前列腺素E1对人脂肪源性干细胞体外增殖影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     皮下软组织充填一直是整形外科常见的治疗手段,对于体表的皮下软组织欠丰满、凹陷、萎缩畸形目前常采用自体游离脂肪或各种人工材料进行充填。人工材料因存在排异、创伤大及安全性等问题难以满足临床需要,而自体游离脂肪的移植成活率仅为40%~50%,这使得其临床应用受到很大限制。脂肪移植物被吸收的原因之一是成熟脂肪细胞对缺氧、损伤的耐受力低,且不能增殖更新。而脂肪源性干细胞(Adipose derived stem cells, ADSCs)则具有强大的增殖分化潜力,对缺氧耐受力更强,且自体干细胞用于移植町避免排异反应。更加安全
     脂肪源性干细胞不仅具有跟骨髓间充质干细胞相似的多向分化潜能,而且具有取材方法简便、来源广泛、患者创伤小等优势,这都使其成为近年来干细胞研究领域中的热点。干细胞应用的一个重要方向就是脂肪组织工程,由于脂肪干细胞具有上述优点,这无疑令脂肪干细胞成为构建工程脂肪组织的种子细胞的最佳选择。如何提高脂肪源性干细胞的增殖分化能力是构建工程脂肪组织重要的研究课题。
     前列腺素El(prostaglandinEl, PGE1)是血管内皮细胞产生的一种保护因子,是一种有效的血管扩张剂,长期以来主要用于肺动脉高压的治疗,随着临床应用、研究的进展,人们逐渐认识到PGE1具有抑制血小板聚集和血栓形成、松弛支气管平滑肌、保护缺血性心肌、缩小梗塞面积、抑制巨噬细胞和白细胞脱颗粒、改善红细胞变形及正性肌力等作用,已广泛应用于冠心病心绞痛、心力衰竭、高脂血症、糖尿病神经病变、慢性肾功能不全等。
     已有研究发现米索前列醇(PGE1类似物)对人前脂肪细胞的增殖和分化均有较强的刺激作用,而PGEl对ADSCs增殖的作用影响尚未见报道,研究前列腺素对脂肪源性干细胞的增殖及分化作用,对探求提高脂肪源性干细胞移植的成活率具有临床实用意义,因此设计实验,初步探索PGE1对ADSCs细胞增殖的作用效果。
     方法
     用酶消化法提取4例临床患者腹部皮下脂肪组织中的干细胞,体外进行细胞培养。对分离得到的脂肪细胞在显微镜下进行细胞形态观察,流式细胞术检测细胞表面标志物。当脂肪源性干细胞一次性培养的数量过多,短期内又不会完全使用时,可以将部分冻存起来,以备日后实验时再复苏使用。用五种不同浓度的PGE1处理培养的细胞,其中3μmol/L,6μmol/L,9μmol/L和12μmol/L作为实验组,0μmol/L作为对照组,观察经不同浓度的PGE1处理后细胞的增殖情况。
     结果
     ADSCs培养种植入培养皿48h后有大量梭形细胞贴壁,呈成纤维细胞样生长,胞浆和核仁丰富,细胞形态不一,有短突起,呈短梭形或小多角形,细胞核居中。5d后,细胞达到对数生长期,细胞成长梭形融合聚集,紧密排列有一定方向性,呈漩涡状或平行状排列。9d后细胞长满培养瓶,集落彼此融合呈束状或漩涡状排列。13d后为典型成纤维细胞样生长。流式细胞术检测结果显示ADSCs表达相对特异分子CD44,CD105,CD34,CD45,CDHLA-DR。通过实验观察和检测,证明实验收获的细胞确实为形态完整,功能健全的脂肪源性干细胞。各实验组的细胞数量均有显著升高,其差异有统计学意义(与对照组相比p=0.004),各实验组内相比,部分差异有统计学意义(实验组组内相比p<0.05)。
     结论
     1.实验中用酶消化法分离培养的细胞,经组织学及表面标志物鉴定确实为脂肪源性干细胞;
     2.脂肪源性干细胞经不同浓度的PGE1处理后,细胞数目呈现递增趋势,再根据统计结果,组间差异有统计学意义,初步说明了PGE1能够促进脂肪源性干细胞的增值作用。
     3.应用统计软件进行组内比较发现部分实验组之间差异有统计学意义,说明PGE1的浓度达到一定高度时,细胞数量增值的程度与PGE1具有一定的剂量依赖性。
Background and Objective
     Subcutaneous soft tissue filling plastic surgery has been a common treatment, the surface of the skin due to soft tissue fullness, depression, abnormal contraction present, the common or autologous free fat filling all kinds of artificial materials. Rejection due to the existence of artificial materials, such as trauma and safety problems which are difficult to meet clinical needs, and free autogenous fat graft survival rate of only 40% to 50%, which makes its clinical application is greatly limited. Absorption of fat grafts is one of the reasons is the mature fat cells to hypoxia, damage tolerance is low, and not the proliferation of updates. The adipose derived stem cells (ADSCs) is a strong potential for proliferation and differentiation, greater tolerance to hypoxia, and autologous stem cell transplantation for the town to avoid rejection. More secure.
