员疏散预测。火灾科学,1999,8(3):72-79
    [6]张培红,陈宝智。火灾人员疏散的行为规律。东北大学学报(自然科学版),2001,22(1)54-56
    [7]张培红,陈宝智。建筑物火灾人员疏散群集流动规律。东北大学学报(自然科学版),2001,22(5)564-567
    [8]张培红,陈宝智,刘丽珍。大型建筑物火灾人员疏散行为规律研究。中国安全科学学报,2001,11(2)22-26
    [9]方伟峰,杨立中,黄锐。基于元胞自动机的多自主体人员行为模型及其在性能化设计中的应用。中国工程科学,2003,5(3):67-71
    [10]催喜红,李强,陈晋,等.基于多智能体技术的公共场所人员疏散模拟研究[J].系统仿真学报,2008,20(4):1006-1010
    [11] Song W G ,Xuan X ,Wang B H ,et al.Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J].Physics A,2006,363:492-500
    [12] Weng W G,Shen S F,Yuan H Y,etal.A behavior-based model for pedestrian counter flow [J].2007.375:668-678
    [13]宋卫国,于彦飞,范维澄,等.一种考虑摩擦与排斥的人员疏散元胞自动机模型[J].中国科学E辑工程科学&材料科学,2005,35(7):725-736.
    [14]方伟峰,火灾中人员疏散的元胞自动机模型的研究[硕士学位论文],中国科技大学,2003年5月
    [15]阎卫东,梁清山,陈宝智。火灾情况下疏散心理和行为在不同层次起点学生中的差别研究[J]中国安全科学学报,2006,16(3):8-11
    [16] Samochine D A,Boyce K,Shields T J.An investigation into staff behavior in unannounced evacuations of retail store .In 8th International Symposium on Fire Safety Science .Beijing,2005
    [17]赵道亮紧急情况下人员疏散的特殊行为的元胞自动机模型的研究[硕士学位论文],中国科技大学,2007年4月
    [18] Livesay G E ,et al . A consideration of evacuation attributes and their function sensitivities. Proceeding of the 2nd International Symposium on Human Behavior in Fire . Boston:(USA)MIT. 2001,111.
    [19]国外建筑物火灾人员安全疏散研究(译文集)。消防安全工程工作组编,北京,2001.P145-147
    [20] Henderson L. F .The statistic of crowd fluid[J] . Nature . 1971 ,229:381.
    [21]孟俊仙,周淑秋,饶敏。大型建筑内人员疏散计算机仿真研究研究综述[J]计算机应用与软件,2008,25(3):159-161
    [22] Helbing D. A fluid dynamic model for the movement of pedestrians[J]. Complex Systems. 1992,6:391-415.
    [23] Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J].Physica A,1999,267:487-498.
    [24] Muramatsu M, Nagatani T.Jamming transition in two-dimensional pedestrian traffic[J],Physica A, 2000, 275:281-291.
    [25] Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J], Physica A, 2000, 286:377-390.
    [26] Tajima Y, Nagatani T.Scaling behavior of crowd flow outside a hall[J], Physica A, 2001, 292:545-554.
    [27] Tajima Y, K.Takimoto, Nagatani T.Scaling of pedestrian channel flow with a bottleneck[J], Physica A, 2001,294: 257-268.
    [28] Tajima Y, Nagatani T.Clogging transition of pedestrian flow in T-shaped channel[J], Physica A, 2002, 303:239-250.
    [29] Qiu B, Tan H L, Kong L J, et al.Lattice-gas simulation of escaping pedestrian flow in corridor[J].Chinese Physics,2004,13(7):990-995.
    [30] Guo R Y, Huang H J.A mobile lattice gas model for simulating pedestrian evacuation[J]. Physica A, 2008,387:580-586.
    [31] Kuang H,Song T, Li X L,et al. Subconscious effect on pedestrian counter flow[J]. Chinese Physics Letters.2008,25(4): 1498-1501.
