IGF-1:一种潜在的抗癫痫发作新靶标
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分IGF-1在颞叶癫痫患者及点燃大鼠脑组织中的表达
     目的:研究IGF-1在难治性颞叶癫痫(TLE)患者颞叶皮质中的表达,及IGF-1在化学点燃模型即匹罗卡品(PILO)诱导颞叶癫痫模型和戊四氮(PTZ)急性点燃模型海马脑组织中的动态表达规律。
     方法:人脑组织标本源自课题组的癫痫脑库,从中随机抽取24例难治性TLE患者颞皮质标本,12例对照组标本。酶联免疫吸附实验(enzyme-linked immunosorbent assay, ELISA)用于检测检测IGF-1蛋白表达,荧光定量PCR(quantitative real time PCR, qRT-PCR)技术检测IGF-1mRNA表达水平。用ELISA和qRT-PCR检测成年雄性SD大鼠IGF-1表达,动物随机分为正常对照组(n=5)和癫痫组(SE后6h组、24h组、7d组、21d组、60d组,各组n=5),经腹腔注射PILO诱导癫痫持续状态(status epilepticus, SE),构建SE后颞叶癫痫动物模型。用PTZ大鼠急性点燃模型验证急性期IGF-1的表达,分6h组(n=5)和24h组(n=5)。
     结果:IGF-1mRNA及蛋白在TLE患者颞叶皮质中的表达较非癫痫对照组颞叶皮质表达水平明显增高,IGF-1mRNA表达的相对量对照组为1.19±0.34,TLE组为2.46±1.48;IGF-1蛋白对照组为235.75±50.54pg/mg,TLE组为311.58±101.79pg/mg,(P<0.05)。PILO模型鼠IGF-1mRNA相对水平在SE后24h、21d和60d三个时间点的表达显著增高,对照组均值为1.03±0.05,24h组为2.15±0.46,21d组为2.69±0.55,60d组为3.57±0.64,差异有统计学意义(P<0.05);ELISA结果显示IGF-1蛋白水平在PILO模型癫痫急性期(SE后6h和24h)和SRS后(SE后21d和60d)IGF-1蛋白水平表达均显著增高(P<0.05);对照组为9.16±0.83, SE后6h组16.04±2.24,24h组19.98±2.18,21d组13.41±2.28,60d组为13.26±1.9(ng/mg蛋白);PTZ模型GTCS6h和24h后IGF-1蛋白表达水平也显著增高(P<0.05),分别为14.05±2.03和13.96±3.58(ng/mg蛋白)。
     结论:在颞叶癫痫患者和动物模型脑组织中IGF-1表达均明显增加,SE后IGF-1基因和蛋白的高表达可能参与了癫痫的发生发展过程。
     第二部分癫痫研究新发现:IGF-1及其受体信号通路调控癫痫活动
     目的:通过大鼠活体侧脑室注射重组人胰岛素样生长因子(rhIGF-1),腹腔注射特异性IGF-1受体抑制剂(picropodophyllin,PPP),观察其对PILO和PTZ模型鼠癫痫活动的影响。大鼠活体给予IGF-1受体下游信号通路MAPK-ERK抑制剂U0126和PI3K-AKT抑制剂LY294002,分别观察其对PTZ模型鼠癫痫活动的影响。
     方法:所有动物麻醉后经立体定位侧脑室埋置微量注射导管,术后恢复一周,动物在清醒自由活动状态下药物干预,造模后观察大鼠行为学变化。分组:对照组(n=13),侧脑室注射等量生理盐水;IGF-1组(n=13),侧脑室注射rhIGF-110μg;PPP组(n=15),侧脑室注射(NS),腹腔注射PPP20mg/kg体重;干预后1h分别腹腔注射PILO诱导SE。PTZ模型采用同样的分组及干预方法(各组n=10)。PILO模型观察SE潜伏期,4级以上SE发作比率,最大发作评分(Racine score)和急性期死亡率。PTZ模型观察惊厥发作潜伏期和发作比率。两组均记录脑电活动(n=3)。IGF-1下游信号干预分为对照组,U0126组(5μΜ, i.c.v.),LY294002组(20μΜ, i.c.v.),U0126+LY294002组(U01265μM+LY29400220μM, i.c.v.)(各组n=10)。干预后1h分别腹腔注射PTZ造模,观察惊厥发作潜伏期和发作比率。
     结果:PILO模型对照组SE潜伏期均值为28.89±7.96(min),IGF-1组为19.58±8.05(min),PPP组为38.63±13.06(min);用ANOVA多种样本均数间比较显示与对照组比较,IGF-1组潜伏期明显缩短,PPP组潜伏期明显延长(P<0.05)。大鼠IV级以上发作比率显示:对照组为9/12,IGF-1组为12/13,PPP组为8/15,IGF-1组和PPP组比较有显著统计学差异。对照组最大发作评分3.38±1.94,IGF-1组为4.46±1.27,PPP组为2.53±2.0;大鼠急性期死亡率为IGF-1组30.77(4/13),对照组7.69%(1/13),PPP组没有大鼠死亡,IGF-1组和PPP组比较有显著统计学差异(P<0.05)。
     PTZ模型对照组GTCS发病潜伏期均值为107.5±5.04(s),IGF-1组为86.9±6.08(s),PPP组为124.17±13.21(s),IGF-1+PPP组为116.63±11.44(s),与对照组比较,IGF-1组潜伏期明显缩短,PPP组潜伏期明显延长(P<0.05)。GTCS发病比率IGF-1+PPP组为8/10,PPP组(6/10)与对照组(10/10)和IGF-1组(10/10)比较有显著统计学差异(P<0.05)。
     PTZ模型IGF-1受体下游信号通路的活体干预研究显示,对照组GTCS发病潜伏期(s)均值为92.6±8.09,LY294002组为109.5±14.2,U0126组为105.83±8.75,LY294002+U0126组为122.5±16.67;与对照组比较,LY294002组和LY294002+U0126组潜伏期均明显延长,LY294002+U0126组与LY294002组和U0126组比较潜伏期也显著延长(P<0.05)。GTCS发病比率对照组为10/10,LY294002组为8/10、U0126组和LY294002+U0126组均为6/10; U0126组和LY294002+U0126组与对照组比较均有显著统计学差异(P<0.05)。
     结论:IGF-1增加PILO诱导SE发作比率,缩短潜伏期,增加最大发作评分和死亡率,缩短PTZ模型GTCS潜伏期,说明IGF-1增加可能有增加癫痫发作敏感性和SE严重程度的作用。PPP延长PILO诱导SE潜伏期,减少SE发作比率,降低SE评分和急性期大鼠死亡率;PPP,U0126和LY294002在延长PTZ模型GTCS潜伏期,减少GTCS发作比率方面都有一定效果;说明抑制IGF-1受体和下游信号通路可能有抑制癫痫活动的效果。
     第三部分IGF-1及其受体信号通路在癫痫发作中的细胞与分子机制
     目的:通过离体海马脑片IGF-1和PPP干预行膜片钳技术研究二者对癫痫模型海马兴奋性的影响,应用分子生物学技术检测IGF-1受体及下游信号活化状态,探讨IGF-1受体及其下游信号通路参与癫痫活动的分子机制。