     Just like bone marrow mesenchymal stem cells(BM-MSCs), aidpose derived stemcells(ADSCs)have the capacity of multi-differentiation. However,ADSCs can be isolatedeasily with abundant rcsoBrces and little injury to patients. Thus more and more researchersbecame interested in the study of ADSCs. One of the important applications of ADSCs is Tissue Engineering. It's very clear that ADSCs are the most suitable seed cells for the construction of engineering adipose tissues. Thus, it is meaningful to study the proliferation and differentiation of ADSCs.
     prostaglandinEl (PGE1) as a peotect factor derived from vascular endothelial cells, It is an effective vasodilating agent. For a long time, PGE1 is apply to the treatmem of pulmonary artery hypenension. With me development of clinical application and research, it is gradually realized that PGE1 can inhibit platelet aggregation and mrombogenesis, relax the smooth muscle of bronchus, prevent thrombogenesis, improve ischemic myocardium, inhibit the degranulation of macrophage and blood corpuscle, improvered blood cell defomation and has positive inotropic effect. Which is generally used to coronary heart disease, heart failure, hyperlipemia, diabetic neuropathy and chronic renal insuffciency.
     Studies have found that misoprostol (PGE1 analogue) on human preadipocyte proliferation and differentiation has a strong stimulating effect, while the effect of PGE1 on the proliferation of ADSCs has not been reported, of prostaglandins on the proliferation of stem cells and Differentiation effect on the quest to improve survival rate of transplanted adipose derived stem cells clinically practical significance. Therefore the design of the experiment, preliminary exploration PGE1 on cell proliferation effect of ADSCs.
     Methods
     The mesenchymal stem cells in adipose tissue were extracted from abdomen wall of 4 patients, donors undergoing the lipesuction in clinic, then these cells were induced to differentiate to the adipogenic cells in vitro. Cell morphology was observed under the microscope, Flow cytometric analysis of the cell surface antigens. When the adipose derived stem cells in an excessive number of one-time training, short term and will not be fully used, it can be part of the cryopreserved for future use of the experiment and then recovery. The cultured ADSCs were treated with five different concentration of PGE1, which were 3μmol/L,6μmol/L,9μmol/L,12μmol/L, and 0μmol/L (control group). After 3 days, observe the cell morphology and proliferation.