    [32] Kuang H, Li X L, Song T, et al. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E, 2008,78: 066117.
    [33] Von Neumann J. Theory of self-reproducing automata[A]. University of Illinois Press. Urbana.1966.
    [34] Burstedde C, Klauck K, Schadschneider A, et al, Simulation of pedestrian dynamics using a two-dimensional cellular automaton [J], Physica A, 2001,295: 507-525.
    [35] Zhang J, Song W G, Xu X. Experiment and multi-grid modeling of evacuation from a classroom[J].Physica A, 2008,387:5901-5909.
    [36] Zhao D L, Yang L Z, Li J.Exit dynamics of occupant evacuation in an emergency[J].Physica A, 2006,363:501-511.
    [37] Zhao D L, Li J, Zhu Y, et al. The application of a two-dimensional cellular automata random model to the performance-based design of building exit[J]. Building and Environment, 2008,43:518-522.
    [38] Nishidate K, Baba M. Cellular automaton model for random walkers[J]. Physical Review Letters,1996,77(9):1675-1677.
    [39] Schreckenberg M, Sharma S D. Pedestrian and evacuation dynamics[M]. New York:Springer,2001:21-58.
    [40] Kirchner A, Schadschneider A.Simulation of evacuation process using a bionics-inspired cellular automaton model for pedestrian dynamics[J].Physica A, 2002, 312: 260-276.
    [41] Song W G, Yu Y F, Wang B H, et al. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model[J]. Physica A, 2006,371:658-666.
    [42] Yuan W F, Tan K H. A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition[J]. Physica A, 2007, 379:250-262.
    [43] Yang L Z, Fang W F, Huang R, et al. Occupant evacuation model based on cellular automata in fire[J], Chinese Science Bulletin. 2002,47(17):1484-1488.
    [44] Yuan W F, Tan K H. An evacuation model using cellular automata[J]. Physica A,2007, 384:549-566.
    [45] Yue H, Hao H R, Chen X M, et al. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A,2007,384: 567-588.
    [46] Zhao D L, Yang L Z, Li J.Occupants’behavior of going with the crowd based on cellular automata occupant evacuation model[J].Physica A, 2008,387:3708-3718.
    [47] Weng W G, Pan,L L, Shen S F,et al.Small-grid analysis of discrete model for evacuation from a hall[J].Physica A, 2007,374:821-826.
    [48] Xu X, Song W G, Zheng H Y.Discretization effect in a multi-grid egress model[J]. Physica A, 2008,387:5567-5574.
    [49] Helbing D,Farkas I.J.,Molnar P.and Vicsek T.,simulation of Pedestrian Crowds in Normal and Evacuation Situtions, Pedestrian and Evacuation Dynamics,2002,in M.Schreckenberg and S.Sharma(Eds),21-58,Springer
    [50] Helbing D, Molnar P. Social force model for pedestrian dynamics[J], Physical Review E, 1995, 51: 4282-4286.
    [51] Helbing D, Farkas I, Vicsek T.Simulating dynamical features of escape panic[J], Nature, 2000, 407: 487-490.
    [52]邱冰.楼房内人员逃生流的自动机模拟研究[D].桂林:广西师范大学,2004.
    [53] Helbing D, Molnar P. ,Farkas I.J.andBolay K.,Self-organizing pedestrianmovement,Environment and Planning B: Planning and Design ,2001,28,361-383
    [54] Takimoto K.,Takeyama Y.and Inamura H., Review on Microscopic pedestrian model,Proceedings Japan Society of Civil Enginerring Conference,Morioka,Japan,March 2000.
    [55] Rui J.,Qingsong W.,Pedestrian behaviors in a lattice model with large maximum Velocity, Physica A, 2007,373:683-693.
    [56] B. Chopard and M.Droz . Cellular Automata Automata Modelling of Physical Systems[M]://祝玉学,赵学龙(译),物理系统的元胞自动机模拟[M],北京:清华大学出版社. 2003.