     方法:用出生后14~16天乳鼠构建离体海马脑片,无镁诱导癫痫模型(对照组),IGF-1和PPP干预组(各组N=8-12),均记录场电位(fEPSP)轨迹,分析fEPSP斜率,记录无镁诱导痫样放电频率。观察微小兴奋性突触后电流(mEPSC)和兴奋性突触后电流(EPSC),包括:AMPAR和NMDAR介导的EPSC。IGF-1组在无镁人工脑脊液及记录液中加入IGF-1100ng/ml30min后记录,PPP组无镁诱导前加PPP5μM孵育1-2h,再给予无镁诱导,同时加IGF-1处理。用Western blot技术检测LiCL-PILO模型,正常对照、SE后6h组、24h组、7d组、21d组和60d组海马pIGF-1R/IGF-1R、pERK1/2/ERK1/2及pAKT/AKT蛋白水平的变化;检测IGF-1和PPP干预后6h和24h pIGF-1R/IGF-1RpERK1/2/ERK1/2及pAKT/AKT蛋白水平的变化。
     结果:IGF-1诱导大鼠海马脑片fEPSP斜率增加,增加无镁诱导痫样放电频率(P<0.05);PPP预处理,降低IGF-1诱导的fEPSP斜率增加,并减少无镁诱导痫样放电频率(P<0.05)。与对照组比较,IGF-1增加mEPSC频率,PPP降低IGF-1诱导的mEPSC频率增加。mEPSC振幅累积分布曲线显示:和对照组组比较IGF-1组大鼠海马脑片mEPSC振幅累积分布曲线有显著偏移现象。IGF-1增加AMPAR和NMDAR介导的兴奋性突触后电流幅值,PPP可部分反转IGF-1诱导的EPSC的幅值。与正常对照组比较,PILO模型SE后急性期IGF-1R、ERK1/2及AKT磷酸化水平增加(P<0.05);IGF-1干预进一步增加SE后6h和24hIGF-1R、ERK1/2及AKT磷酸化水平(P<0.05),而PPP则有抑制作用(P<0.05)。
     结论:IGF-1诱导大鼠海马脑片兴奋性增加,PPP对IGF-1效应有一定的逆转作用,说明IGF-1及其受体通路可能通过兴奋性突触后电位起作用。IGF-1及PPP影响癫痫活动,可能通过IGF-1R及其下游ERK1/2及AKT信号通路的激活来实现的。
     第四部分miRNA-9调控IGF-1可能是抗癫痫发作新的治疗方法
     目的:课题组前期miRNAs芯片表达谱研究发现TLE患者颞叶皮质与对照组比较miRNA-9存在差异表达,靶基因预测IGF-1是miRNA-9的靶基因。实验检测TLE与对照组患者颞叶皮质和PILO模型miRNA-9表达,并验证二者的靶标关系。
     方法:用测定IGF-1mRNA同批RNA,用qRT-PCR技术检测miRNA-9表达水平。与广州锐博生物有限公司合作,采用双荧光素酶报告系统验证靶基因。
     结果:TLE患者颞叶皮质miRNA-9表达较对照组降低,但无显著统计学差异(P>0.05)。PILO模型miRNA-9在SE后6h和7d组较对照组表达显著增高(P<0.05),其它时间点表达差异不模型;双荧光素酶报告系统报告IGF-1是miRNA-9的靶基因。
     结论:miRNA-9和IGF-1表达在一定程度上有反向关系,结合双荧光素酶报告系统报告IGF-1是miRNA-9的靶基因,我们推测IGF-1可能是miRNA-9靶标,找到调控IGF-1基因新方法,通过miRNA-9调控IGF-1表达可能是一种新的抗癫痫靶标。
PART ONE EXPRESSION OF IGF-1IN PATIENTS WITHTEMPORAL LOBE EPILEPSY AND EXPERIMENTAL RATS
     Objective To investigate the expression pattern of IGF-1in temporallobe tissue of intractable epilepsy patients and hippocampal tissue oflithium chloride-pilocarpine and pentamethazol induced rat models.
     Methods To detect the IGF-1protein and mRNA expression,24patients undergoing surgery for medically intractable TLE and12nonepileptic control subjects were examined by ELISA and quantitativereal-time PCR. Using the same technology tested the expression pattern ofIGF-1in temporal lobe tissue of experimental rats. Adult male SD ratsrandomly divided into normal control group of animals (n=5) and PILOinduced epilepsy groups (SE6h group,24h group,7d group,21d group,60d group, every group n=5), and PTZ induced epilepsy groups (dividedinto6h group and24h group, n=5).
     Results The expression of IGF-1protein and mRNA was increased intemporal neocortical of TLE patients (P<0.05). The protein expression of IGF-1was increased after SE6h and24h in pilocarpine and pentamethazoltreatment rats (P<0.05). The mRNA expression of IGF-1was increased inSE24h group,21d group and60d group of pilocarpine-induced rat models(P<0.05).
     Conclusion IGF-1expression is a significant increase in patients withtemporal lobe epilepsy and TLE rat model, therefore, our results indicatethat IGF-1may be involved in epileptogenesis and development ofepilepsy.
     PART TWO NEW DISCOVERIES OF EPILEPSY RESEARCH:IGF-1AND ITS RECEPTOR SIGNALING PATHWAYSREGULATED THE EPILEPTIC ACTIVITY
     Objective Rats by intracerebroventricular injection of recombinanthuman insulin-like growth factor (rhIGF-1) in vivo, and intraperitonealinjection of specific IGF-1receptor inhibitor (picropodophyllin, PPP) toobserve the effects on epilepsy rat models of PTZ and PILO inducedseizure activities. Rats by rat IGF-1receptor downstream signalingpathway MAPK-ERK inhibitors U0126and PI3K-AKT inhibitorLY294002in vivo, respectively, to observe effects on epilepsy rat modelsof PTZ activities.