     Results
     ADSCs into the culture dish 48 hours after planting a large number of adherent spindle cells, showing fibroblast-like growth, rich in cytoplasm and nucleolus, cell morphology varies with short processes, were small polygonal or short spindle nuclei Center.5 days, cells reached the logarithmic growth phase, growth of spindle cells fused together, closely packed a certain direction, or parallel-like arrangement was swirling.9 days after cell confluence culture bottles, each colony was fused bundle or whirlpool order.13 days later, a typical fibroblast-like growth. ADSCs flow cytometry showed that the relative expression of specific molecules CD44-, CD105, CD34, CD45, CDHLA-DR. By experimental observation and testing to show that the cells harvested in this experiment indeed form a complete, fully functioning stem cells, There was no obervious different among the experimental groups. And the cell number of each experimental group was obervious elevated, comparing with control group, The difference was statistically significant (p<0.05), Compared to the experimental group, some differences were statistically significant (the experimental group compared with group p=0.004).
     Conclusions
     1. The enzyme digestion experiments using cultured cells isolated by histology and identification of surface markers indeed adipose-derived stem cells;
     2. Adipose-derived stem cells were treated with different concentrations of PGE1, the number of cells showed an increasing trend, according to statistics, there was significant difference between the groups, the initial description of the PGE1 can proliferation of adipose-derived stem cells.
     3. Application of statistical software to compare the group discovered that some of the differences between the experimental group was statistically significant, indicating that PGE1 concentrations reach a certain height, cell number and degree of value-added PGE1 in a dose dependent manner.
引文
[1]Dicker A, Le Blanc K, Astrom G et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res,2005,308(2):283-290.
    [2]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue implications for cell-based the rapies [J]. Tissue Eng,2001,7(2):211-228.
    [3]Xu Y, Malladi P, Wagner D R et al. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr opin M01 Ther,2005,7(4):300-305.
    [4]刘斌、吴孟海、张强.等.神经节苷脂诱导人脂肪组织来源地基质细胞向神经细胞的分化[J].中国临床康复,2006,10(29):7-9.
    [5]Lee R H, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem,2004, 14(4-6):311—324.
    [6]Kang SK, Lee DH, Bae YC, et a 1. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral is chromat in rats[J]. Exp Neurol,2003,183(2):355-366.
    [7]Igarashi R, Takenaga M, et al. Marked hypotensive and blood-increasing effects of a new lipo-PGE1 due to vascular wall targeting [J]. J Control Rel,2001,71 (2):157-164.
    [8]Wu CC, Wu C1, Wang WY, et al. Low concentrations of resveratrol potentiate the antiplatelet effect of prostaglandins[J]. Planta Med,2007,73(5):439-443.
    [9]Heider P, Wildgruber M, Wolf O, et al. Improvement of microcirculation after percutaneous transluminal angioplasty in the lower limb with prostaglandin El [J]. Prostaglandins Other Lipid Mediat,2009,88(1-2):23-30.
    [10]Gensch C, Clever Y Werner C, et al. Regulation of endothelial progenitor cells by prostaglandin El via inhibition ofapoptosis[J]. J Moi Cell Cardiol,2007,42(3):670-677'.
    [11]Bergstrom S. sjoval J. The isolation ofprostaglandin E1 from sheep prostate glands. Acta Chem Scand,1960,14:1701
    [12]Bergstrom S, Ryhage R, Samuelsson B, etal. Prosta glandins and related factor S:The Structure ofprostaglandin E1, F1α and F1β. J Biol Chem,1963,238:3555
    [13]Ziche M, Morbidelli L, Parenti A, et al. Nitric oxide modulates angiogenesis elicited by prostaglandin E1 in rabbit comea[J]. Adv Prostaglandin Thromboxane Leukot Res,1995, 23:495497.
    [14]Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferation nonmyocardiolcell[J]. Cir Res,1982,50(1):101-6.
    [15]Borglum JD, Pedersen SB,A ilhaud G, et al. Differential expression of prostaglandin receptor mRNA s during adipose cell differentiation [J]. Prostagland ins other Lipid Mediat, 1999,57(526):305-317.