    [57] M .Garder. The fantastic combination of John Conway’s new solitaire game life[J]. Scientif American. 1970 : 120-123.
    [58] Sekizawa A,Ebibhara M,Notakeet H.Occupants’behaviour in response to the high-rise apartments fire in Hiroshima city .Fire and Materials,1999,23(6):297-303.
    [59]杨立中,方伟峰,黄锐,等.基于元胞自动机的火灾中人员逃生的模型[J].科学通报,2002,47 (12):896-901.
    [60]翁文国,袁宏永,范维澄.一种基于移动机器人行为的人员疏散元胞自动机模型[J].科学通报,2006,51(23):2818-2821.
    [61]吕春杉,翁文国,杨锐,等.基于运动模式和元胞自动机的火灾环境下人员疏散模型[J].清华大学学报:自然科学版,2007,47(12): 2163-2167.
    [62]赵道亮.紧急条件下人员疏散特殊行为的元胞自动机模拟[D].合肥:中国科学技术大学,2007.
    [63] Blue V.J,Adler J.L.Modeling four-directional pedestrian flows.In 80th annual Meeting of the Transportation Research Board,Washington,DC,1999,1546-1550.
    [64] Blue V.J,Adler J.L.Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J], Transportation Researsh B, 2001,35:293-312.
    [65]谭惠丽,邱冰,刘慕仁,等.房间内人群疏散过程的元胞自动机研究[J].广西师范大学学报:自然科学版,2004,22(4):1-4.
    [66] Yu Y F, Song W G. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment[J]. Physical Review E,2007,75: 046112.
    [67] Zheng R S,Qiu B, Deng M Y,et al. Cellular automaton simulation of evacuation process in story[J]. Communications in Theoretical Physics.2008,49(1):166-170.
    [68] Weng W G, Chen T, Yuan H Y.et al.Cellular automaton simulation of pedestrian counter flow with different walk velocities[J]. Physical Review E, 2006,74:036102.
    [69] Varas A, Cornejo M.D, Mainermer D, et al.Cellular automaton model for evacuation process with obstacles[J], Physica A ,2007,382:631-642.
    [70]周金旺,陈秀丽,孔令江等.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报(自然科学版),2008,26(4)14-17.
    [71]周金旺,邝华,刘慕仁,孔令江.成对行为对行人疏散动力学的影响研究[J].物理学报,2009,58(5):3001-3007.
    [72] Chen R H, Qiu B, Zhang C Y et al. A study on the evacuation of people in a hall using the cellular automaton model[J]. International Journal of Modern Physics C,2007, 18(3):359-367.
    [73] Nagatani T.Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[J].Physica A, 2001, 300: 558-566.
    [74] Yanagisawa D, Nishinari K.Mean-field theory for pedestrian outflow through an exit[J].Physical Review E, 2007,76 :061117.
    [75] Nakayama A, Hasebe K, Sugiyama Y.Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model[J].Physical Review E,2005, 71: 036121.
    [76] Yu W J, Chen R, Dong L Y, et al. Centrifugal force model for pedestrian dynamics[J]. Physical Review E, 2005, 72: 026112.
    [77]郭谨一,刘爽,陈绍宽,等.行人运动仿真研究综述[J].系统仿真学报, 2008 ,20(9):2237-2242.
    [78]龚晓岚,魏中华.行人动力学的研究进展[J].人类工效学,2008,14(2):68-71.
    [79]李君霞,曹菡,周影,等.基于智能体的行人路径查找微观模型研究[J].计算机工程与科学,2008, 30(3):145-148.
    [80] Izquierdo J, Montalvo I, Pérez R, et al. Forecasting pedestrian evacuation times by using swarm intelligence[J].Physica A, 2009,388:1213-1220.
    [81]方正,卢兆明.建筑物避难疏散的网格模型[J].中国安全科学学报,2001,11(4):10-13.
    [82]陈智明,霍然,王国栋.建筑内人员疏散的一种网络模型算法的讨论[J].火灾科学,2004 (2): 90-94.