     Methods All animals after anesthesia via Stereotactic embedded micro-injection catheter into the lateral ventricle. The rats were recoveredone week postoperative. Animals were observed the behavior change underthe waking state. Group: the control group (n=13), lateral ventricleinjection saline10μl; IGF-1Group (n=13), intracerebroventricular injectionrhIGF-110μg; PPP Group (n=15), intracerebroventricular injection NS10μl, intraperitoneal injection PPP20mg/kg weight; After intervention1hrespectively intraperitoneal injection PILO induced SE. PTZ model usedsame intervention method (n=10). LiCL-PILO model observed the latencytime of SE, Racine score and percentage SE. PTZ model observed thelatency time of SE and percentage SE. Both groups have recorded brainelectrical activity (n=3). U0126group (n=10), lateral ventricle injection ofU01265mM; LY294002group (n=10), LY29400220μM injected into thelateral ventricle; U0126+LY294002group (n=10), the U01265μM andLY29400220μM injected into the lateral ventricle. After intervention1hintraperitoneal injection of PTZ induced SE and observed the latency timeof SE and percentage SE.
     Results IGF-1shortened the latency LiCL-PILO and PTZ induced SEcompaired with the control group(P<0.05) and increased the4level aboveSE attack ratio and the severity of SE; PPP group, the incubation period ofthe onset is more lasting (P<0.05) and the ratio of4level above SE wassignificantly declined compaired with IGF-1Group. The serious degree ofSE was lightened in PPP group. The discharge frequency of IGF-1group is more against the control by the EEG observation and the PPP group wasobviously decreased. IGF-1shorten the incubation period compared withcontrol groups in PTZ kindling model (P<0.05), while the PPP Group wassignificantly extended in latency and reduced the spike discharge (P<0.05).LY294002was significantly extended incubation period in PTZ kindlingmodle than control groups (P<0.05), the ratio of GTCS was reduced, but nosignificant statistical differences (P>0.05). U0126was significantlyextended incubation period and reduced the ratio of GTCS in PTZ kindlingmodle compaired with control groups (P<0.05).
     Conclusion IGF-1increased the sensitivity of LiCL-PILO and PTZinduced seizure, while IGF-1receptor inhibitors PPP suppress seizureactivity.
     PART THREE THE CELLULAR AND MOLECULARMECHANISMS OF IGF-1AND ITS RECEPTOR SIGNALINGPATHWAYS IN EPILEPSY
     Objective To investigate the cellular and molecular mechanisms ofIGF-1and and its receptor signaling pathways in epilepsy. The patch-clamptechniques and western-bolt were used to investigate the role of IGF-1andPPP in epileptogenesis and the potential antiepilepsy mechanism throughthe intervention method in vivo and in vitro experiment study.
     Methods To evaluated weather the IGF-1and PPP can modifying theepileptic seizure and epileptiform discharge of rat models throughactivation of ERK and AKT signaling pathways, The patch-clamptechniques were used to detect the slope of field excitatory postsynapticpotential (fEPSP) and magnesium-free-induced the frequency of dischargein pilocarpine rats. Postnatal14-16days rats hippocampal slices, epilepsymodel induced by magnesium-free treatment (control group), theobservation of the effect of IGF-1and PPP on the amplitude and frequencyof miniature excitatory postsynaptic currents (mEPSC) in CA1pyramidalcells. We observed the effect of IGF-1and PPP on the evoked excitatorypostsynaptic currents (eEPSC, including NMDAR-mediated EPSC andAMPAR-mediated EPSC). Laboratory animals are divided into controlgroup, IGF-1(100ng/ml) group and PPP (5μM) add IGF-1(100ng/ml)Group (group n=12). Western blot detected the change of pIGF-1R/IGF-1R,pERK1/2/ERK1/2and pAKT/AKT protein level at control group, SE6hgroup,24h group,7d group,21d group and60d group in hippocampus ofpilocarpine rats. We investigated pIGF-1R/IGF-1R, pERK1/2/ERK1/2andpAKT/AKT protein expression at6h and24h after IGF-1and PPPintervention epileptic rats.
     Results The expression of pIGF-1R was increased at6h,24h,21d and60d group in hippocampus compaired with the control group in pilocarpinerats and pERK1/2and pAKT protein level was increased at6h and24h after SE(P<0.05). IGF-1increased the fEPSP the slope in hippocampalbrain slices of rats and the frequency of epileptiform discharges and thedischarge time induced by magnesium-free (P<0.05); Compared with thecontrol group, IGF-1increased mEPSC frequency while PPP decreased thefEPSP the slope and less mEPSC frequently. Cumulative distribution curveof amplitude display: IGF-1set of CA1area in the rat hippocampal slicemEPSC cumulative distribution curve amplitude apparent offset comparedwith the control group. IGF-1added NMDAR and AMPAR-mediatedexcitatory postsynaptic current amplitude while PPP lower IGF andmagnesium-free treatment in hippocampal slice neurons NMDAR andAMPAR-mediated EPSC amplitude.
     Conclusion IGF-1increased excitability of magnesium-freehippocampal slices in rats, but, PPP reduced the effection the IGF-1promotived-excitability of magnesium-free induced hippocampal slices.IGF-1and PPP works through NMDAR and AMPAR. IGF-1and PPPinfluence seizure activity which accomplished through the activation ofIGF-1R and their downstream ERK1/2and AKT signaling pathway.
     PART FOUR MIRNA-9REGULATION OF IGF-1GENEEXPRESSION MAY BE THE NEW ANTIEPILEPTIC TREATMENT
     Objective Our previous miRNAs microarray expression profilingstudies have found miRNA-9differences expression in patients with TLEtemporal cortical compared with the control group. The target geneprediction found that IGF-1is miRNA-9target gene. This study testmiRNA-9expression of temporal lobe cortex in patients with TLE and thecontrol group, and verify that the target of both relationships.
     Methods Using qRT-PCR technology determinated the expressionlevel of miRNA-9in patients with TLE and the control group. Wecooperated with Guangzhou Ribo biotechnology and verified target geneusing dual-luciferase report gene system.