    [16]Aubert J, Saint-M arc P,Belmonte N, et al. Prostacyclin IP receptor up-regulates the early expression of C/EBPbeta and C/EBP delta in preadipose cells [J]. Mol Cell Endocrinol, 2000,160(122):149-156.
    [17]Vassaux G, Gaillard D,Darimont C, et al. D ifferential response of preadipocytes and adipocytes to prostacyclin and p ro staglandin E2:physiological implications [J]. Endocrinology,1992,131 (5):2393-2398.
    [18]Vassaux G, Gaillard D,A ilhaud G, et al. Prostacyclin is a specific effector of adipose cell differentiation. Its dualrole as a cAMP-and Ca2+-elevating agent [J]. J B iol Chem,1992, 267(16):11092-11097.
    [19]Richelsen B. Relationship between binding and action of different prostaglandins in rat adipocytes with special reference to PGE2 and PGI2 [J]. B iochem Pharmacol,1987,36 (22):4017-4020.
    [20]Diaz-F lores L, Gutierrez R,V alladares F, et al. Intense vascular sprouting from rat femoral vein induced by prostaglandinsE1 and E2[J]. Anat Rec,1994,238 (1):68-76.
    [21]Langer S, Sinitsina I, Biberthaler P, et al. Revascularization of transp lanted adipose tissue: a study in the dorsal skinfold chamber of hamsters[J]. Ann Plast Surg,2002,48 (1) 53-59.
    [22]22 Dobson DE, Kambe A, Block E, et al.1-Butyryl-glycero 1:anovel angiogenesis facto rsecreted by differentiating adipocytes [J]. Cell,1990,61 (2):223-230.
    [23]朱晓海、何清濂、林子豪.人前脂肪细胞培养及增殖与分化模型的建立[J].第二军医大学学报,2003,24(1):55-57.
    [24]刘相名、杨立业、苗宏生,等.脂肪组织来源的多能干细胞培养和外源基因的表达[J].中华实验外科杂志,2003,20:162-163.
    [25]Poznanski WJ, Waheed I, Van R. Human fat cell precursors Morphologic and metabolic differentiation in culture. Lab invest 1973:29(5):570-576.
    [26]俞斌、王忠.脂肪间充质干细胞多系分化潜能及应用前景[J].中国组织工程研究与临床康复,2007,11(42):8569-8572.
    [27]Zannettino A C W, Paton S, Arthur A, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo[J]. Journal of Cellular Physiology,2008,214(2):413-421.
    [28]Paoletti R.Biocemistry and pharmacology of prostaglandinE1:introductory remarks[A]. in: prostaglandinEl in Atherosclemsis. Springer-Vcdag.1986:3-7.
    [29]Pacher R, Stanek B, Hulsmann M, Prostaglandin El-bride to cardjac transplantation: technique, dosage, results[J]. Eur HeartJ.1997,18:318-329.
    [30]Mohammad Reza Mehrabi, Nermin Serbecic, Forouzan Tamaddon, and et al. Clinical and experimental evidence of prostaglandinEl-indaced angiogenesis myocardium of patients With ischemlic heart disease[J]. Cardiovascular Researh.2002,56:214-224.
    [31]Dominik G, Haider Robert A, Bucek, and etal. The prostaglandinEl analog Alprostadil inducesVEGF and eNOS expression in endotheloal cells [J]. Am J Physiol Healt CircPhysiol.2005,289:2066-2072.
    [32]E. Piazuelo, MD, A. Lanas, MD, P. Jimenez, MD. In Vitro Wound Repair by Human Gastric Fibroblasts[J]. Digestive Diseases and Sciences,1998,43(6):1230-1240.
    [33]Lanas A, Haggerty P, Hirschowitz BI. Ingestion of aspirin prevents platelet-induced human fibroblast growth:Implications for peptic ulcer healing [J]. Scan J Gastroenterol.1994, 29(1):17-22.