    [83]方正,陈大宏,张铮,卢兆明,建筑物火灾人员疏散的计算机仿真[J].计算机仿真,2001,18(2): 49-52.
    [84]陆君安,方正,卢兆明,等.建筑物人员疏散逃生速度的数学模型[J].武汉大学学报, 2002, 35(2): 66-70.
    [85]方正,卢兆明.试论建筑物人员疏散的量化研究[J].武汉大学学报:工学版,2002, 2:71-75.
    [86] Fang Z, Lo S M, Lu J A. On the relationship between crowd density and movement velocity[J]. Fire Safety Journal, 2003,38:271-283.
    [87]田玉敏,蔡晶菁.基于人群动力学的疏散时间工程计算方法的探讨[J].科技通报,2008,24(1):138-142.
    [88] Fang Z, Yuan J P, Wang Y C, et al. Survey of pedestrian movement and development of a crowd dynamics model[J].Fire Safety Journal, 2008,43:459-465.
    [89]袁建平,方正,卢兆明,等.车站客流观测及其对人群疏散动力学模型的验证[J]西安建筑科技大学学报:自然科学版,2008,40(1):108-113.
    [90] Xu X, Song W G, Zheng H Y.Discretization effect in a multi-grid egress model[J].Physica A, 2008,387:5567-5574.
    [91] Fang Z, Yuan J P, Wang Y C, et al. Survey of pedestrian movement and development of a crowd dynamics model[J].Fire Safety Journal, 2008,43:459-465.
    [92] Schadsclmeider A, Klingsch W, Klupfel H,et al. Evacuation Dynamics:Empirical Results, Modeling and Applications[J].2008, http://cn.arxiv.org/abs/0802.1620v1.
    [93] Isobe M, Adachi T,Nagatani T.Experiment and simulation of pedestrian counter flow[J]. Physica A, 2004,336:638-650.
    [94] Helbing D, Isobe M, Nagatani T, et al, Lattice gas simulation of experimentally studied evacuation dynamics[J], Physical Review E, 2003, 67: 067101.
    [95] Nagai R, Fukamachi M, Nagatani T. Evacuation of crawlers and walkers from corridor through an exit[J]. Physica A, 2006,367:449-460.
    [96] Li X M, Chen T, Pan L L, et al. Lattice gas simulation and experiment study of evacuation dynamics[J]. Physica A,2008,387:5457-5465.
    [97] Liu S B,Yang L Z,Fang T Y, et al. Evacuation from a classroom considering the occupant density around exits[J].Physica A, 2009,388:1921-1928.
    [98] Zheng X P, Zhong T K, Liu M T. Modeling crowd evacuation of a building based on seven methodological approaches[J]. Building and Environment,2009,44(3):437-445.
    [99] Yamamoto K, Kokubo S, Nishinari K.Simulation for pedestrian dynamics byreal-coded cellular automata (RCA)[J]. Physica A, 2007,379:654-660.
    [100] Song W G, Xuan X, Wang B H, et al. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J]. Physica A, 2006,363: 492-500.
    [101]杨立中,方伟峰,李健,等。考虑人员行为的元胞自动机行人运动模型[J].科学通报,2003,48(11):1143-1147.
    [102]薛鹏.用元胞自动机模型模拟人员紧急疏散过程[D].桂林:广西师范大学,2009.
    [103] Takimoto K,Nagatani T.Spatio-temporal distribution of escape time in evacuation processes[J].Physica A,2003,320:611-621.
    [104] Graham T L,etal.Qualitative overview of some important factors affecting the egress of people in hotel fires[J]. Hospitality Management,2000,19:79-87.
    [105]朱艺,杨立中,李健.不同房间结构下人员疏散的CA模拟研究[J].火灾科学,2007,16(3):175-78.
    [106]宋卫国,于严飞,陈涛.出口条件对人员疏散的影响及其析[J].火灾科学,2003,12(2):100-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700