     Results miRNA-9expression of temporal lobe cortex was reduced inpatients with TLE compared with a control group, but no significantstatistical differences (p>0.05). miRNA-9expression increasedsignificantly at6h and7d after the SE compared with the control group inPILO model rats (P<0.05), and the expression was not significantlydifferences at other time point after SE. Dual-luciferase system reports thatIGF-1is the target genes of miRNA-9.
     Conclusion We infered that IGF-1is miRNA-9target and found thenew method for regulation of IGF-1gene. miRNA-9regulation of IGF-1 expression may be the new antiepileptic target.
引文
[1] Simonato M,Loscher W,Cole A,et al.Finding a better drug for epilepsy: Preclinicalscreening strategies and experimental trial design [J]. Epilepsia.2012,53(11):1860-7
    [2] Loscher W,Schmidt D.Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma [J]. Epilepsia.2011,52(4):657-78
    [3] McNamara JO.Emerging insights into the genesis of epilepsy [J]. Nature.1999,399(6738Suppl):A15-22
    [4] Rakhade SN,Jensen FE.Epileptogenesis in the immature brain: emergingmechanisms [J]. Nat Rev Neurol.2009,5(7):380-91
    [5] Pitkanen A,Lukasiuk K.Mechanisms of epileptogenesis and potential treatmenttargets [J]. Lancet Neurol.2011,10(2):173-86
    [6] Majores M,Schoch S,Lie A,et al.Molecular neuropathology of temporal lobeepilepsy: complementary approaches in animal models and human disease tissue[J]. Epilepsia.2007,48Suppl2:4-12
    [7] McNamara JO,Huang YZ,Leonard AS.Molecular signaling mechanismsunderlying epileptogenesis [J]. Sci STKE.2006,2006(356):12
    [8] Mohapel P,Ekdahl CT,Lindvall O.Status epilepticus severity influences thelong-term outcome of neurogenesis in the adult dentate gyrus [J]. Neurobiol Dis.2004,15(2):196-205
    [9] Adams B,Sazgar M,Osehobo P,et al.Nerve growth factor accelerates seizuredevelopment, enhances mossy fiber sprouting, and attenuates seizure-induceddecreases in neuronal density in the kindling model of epilepsy [J]. J Neurosci.1997,17(14):5288-96
    [10] Binder DK,Croll SD,Gall CM,et al.BDNF and epilepsy: too much of a good thing[J]? Trends Neurosci.2001,24(1):47-53
    [11] Li S,Saragovi HU,Nedev H,et al.Differential actions of nerve growth factorreceptors TrkA and p75NTR in a rat model of epileptogenesis [J]. Mol CellNeurosci.2005,29(2):162-72
    [12] Cacheaux LP,Ivens S,David Y,et al.Transcriptome profiling reveals TGF-betasignaling involvement in epileptogenesis [J]. J Neurosci.2009,29(28):8927-35
    [13] Scharfman HE,Hen R.Neuroscience. Is more neurogenesis always better [J]?Science.2007,315(5810):336-8
    [14] He XP,Kotloski R,Nef S,et al.Conditional deletion of TrkB but not BDNF preventsepileptogenesis in the kindling model [J]. Neuron.2004,43(1):31-42
    [15] Van der Zee CE,Rashid K,Le K,et al.Intraventricular administration of antibodiesto nerve growth factor retards kindling and blocks mossy fiber sprouting in adultrats [J]. J Neurosci.1995,15(7Pt2):5316-23
    [16] Bondy C,Lee WH.Correlation between insulin-like growth factor (IGF)-bindingprotein5and IGF-I gene expression during brain development [J]. J Neurosci.1993,13(12):5092-104
    [17] Schober ME,Block B,Beachy JC,et al.Early and sustained increase in theexpression of hippocampal IGF-1, but not EPO, in a developmental rodent modelof traumatic brain injury [J]. J Neurotrauma.2010,27(11):2011-20
    [18] Muller AP,Fernandez AM,Haas C,et al.Reduced brain insulin-like growth factor Ifunction during aging [J]. Mol Cell Neurosci.2012,49(1):9-12
    [19] Miltiadous P,Stamatakis A,Koutsoudaki PN,et al.IGF-I ameliorates hippocampalneurodegeneration and protects against cognitive deficits in an animal model oftemporal lobe epilepsy [J]. Exp Neurol.2011,231(2):223-35
    [20] Gao L,Blair LA,Salinas GD,et al.Insulin-like growth factor-1modulation ofCaV1.3calcium channels depends on Ca2+release from IP3-sensitive stores andcalcium/calmodulin kinase II phosphorylation of the alpha1subunit EF hand [J]. JNeurosci.2006,26(23):6259-68
    [21] Parent JM,Elliott RC,Pleasure SJ,et al.Aberrant seizure-induced neurogenesis inexperimental temporal lobe epilepsy [J]. Ann Neurol.2006,59(1):81-91
    [22] Parent JM,Murphy GG..Mechanisms and functional significance of aberrantseizure-induced hippocampal neurogenesis [J]. Epilepsia.2008,49Suppl5:19-25
    [23] Simonato M,Tongiorgi E,Kokaia M.Angels and demons: neurotrophic factors andepilepsy [J]. Trends Pharmacol Sci.2006,27(12):631-8
    [24] Tongiorgi E,Armellin M,Giulianini PG,et al.Brain-derived neurotrophic factormRNA and protein are targeted to discrete dendritic laminas by events that triggerepileptogenesis [J]. J Neurosci.2004,24(30):6842-52
    [25] Rubin JB,Shia MA,Pilch PF.Stimulation of tyrosine-specific phosphorylation invitro by insulin-like growth factor-I [J]. Nature.1983,305(5933):438-40
    [26] Xing C,Yin Y,He X,et al.Effects of insulin-like growth factor1on voltage-gatedion channels in cultured rat hippocampal neurons [J]. Brain Res.2006,1072(1):30-5
    [27] Laurino L,Wang XX,de la Houssaye BA,et al.PI3K activation by IGF-1isessential for the regulation of membrane expansion at the nerve growth cone [J]. JCell Sci.2005,118(Pt16):3653-62
    [28] Lichtenwalner RJ,Forbes ME,Bennett SA,et al.Intracerebroventricular infusion ofinsulin-like growth factor-I ameliorates the age-related decline in hippocampalneurogenesis [J]. Neuroscience.2001,107(4):603-13