    [34]Maria G, Sandra P, Valeria D. Alprostadil suppresses angiogenesis in vitro and in vivo in the murine Matrigel plug assay [J]. British Journal of Pharmacology.2003,138:377-385.
    [35]张建中、丸山幸治、金子史男.前列腺素E1对角朊细胞和真皮纤维母细胞增殖及细胞因子产生的影响[J].中华皮肤科杂志,1996,29(1):27-30
    [36]Safford KM, Hicok KC, Safford SD. Neurogenic differentiation of murine and humanadipose-derived stromal cells [J]. Biol chen Biophys Res Commun.2002,267(23): 371-379.
    [37]Claffey KP, Wilkison WO, Spiegelman BM. Vascular endothelial growth factor Regulation by cell differentiation and activated second messenger pathways [J]. Biochem Biophys Res Commun.1992; 267:16317-16322.
    [38]Ilaria Ghidoni, Theodora Chlapanidas, Massimo Bucco. Alginate cell encapsulation new: Advances in reproduction and cartilage regenerative medciene [J]. Cytotechnology,2008, 58:49-56
    [1]KAPLAN F S, HAHN G V. ZASLOFF M A. Heterotopicossification:two rate forms and what they can teach US [J]. J Am Acad Orthop Surg,1994,2:288-296
    [2]ROSEN E D. SPIEGELMAN B M. Molecular regulation of adipogenesis [J]. Annu Rev Cell Dev Biol,2000,16:145-171.
    [3]TONTONOZ P. SINGER S, FORMAN B M, et al. Terminal Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferators-activated receptor gamma and the retinoid x receptor [J]. Proc Natl Acad Sci U S A.1997.94: 237-241
    [4]NEESE R A, MISELL L M, TURNER S, et al. Measurement in vivo of proliferation rates of slow turnover cells by 2h2o labeling ofthe deoxyribose moiety of DNA [J]. Proc Nad Acad Sci US A,2002,99:15345-15350.
    [5]DEMETRI G D, FLETCHER C D, MUELLER E, et al. Induction of solid tumor differentiation by the peroxisome proliferators-activated receptor-gamma ligand trogliitazone in patients with liposarcoma [J]. Proc Natl Acad Sci U S A,1999,96: 3951-3956.
    [6]CONE R D. The central melanocortin system and energy homeostasis [J]. Trends Endoerinol Metab,1999,10:211-216.
    [7]FAUST I M, JOHNSON P R, HIRSCH J. Adipose tissue regeneration following lipectomy [J]. Science,1977,197:391-393.
    [8]Zuk PA, Zhu M, MizunoII, et al Muhilineage cells from human adipose tissue:implications for cell-based therapies Tissue Eng,2001,7:211-228.
    [9]Halvorsen YD, Franklin D. Bond AL, et al Extracellular malrix mineralization and osteoblast gene expression by humml adipose tissue-derived stromal cells Tissue Eng,2001, 7:729-741.
    [10]Hoang JI, Bernes SR, Zhu M, et al, Rat extxaraedullary adipose tissue as a source of osteochondrognic progenitor cells, Plast Reconstr Surg,2002,109:1033-1043.
    [11]Hung JI. Hedriek MH, Lorenz HP, et al, Chondrogenesis of human adipose-derived mesodermal stem cells, Surgical Forum 2000,51:583-585.
    [12]De Ugarte DA. Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow [J]. Immunol Lett,2003,89(2/3):267-270.
    [13]Nakagami H. Morishita R, Maech K, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy [J]. J Atheroscler Thromb,2006,13(2):77-81.
    [14]Fraser JK, Wulur I, AI Fonso Z, et al. Fat tissue:all underappreciated source of stem cells for biotechnology [J]. Trends Biotechnol,2006,24(4):150-154.
    [15]Housman TS, Lawrence N, Melen BG et al. The safety of liposuction:results of a national survey. Dermatol Surg,2002,28:971-978.