    [29] Subramaniam S,Shahani N,Strelau J,et al.Insulin-like growth factor1inhibitsextracellular signal-regulated kinase to promote neuronal survival via thephosphatidylinositol3-kinase/protein kinase A/c-Raf pathway [J]. J Neurosci.2005,25(11):2838-52
    [30] Trejo JL,Carro E,Torres-Aleman I.Circulating insulin-like growth factor Imediates exercise-induced increases in the number of new neurons in the adulthippocampus [J]. J Neurosci.2001,21(5):1628-34
    [31] Carson MJ,Behringer RR,Brinster RL,et al.Insulin-like growth factor I increasesbrain growth and central nervous system myelination in transgenic mice [J].Neuron.1993,10(4):729-40
    [32] Spencer SS.When should temporal-lobe epilepsy be treated surgically [J]? LancetNeurol.2002,1(6):375-82
    [33] Racine RJ.Modification of seizure activity by electrical stimulation. I.After-discharge threshold [J]. Electroencephalogr Clin Neurophysiol.1972,32(3):269-79
    [34] Wang L,Luo J,Fang M,et al.A new trick of INPP4A: Decreased expression ofINPP4A in patients with temporal lobe epilepsy and pilocarpine-induced rat model[J]. Synapse.2012,66(6):533-41
    [35] Han Y,Yin H,Xu Y,et al.Increased expression of calponin-3in epileptic patientsand experimental rats [J]. Exp Neurol.2012,233(1):430-7
    [36] Li YQ,Xue T,Wang L,et al.Up-regulation of epithelial membrane protein-1in thetemporal neocortex of patients with intractable epilepsy [J]. Neurochem Res.2009,34(9):1594-602
    [37] Kempermann, G.Adult Neurogenesis: Stem Cells and Neuronal Development inthe Adult Brain.Oxford Univ. Press; New York:2006
    [38] Schinder AF,Poo M.The neurotrophin hypothesis for synaptic plasticity [J]. TrendsNeurosci.2000,23(12):639-45
    [39] Croll SD,Suri C,Compton DL,et al.Brain-derived neurotrophic factor transgenicmice exhibit passive avoidance deficits, increased seizure severity and in vitrohyperexcitability in the hippocampus and entorhinal cortex [J]. Neuroscience.1999,93(4):1491-506
    [40] Xu B,Michalski B,Racine R,et al.The effects of brain-derived neurotrophic factor(BDNF) administration on kindling induction, Trk expression and seizure-relatedmorphological changes [J]. Neuroscience.2004,126(3):521-31
    [41] Heinrich C,Lahteinen S,Suzuki F,et al.Increase in BDNF-mediated TrkB signalingpromotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy [J].Neurobiol Dis.2011,42(1):35-47
    [42] Liu XF,Fawcett JR,Thorne RG.,et al.Intranasal administration of insulin-likegrowth factor-I bypasses the blood-brain barrier and protects against focal cerebralischemic damage [J]. J Neurol Sci.2001,187(1-2):91-7
    [43] Choi YS,Cho HY,Hoyt KR,et al.IGF-1receptor-mediated ERK/MAPK signalingcouples status epilepticus to progenitor cell proliferation in the subgranular layerof the dentate gyrus [J]. Glia.2008,56(7):791-800
    [44] Miltiadous P,Stamatakis A,Stylianopoulou F.Neuroprotective effects of IGF-Ifollowing kainic acid-induced hippocampal degeneration in the rat [J]. Cell MolNeurobiol.2010,30(3):347-60
    [45] Paxinos G,Watson C.The Rat Brain in Stereotaxic Coordinates: Hard CoverEdition: Academic press;2007
    [46] Girnita A,Girnita L,del Prete F,et al.Cyclolignans as inhibitors of the insulin-likegrowth factor-1receptor and malignant cell growth [J]. Cancer Res.2004,64(1):236-42
    [47] Racine RJ.Modification of seizure activity by electrical stimulation. II. Motorseizure [J]. Electroencephalogr Clin Neurophysiol.1972,32(3):281-94
    [48] Kempermann, G.Adult Neurogenesis: Stem Cells and Neuronal Development inthe Adult Brain.Oxford Univ. Press;New York:2006
    [49] Brundtland GH.Welcome: The WHO view and launch of the second phase of theGlobal Campaign Against Epilepsy [J]. Epilepsia.2002,43Suppl6:5-6
    [50] Reynolds EH,Rodin E.The clinical concept of epilepsy [J]. Epilepsia.2009,50Suppl3:2-7
    [51] Loscalzo AE.The control of epilepsy: an interim report of3-methyl-5,5-phenylethylhydantoin and phenobarbital therapy [J]. J Am MedAssoc.1947,135(8):496-500
    [52] Okamoto OK,Janjoppi L,Bonone FM,et al.Whole transcriptome analysis of thehippocampus: toward a molecular portrait of epileptogenesis BMC Genomics.2010,11:230
    [53] Chang BS,Lowenstein DH.Epilepsy [J]. N Engl J Med.2003,349(13):1257-66
    [54] Marasco RA,Ramsay RE.Defining and diagnosing epilepsy in the elderly [J].Consult Pharm.2009,24Suppl A:5-9
    [55]席志芹,王学峰,孙纪军等.胰岛素样生长因子-1在难治性癫(癎)患者颞叶中的表达.中国神经精神疾病杂志[J].2006,32(4):731-733
    [56] Rosen CJ,Pollak M.Circulating IGF-I: New Perspectives for a New Century [J].Trends Endocrinol Metab.1999,10(4):136-141
    [57] Eriksson PS,Perfilieva E,Bjork-Eriksson T,et al.Neurogenesis in the adult humanhippocampus [J]. Nat Med.1998,4(11):1313-7
    [58] Roy NS,Wang S,Jiang L,et al.In vitro neurogenesis by progenitor cells isolatedfrom the adult human hippocampus [J]. Nat Med.2000,6(3):271-7
    [59] Nishijima T,Piriz J,Duflot S,et al.Neuronal activity drives localizedblood-brain-barrier transport of serum insulin-like growth factor-I into the CNS [J].Neuron.2010,67(5):834-46
    [60] Cohen E,Dillin A.The insulin paradox: aging, proteotoxicity andneurodegeneration [J]. Nat Rev Neurosci.2008,9(10):759-67
    [61] Ozkan EE.Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as aprognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeuticstrategy for refractory cases: a review [J]. Mol Cell Endocrinol.2011,344(1-2):1-24
    [62] Yin S,Girnita A,Stromberg T,et al.Targeting the insulin-like growth factor-1receptor by picropodophyllin as a treatment option for glioblastoma [J]. NeuroOncol.2010,12(1):19-27
    [63] Vasilcanu D,Girnita A,Girnita L,et al.The cyclolignan PPP induces activationloop-specific inhibition of tyrosine phosphorylation of the insulin-like growthfactor-1receptor. Link to the phosphatidyl inositol-3kinase/Akt apoptoticpathway [J]. Oncogene.2004,23(47):7854-62
    [64] Hamill OP,Marty A,Neher E,et al.Improved patch-clamp techniques forhigh-resolution current recording from cells and cell-free membrane patches [J].Pflugers Arch.1981,391(2):85-100
    [65] Galic MA,Riazi K,Heida JG.,et al.Postnatal inflammation increases seizuresusceptibility in adult rats [J]. J Neurosci.2008,28(27):6904-13
    [66] Huang YF,Yang CH,Huang CC,et al.Pharmacological and genetic accumulation ofhypoxia-inducible factor-1alpha enhances excitatory synaptic transmission inhippocampal neurons through the production of vascular endothelial growth factor[J]. J Neurosci.2010,30(17):6080-93
    [67] Gustavsson N,Lao Y,Maximov A,et al.Impaired insulin secretion and glucoseintolerance in synaptotagmin-7null mutant mice [J]. Proc Natl Acad Sci U S A.2008,105(10):3992-7
    [68]Calcagnotto ME,Baraban SC.Prolonged NMDA-mediated responses, alteredifenprodil sensitivity, and epileptiform-like events in the malformed hippocampusof methylazoxymethanol exposed rats [J]. J Neurophysiol.2005,94(1):153-62
    [69] Cao P,Maximov A,Sudhof TC.Activity-dependent IGF-1exocytosis is controlledby the Ca(2+)-sensor synaptotagmin-10[J]. Cell.2011,145(2):300-11
    [70] Liu JP,Baker J,Perkins AS,et al.Mice carrying null mutations of the genesencoding insulin-like growth factor I (Igf-1) and type1IGF receptor (Igf1r)[J].Cell.1993,75(1):59-72
    [71] Shi L,Linville MC,Tucker EW,et al.Differential effects of aging and insulin-likegrowth factor-1on synapses in CA1of rat hippocampus [J]. Cereb Cortex.2005,15(5):571-7
    [72] Xiang Y,Ding N,Xing Z,et al.Insulin-like growth factor-1regulates neuriteoutgrowth and neuronal migration from organotypic cultured dorsal root ganglion[J]. Int J Neurosci.2011,121(2):101-6
    [73] Sosa L,Dupraz S,Laurino L,et al.IGF-1receptor is essential for the establishmentof hippocampal neuronal polarity [J]. Nat Neurosci.2006,9(8):993-5
    [74] Xing C,Yin Y,Chang R,et al.Effects of insulin-like growth factor1on synapticexcitability in cultured rat hippocampal neurons [J]. Exp Neurol.2007,205(1):222-9
    [75] Nunez A,Carro E,Torres-Aleman I.Insulin-like growth factor I modifieselectrophysiological properties of rat brain stem neurons [J]. J Neurophysiol.2003,89(6):3008-17
    [76] Molina DP,Ariwodola OJ,Weiner JL,et al.Growth hormone and insulin-likegrowth factor-I alter hippocampal excitatory synaptic transmission in young andold rats [J]. Age (Dordr).2012
    [77] Aberg D.Role of the growth hormone/insulin-like growth factor1axis inneurogenesis [J]. Endocr Dev.2010,17:63-76
    [78] Mairet-Coello G,Tury A,DiCicco-Bloom E.Insulin-like growth factor-1promotesG(1)/S cell cycle progression through bidirectional regulation of cyclins andcyclin-dependent kinase inhibitors via the phosphatidylinositol3-kinase/Aktpathway in developing rat cerebral cortex [J]. J Neurosci.2009,29(3):775-88
    [79] Bibollet-Bahena O,Almazan G.IGF-1-stimulated protein synthesis inoligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways[J]. J Neurochem.2009,109(5):1440-51
    [80] Zhang H,Gao Y,Dai Z,et al.IGF-1reduces BACE-1expression in PC12cells viaactivation of PI3-K/Akt and MAPK/ERK1/2signaling pathways [J]. NeurochemRes.2011,36(1):49-57
    [81] Vivar R,Humeres C,Varela M,et al.Cardiac fibroblast death byischemia/reperfusion is partially inhibited by IGF-1through both PI3K/Akt andMEK-ERK pathways [J]. Exp Mol Pathol.2012,93(1):1-7
    [82] Lopes MW,Soares FM,de Mello N,et al.Time-Dependent Modulation of MitogenActivated Protein Kinases and AKT in Rat Hippocampus and Cortex in thePilocarpine Model of Epilepsy [J]. Neurochem Res.2012
    [83] Houser CR,Huang CS,Peng Z.Dynamic seizure-related changes in extracellularsignal-regulated kinase activation in a mouse model of temporal lobe epilepsy [J].Neuroscience.2008,156(1):222-37
    [84] Choi YS,Lin SL,Lee B,et al.Status epilepticus-induced somatostatinergic hilarinterneuron degeneration is regulated by striatal enriched protein tyrosinephosphatase [J]. J Neurosci.2007,27(11):2999-3009
    [85] Zheng H,Wang X,Tang Z,et al.The PI3K/Akt and ERK1/2signaling pathwaysmediate the erythropoietin-modulated calcium influx in kainic acid-inducedepilepsy [J]. Neuroreport.2013,24(6):335-41
    [86] Otani N,Nawashiro H,Yano A,et al.Characteristic phosphorylation of theextracellular signal-regulated kinase pathway after kainate-induced seizures in therat hippocampus [J]. Acta Neurochir Suppl.2003,86:571-3
    [87] Hu XL,Cheng X,Cai L,et al.Conditional deletion of NRSF in forebrain neuronsaccelerates epileptogenesis in the kindling model [J]. Cereb Cortex.2011,21(9):2158-65
    [88] Nateri AS,Raivich G,Gebhardt C,et al.ERK activation causes epilepsy bystimulating NMDA receptor activity [J]. EMBO J.2007,26(23):4891-901