    [16]Muschler GF, Nito H, Boehm CA, et al. Age-and gender-related changes in the celutarity of human bone marrow and the prevalence ofosteoblastic progenitors. J Orthop Res,2001, 19:117-125.
    [17]De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells fromhumanadiposetissue andbonemarrow. CellsTissuesOrgans,2003.174:101-109.
    [18]Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of humanadipose tissue-derived stromal cells. [J] Cell Physiol,2001,189:54-63.
    [19]Bacigalupo A, Tong J, Podesta M, et al. Bone marrow harvest for transplantation:effect of multiple small(2 ml)or large(20ml)aspirates, Bone Marrow Transplant,1992,467-470.
    [20]Wexler SA, Donaldson C, Denning. Kendal P, et al. Adult bone marrow is a rich source ofhuman mesenchymal stem cels but umbilical cord and mobilized adult blood arc not. Br [J] Haematol,2003,121:368-374.
    [21]Nishimori M, Yamada Y, Hoshi K, et al, Health-related quality of life of unrelated bone marrow donors in Japan. Blood,2002,99:1995-2001.
    [22]Aast L, Devlin B, Foster SJ, et al. Yield of human adiposederived adult stem cells from Jiposuction aspirates. Cytotheropy,2004,6:7-14.
    [23]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotentstem cells. Mol Biol Cell 2002,13:4279-95.
    [24]朱晓海、何清濂、林子豪.人前脂肪细胞培养及增殖与分化模型的建立[J].中华整形烧伤外科杂志,1999,15(3):199-201.
    [25]王竹晨、刘建中.人前脂肪细胞的原代培养[J3.中山医科大学学报,2001,22(6):443446.
    [26]Wabitsch M, Brenner R E, Melzner I, et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation [J]. Int J Obes Relat Metab Disord, 2001,25(1):8-15.
    [27]赵琳、杨志明、邓力等.体外培养不同代次人前脂肪细胞老化程度的研究[J].中华实验外科杂志,2004,21(4):451-452.
    [28]Cho S W, Kim I, Kim S H, et al. Enhancement of adipose tissue formation by implantation of adipogenic-differentiated preadipocytes [J]. Biochem Biophys Res Commun,2006, 345(2):588-594.
    [29]Torio-Padron N, Baerlecken N, Momeni A, et al. Engineering of adipose tissue by injection of human preadipocytes in fibrin [J]. Aesthetic Plast Surg,2007,31(3):285-293.
    [30]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotentstem cells. Mol Biol Cell 2002,13:4279-4295.
    [31]Oedayrajsingh-Varma M, Van Ham S, Knippenberg M et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006,8:166-177.
    [32]Wagner W, Wein F, Seckinger A et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005,33:1402-1416.
    [33]Lee RH, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from humanbone marrow and adipose tissue. Cell Physiol Biochem 2004,14: 311-324.
    [34]Dicker A, Le Blanc K, Astrom G et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005,308:283-290.
    [35]Dominici M, Le Blanc K Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006,8:315-317.
    [36]Sengenes C, Lolmede K, Zakaroff-Girard A et al. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 2005,205:114-122.
    [37]Gronthos S, Franklin DM, Leddy HA et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001,189:54-63.
    [38]Mitchell JB, Mcintosh K Zvonic S et al. lmmunophenotype of human adipose derived cells:temporal changes in stromal-associated and stem cell-associated markers:Stem Cells 2006,24:376-385.
    [39]Pines J. Cyclins and cyclin-dependent kinases:theme and variations. Adv Cancer Res, 1995,66:181-212.
    [40]Morgan D O. Principles of CDK regulation. Nature,1995,374(6518):131-134.
    [41]Pan Z Q, Reardon J T, Li L et al. Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem,1995,270(37):22008-22016.
    [42]Harper J W, Elledge S J, Keyomarsi K, et a 1. Inhibition of cyclin-dependent kinasesby p21. Mol Biol Cell,1995,6(4):387-400.