    [89] Merlo D,Cifelli P,Cicconi S,et al.4-Aminopyridine-induced epileptogenesisdepends on activation of mitogen-activated protein kinase ERK [J]. J Neurochem.2004,89(3):654-9
    [90] Naylor DE,Liu H,Niquet J,et al.Rapid surface accumulation of NMDA receptorsincreases glutamatergic excitation during status epilepticus [J]. Neurobiol Dis.2013
    [91] Zhang Q,Tanaka K,Sun P,et al.Suppression of synaptic plasticity by cerebrospinalfluid from anti-NMDA receptor encephalitis patients [J]. Neurobiol Dis.2012,45(1):610-5
    [92] Yoshii A,Constantine-Paton M.BDNF induces transport of PSD-95to dendritesthrough PI3K-AKT signaling after NMDA receptor activation [J]. Nat Neurosci.2007,10(6):702-11
    [93] Hollander JA,Im HI,Amelio AL,et al.Striatal microRNA controls cocaine intakethrough CREB signalling [J]. Nature.2010,466(7303):197-202
    [94] Guo H,Ingolia NT,Weissman JS,et al.Mammalian microRNAs predominantly actto decrease target mRNA levels [J]. Nature.2010,466(7308):835-40
    [95] Bartel DP.MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell.2004,116(2):281-97
    [96] Kuss AW,Chen W.MicroRNAs in brain function and disease [J]. Curr NeurolNeurosci Rep.2008,8(3):190-7
    [97] Kloosterman WP,Plasterk RH.The diverse functions of microRNAs in animaldevelopment and disease [J]. Dev Cell.2006,11(4):441-50
    [98] Peng J,Omran A,Ashhab MU,et al.Expression Patterns of miR-124, miR-134,miR-132, and miR-21in an Immature Rat Model and Children with MesialTemporal Lobe Epilepsy [J]. J Mol Neurosci.2013
    [99] Omran A,Peng J,Zhang C,et al.Interleukin-1beta and microRNA-146a in animmature rat model and children with mesial temporal lobe epilepsy [J]. Epilepsia.2012,53(7):1215-24
    [100]Jimenez-Mateos EM,Engel T,Merino-Serrais P,et al.Silencing microRNA-134produces neuroprotective and prolonged seizure-suppressive effects [J]. Nat Med.2012,18(7):1087-94
    [101]Schratt GM,Tuebing F,Nigh EA,et al.A brain-specific microRNA regulatesdendritic spine development [J]. Nature.2006,439(7074):283-9
    [102]Gao J,Wang WY,Mao YW,et al.A novel pathway regulates memory and plasticityvia SIRT1and miR-134[J]. Nature.2010,466(7310):1105-9
    [103]Aronica E,Fluiter K,Iyer A,et al.Expression pattern of miR-146a, aninflammation-associated microRNA, in experimental and human temporal lobeepilepsy [J]. Eur J Neurosci.2010,31(6):1100-7
    [104]Nudelman AS,DiRocco DP,Lambert TJ,et al.Neuronal activity rapidly inducestranscription of the CREB-regulated microRNA-132, in vivo [J]. Hippocampus.2010,20(4):492-8
    [105]Grimson A,Farh KK,Johnston WK,et al.MicroRNA targeting specificity inmammals: determinants beyond seed pairing [J]. Mol Cell.2007,27(1):91-105
    [106]Guo JX,Tao QS,Lou PR,et al.miR-181b as a potential molecular target foranticancer therapy of gastric neoplasms [J]. Asian Pac J Cancer Prev.2012,13(5):2263-7
    [107]Liu M,Lang N,Chen X,et al.miR-185targets RhoA and Cdc42expression andinhibits the proliferation potential of human colorectal cells [J]. Cancer Lett.2011,301(2):151-60
    [108]Pitkanen A,Lukasiuk K.Molecular biomarkers of epileptogenesis [J]. BiomarkMed.2011,5(5):629-33
    [109]Lee RC,Feinbaum RL,Ambros V.The C. elegans heterochronic gene lin-4encodessmall RNAs with antisense complementarity to lin-14[J]. Cell.1993,75(5):843-54
    [110] Fineberg SK,Kosik KS,Davidson BL.MicroRNAs potentiate neural development[J]. Neuron.2009,64(3):303-9
    [111] Ambros V.The functions of animal microRNAs [J]. Nature.2004,431(7006):350-5
    [112] Yu Y,Casaccia P,Lu QR.Shaping the oligodendrocyte identity by epigenetic control[J]. Epigenetics.2010,5(2):124-8
    [113] Giraldez AJ,Cinalli RM,Glasner ME,et al.MicroRNAs regulate brainmorphogenesis in zebrafish [J]. Science.2005,308(5723):833-8
    [114] Krichevsky AM,King KS,Donahue CP,et al.A microRNA array reveals extensiveregulation of microRNAs during brain development [J]. RNA.2003,9(10):1274-81
    [115] Nelson PT,Baldwin DA,Kloosterman WP,et al.RAKE and LNA-ISH revealmicroRNA expression and localization in archival human brain [J]. RNA.2006,12(2):187-91
    [116] Uchida N.MicroRNA-9controls a migratory mechanism in human neuralprogenitor cells [J]. Cell Stem Cell.2010,6(4):294-6
    [117] Bonev B,Pisco A,Papalopulu N.MicroRNA-9reveals regional diversity of neuralprogenitors along the anterior-posterior axis [J]. Dev Cell.2011,20(1):19-32
    [1] McNamara JO.Emerging insights into the genesis of epilepsy [J]. Nature.1999,399(6738Suppl):15-22
    [2] Pitkanen A,Sutula TP.Is epilepsy a progressive disorder? Prospects for newtherapeutic approaches in temporal-lobe epilepsy [J]. Lancet Neurol.2002,1(3):173-81
    [3] Loscher W,Schmidt D.Modern antiepileptic drug development has failed todeliver: ways out of the current dilemma [J]. Epilepsia.2011,52(4):657-78
    [4] Parent JM,Murphy GG.Mechanisms and functional significance of aberrantseizure-induced hippocampal neurogenesis [J]. Epilepsia.2008,49Suppl5:19-25
    [5] Parent JM,Elliott RC,Pleasure SJ,et al.Aberrant seizure-induced neurogenesis inexperimental temporal lobe epilepsy [J]. Ann Neurol.2006,59(1):81-91
    [6] Chang BS,Lowenstein DH.Epilepsy [J]. N Engl J Med.2003,349(13):1257-66
    [7] Scharfman HE,Hen R.Neuroscience.Is more neurogenesis always better [J]?Science.2007,315(5810):336-8