    [43]Hengst L, Reed S I. Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol,1998, 227:25-41.
    [44]Polyak K, Lee M H, Erdjument-Bromage H et al. Cloning of p27Kipl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell,1994, 78(1):59-66.
    [45]Lew D J, Kornbluth S. Regulatory roles of cycl in dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol,1996,8(6):795-804.
    [46]Sherr C J, Roberts J M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995,9(10):1149-1163.
    [47]Carnero A, Hannon G J. The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol, 1998,227:43-55.
    [48]Rickert P, Seghezzi W, Shanahan F, et al. Cyclin C/CDK8 is a novel CTD kinase assciated with RNA polymerase II. Oncogene,1996,12(12):2631-2640.
    [49]Okamoto K, Beach D. Cycl in G is a transcriptional target of the p53 tumor suppressor protein. Embo J,1994,13(20):4816-4822.
    [50]Peng J, Marshall N F, Price D H. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem,1998,273(22):13855-13860.
    [51]Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cel 1 Biol,1997,29(4):559-573.
    [52]King R E Jackson P K, Kirschner M W. Mitosis in transition. Cell,1994,79(4):563-571.
    [53]Girard F, Strausfeld t1, Fernandez A, et al.Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell,1991,67(6):1169-1179.
    [54]Walker D H, Maller J L. Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature,1991,354(6351):314-317.
    [55]Vermeulen K, Van Bockstaele D R, Berneman Z N. The cel 1 cycle:a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif,2003,36(3):131-149.
    [56]Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif, 2000,33(5):261-274.
    [57]Hartwell L H, Weinert T A. Checkpoints:controls that ensure the order of cell cycle events. Science,1989,246(4930):629-634.
    [58]Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem,1999,274(51): 36031-36034.
    [59]Bartek J, Lukas J. Mammalian G1-and S-phase checkpoints in response to DNA damage. Curt Opin Cel 1 Biol,2001,13(6):738-747.
    [60]Owen-Schaub L B, Zhang W, Cusack J C et al. Wild-type human p53 and atemperature-sensitive mutant induce Fas/AP0-1 expression. Mol Cell Biol,1995,15(6):3032-3040.
    [61]Montagnoli A, Fiore F, Eytan E et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev,1999,13(9):1181-1189.
    [62]Cheng M, Sexl V, Sherr C J, et al. Assembly of cyclin D-dependent kinase and titrationof p27Kipl regulated by mitogen-activated protein kinase kinase (MEKI). Proc Natl Acad Sci USA,1998,95(3):1091-1096.
    [63]Brehm A, Miska E A, McCance D J, et al. Retinoblastoma protein recruits histonedeacetylase to repress transcript ion. Nature,1998,39 1(6667):597-601.
    [64]Ewen M E. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev, 1994,13(1):45-66.
    [65]Weinberg R A. The retinoblastoma protein and cell cycle control. Cell,1995,81(3): 323-330.
    [66]Zhang H S, Postigo A A, Dean D C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell, 1999,97(1):53-61.
    [67]Luo R X, Postigo A A, Dean D C. Rb interacts with histone deacetylase to repress transcription. Cell,1998,92(4):463-473.
    [68]Magnaghi-Jaul in L, Groisman R, Naguibneva I et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature,1998,391(6667):601-605.
    [69]Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res.1996,68:67-108.
    [70]Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev,1998,12(15): 2245-2262.
    [71]Harbour J W, Luo R X, Dei Santi A et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cel 1,1999,98(6):859-869.
    [72]Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001,7:729-741.
    [73]Dragoo JL, Choi Jr,Lieberman JR, et al. Bone induction by BMP-2-transduced stem cells derived from human fat. J Orthop Res.2003.21:622-629.
    [74]Cowan CM, Shi Y Y, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol,2004.22:560-567.