    [8] Levi-Montalcini R.The nerve growth factor35years later [J]. Science.1987,237(4819):1154-62
    [9] Boulle F,Kenis G,Cazorla M,et al.TrkB inhibition as a therapeutic target forCNS-related disorders [J]. Prog Neurobiol.2012,98(2):197-206
    [10] Simonato M,Tongiorgi E,Kokaia M.Angels and demons: neurotrophic factors andepilepsy [J]. Trends Pharmacol Sci.2006,27(12):631-8
    [11] Adams B,Sazgar M,Osehobo P,et al.Nerve growth factor accelerates seizuredevelopment, enhances mossy fiber sprouting, and attenuates seizure-induceddecreases in neuronal density in the kindling model of epilepsy [J]. J Neurosci.1997,17(14):5288-96
    [12] Binder DK,Croll SD,Gall CM,et al.BDNF and epilepsy: too much of a good thing[J]? Trends Neurosci.2001,24(1):47-53
    [13] Li S,Saragovi HU,Nedev H,et al.Differential actions of nerve growth factorreceptors TrkA and p75NTR in a rat model of epileptogenesis [J]. Mol CellNeurosci.2005,29(2):162-72
    [14] Cacheaux LP,Ivens S,David Y,et al.Transcriptome profiling reveals TGF-betasignaling involvement in epileptogenesis [J]. J Neurosci.2009,29(28):8927-35
    [15] Parent JM,Yu TW,Leibowitz RT,et al.Dentate granule cell neurogenesis isincreased by seizures and contributes to aberrant network reorganization in theadult rat hippocampus [J]. J Neurosci.1997,17(10):3727-38
    [16] Spencer SS.When should temporal-lobe epilepsy be treated surgically [J]?Lancet Neurol.2002,1(6):375-82
    [17] Wuarin JP,Dudek FE.Electrographic seizures and new recurrent excitatory circuitsin the dentate gyrus of hippocampal slices from kainate-treated epileptic rats [J]. JNeurosci.1996,16(14):4438-48
    [18] Van der Zee CE,Rashid K,Le K,et al.Intraventricular administration of antibodiesto nerve growth factor retards kindling and blocks mossy fiber sprouting in adultrats [J]. J Neurosci.1995,15(7Pt2):5316-23
    [19] Tongiorgi E,Armellin M,Giulianini PG,et al.Brain-derived neurotrophic factormRNA and protein are targeted to discrete dendritic laminas by events that triggerepileptogenesis [J]. J Neurosci.2004,24(30):6842-52
    [20] Li HS,Xu XZ,Montell C.Activation of a TRPC3-dependent cation current throughthe neurotrophin BDNF [J]. Neuron.1999,24(1):261-73
    [21] Tongiorgi E,Domenici L,Simonato M.What is the biological significance ofBDNF mRNA targeting in the dendrites? Clues from epilepsy and corticaldevelopment [J]. Mol Neurobiol.2006,33(1):17-32
    [22] Muller AP,Fernandez AM,Haas C,et al.Reduced brain insulin-like growth factor Ifunction during aging [J]. Mol Cell Neurosci.2012,49(1):9-12
    [23] Bondy C,Lee WH.Correlation between insulin-like growth factor (IGF)-bindingprotein5and IGF-I gene expression during brain development [J]. J Neurosci.1993,13(12):5092-104
    [24] Miltiadous P,Stamatakis A,Koutsoudaki PN,et al.IGF-I ameliorates hippocampalneurodegeneration and protects against cognitive deficits in an animal model oftemporal lobe epilepsy [J]. Exp Neurol.2011,231(2):223-35
    [25] Cao P,Maximov A,Sudhof TC.Activity-dependent IGF-1exocytosis is controlledby the Ca(2+)-sensor synaptotagmin-10[J]. Cell.2011,145(2):300-11
    [26] Liu JP,Baker J,Perkins AS,et al.Mice carrying null mutations of the genesencoding insulin-like growth factor I (Igf-1) and type1IGF receptor (Igf1r)[J].Cell.1993,75(1):59-72
    [27] Shi L,Linville MC,Tucker EW,et al.Differential effects of aging and insulin-likegrowth factor-1on synapses in CA1of rat hippocampus [J]. Cereb Cortex.2005,15(5):571-7
    [28] Xiang Y,Ding N,Xing Z,et al.Insulin-like growth factor-1regulates neuriteoutgrowth and neuronal migration from organotypic cultured dorsal root ganglion[J]. Int J Neurosci.2011,121(2):101-6
    [29] Sosa L,Dupraz S,Laurino L,et al.IGF-1receptor is essential for the establishmentof hippocampal neuronal polarity [J]. Nat Neurosci.2006,9(8):993-5
    [30] Gao L,Blair LA,Salinas GD,et al.Insulin-like growth factor-1modulation ofCaV1.3calcium channels depends on Ca2+release from IP3-sensitive stores andcalcium/calmodulin kinase II phosphorylation of the alpha1subunit EF hand [J]. JNeurosci.2006,26(23):6259-68
    [31] Xing C,Yin Y,Chang R,et al.Effects of insulin-like growth factor1on synapticexcitability in cultured rat hippocampal neurons [J]. Exp Neurol.2007,205(1):222-9
    [32] Nunez A,Carro E,Torres-Aleman I.Insulin-like growth factor I modifieselectrophysiological properties of rat brain stem neurons [J]. J Neurophysiol.2003,89(6):3008-17
    [33] Ramsey MM,Adams MM,Ariwodola OJ,et al.Functional characterization ofdes-IGF-1action at excitatory synapses in the CA1region of rat hippocampus [J].J Neurophysiol.2005,94(1):247-54
    [34] Huang YF,Yang CH,Huang CC,et al.Pharmacological and genetic accumulationof hypoxia-inducible factor-1alpha enhances excitatory synaptic transmission inhippocampal neurons through the production of vascular endothelial growth factor[J]. J Neurosci.2010,30(17):6080-93
    [35] Nishijima T,Piriz J,Duflot S,et al.Neuronal activity drives localizedblood-brain-barrier transport of serum insulin-like growth factor-I into the CNS [J].Neuron.2010,67(5):834-46
    [36] Molina DP,Ariwodola OJ,Weiner JL,et al.Growth hormone and insulin-likegrowth factor-I alter hippocampal excitatory synaptic transmission in young andold rats. Age (Dordr),2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700