    [75]Leadeckel S, Jodicke A, Christophis P, et al. Autologous stem cells(adipose) and fibrin glue used to treat widespread traumatic calvarial defects:case report, J Craniomaxillofac Surg,2004,32:370-373
    [76]Dragoo JL, SamimiB, Zhu M, et al. Tissue-engineeredc artilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br,2003,85:740-747.
    [77]Winter A, Breit S, PaBch D, et al. Cartilage-likege neex pression in diferentiated human stem cell spheroids:a comparison ofbone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum,2003,48:418-429.
    [78]De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells fromhumanadiposetissue andbonemarrow. CellsTissuesOrgans,2003.174:101-109.
    [79]Nathan S, Das De, Thambyah A, et al. Cell-based therapy in the repair of osteechoadral defects:a novel use foradipose tissue. Tissue Eng,2003,9:733-744.
    [80]Bacou F, el Andalousi RB, Daussin PA, et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant,2004.13:103-111.
    [81]Planat-Benard V Manard C, Andre M, et al. Spontaneous cardiomyocyte diferentiation from adipose tissue stroma cells. Circ Rest 2004,94:223-229.
    [82]Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun,2004,3 14:420-427.
    [83]Strem BM, Zhu M, A lfunso z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a raurine model of acute myocardial injury. Cytotherapy,2005,7: 282-291
    [84]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered meseneh3, mal stem cells repair scarred myocardium after myocardial infarction. Nat Mcd,2006,12(4):459-465.
    [85]Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal n eovaseularization by human adipose tissue-derivad stem cells. Circulation.2004.11 0: 349-355.
    [86]Kinnaird T, Stabile E, Bumett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109: 1543-1549.
    [87]Rehman j, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Cireulation,2004,109:1292-1298.
    [88]Casteilla L, P lanat-B6nard V, Cousin B, et al. Plasticity of adipose tissue:apromising therapeutic avenue in the treatment of cardiovascular and blood diseases? Cardiovascular Research,2005.9:922-926.
    [89]Woodbury D, Schwarz EJ, Proekop DJ, et al. Adult rat and human bone marrow stromal cells d. ifferentiate into neurons. J Neurosci Res,2000,61:364-370.
    [90]Lu P, Bleach A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdiferentiation orartifact? J NeurosciRes,2004,77:174-191.
    [91]Neuhuber B, Gallo G Howard L, et al. Re-evaluation of in vitro difercntiation protocols for bone marrow stromal cells:disruption of actin cytoskeleton induces mpid morphological changes and mimics neuronal phenotype. J Neurosci Res,2004,77:192-204.
    [92]Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro diferentiation of human processed lipoaspirate cellsinto early neural progenitors. PlastReconstr Surg,2003.111:1922-1931.
    [93]Kang SK, Lee DH. Ban YC, et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue derived stromal cells after cerebral ischemia in rats. Exp Neurol,2003,183:355-366.
    [94]Lu D, Li YWang L, et al. Intra-arterial administration ofmarrow stromal cells in a rat model oftraumatic brain injury. J Neurotranma,2001,18:813-819
    [95]Mahmood A, Lu n Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery,2003,53: 697-702.
    [96]Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes celular proliferation within the brain. Neurosurgery,2004.55:1185-1193.
    [97]Kang SK, Jun ES, Bae YC, et al. Interactions between human adipose stromal cells and mouse neural stem eels in vitro. Brain Dev Brain Res,2003.145:141-149.
    [98]Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy fur stroke in rat: neurotrophins and functional recovery. Neurology,2002,59:514-523.
    [99]Garcia R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nerve growth factor and glial cell line-dedved neurotrophic factors. Biochem Biophys Res Commun 2004,316:753-754.
    [100]Chen J, Zhang ZGU Y, et al. Intravenous administration ofhuman bone marrow stromal ceils induces angiogenesis in the ischemie boundary zone after stroke in rats. Cire Res, 2003,92:692-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700