组织工程人角膜上皮的体外重建、鉴定及其在新西兰兔角膜上皮移植中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人角膜上皮(Human Corneal Epithelium,HCEP)位于角膜最前端,由多层细胞构成,其组织学结构的完整性对于维持角膜的生理功能至关重要。人角膜上皮细胞(Human Corneal Epithelial Cell,HCEPC)是角膜抵御外来致病因子侵害的第一道重要防线,不仅能维持角膜的透明性,还能吸收氧气和营养为角膜供氧/养。HCEP具有自我更新能力,其完整性和更新能力取决于位于角膜缘基底部的角膜缘干细胞(LimbalStem Cell,LSC)的不断增殖与分化。眼球表面的烧伤、灼伤、严重机械创伤、病原体感染、角膜缘部位冷冻治疗、接触镜的长期佩戴以及眼瘢痕性类天疱疮等各种原因均可导致LSC损伤或功能障碍。角膜缘干细胞缺陷症(Limbal Stem Cell Deficiency,LSCD)表现为LSC增殖能力丧失,导致持续性角膜上皮缺损、角膜缘屏障功能下降,致使结膜上皮侵入角膜、新生血管形成,进而影响角膜的光学特性,导致视力受损或致盲。在以前的眼表重建治疗中,一般采用角膜上皮成形术以及自体或异体角膜缘移植的方法,但因供体角膜来源严重不足以及术后排斥反应发生率较高,从而限制了其在临床中的广泛应用。近年来,角膜组织工程的兴起为组织工程人角膜上皮(Tissue-engineered Human Corneal Epithelium,TE-HCEP)的体外重建以及患者通过临床角膜上皮移植而重见光明带来了希望。TE-HCEP体外重建的关键要素包括结构功能正常的HCEPC种子细胞的大量获得和生物相容性理想的载体支架的制备。在种子细胞方面,由于自体LSC来源与数量的限制,而连续性HCEPC细胞系因能提供出大量细胞故被认为是TE-HCEP规模化体外重建的种子细胞的有效来源。在业已建立的HCEPC细胞系中,癌基因转染的永生化HCEPC细胞系因具有潜在的致瘤性无法作为种子细胞用于TE-HCEP的体外重建尤其是临床移植,而非转染HCEPC细胞系因能为理论研究和TE-HCEP提供出足量的正常细胞,故被认为是TE-HCEP种子细胞的理想来源。近年来,国内学者成功建立了非转染的连续性人角膜缘上皮细胞系,但至今仍未见其用于TE-HCEP体外重建的研究报道。在载体支架方面,羊膜(Amniotic Membrane,AM)作为一种天然高分子生物材料,为半透明且抗原性低的薄片组织,其基质中含有大量的生长因子和蛋白酶抑制因子以及抗炎症、抗成纤维化、抗菌、抗血管生成等的相关蛋白,与HCEPC具有理想的生物相容性并能促进HCEPC的细胞分化,已被广泛应用于眼表重建,因此被认为是TE-HCEP的理想载体支架之一。本文在本实验室自主建立的非转染HCEPC细胞系的基础上,对此细胞系的属性和致瘤性进行进一步鉴定,首次以该细胞为种子细胞建、以去上皮层羊膜(denuded AM,dAM)为载体支架,开展TE-HCEP的体外重建研究,并利用LSCD新西兰兔模型对TE-HCEP在角膜上皮移植中的作用进行鉴定,旨在建立TE-HCEP体外重建的技术工艺条件,获得可长期维持兔角膜透明的TE-HCEP,为TE-HCEP替代捐献角膜用于角膜上皮异常疾病的临床治疗创造条件。
     为了进一步鉴定非转染HCEPC细胞系的属性、功能蛋白的表达及潜在致瘤性,本文对第80代HCEPC进行了复苏、扩增培养和鉴定。属性检测结果显示,复苏的第80代HCEPC透明度高,形态饱满,呈圆形或卵圆形,镶嵌排列呈铺路状,细胞群体倍增时间为40.75h,生长状态良好,分裂旺盛,特征性染色体数目仍为2n=46。功能蛋白的表达检测结果显示,该细胞能够表达HCEP特异性标志蛋白——角蛋白(keratin)3和12,以及紧密连接蛋白ZO-1、E-钙粘蛋白、间隙连接蛋白-43、整联蛋白β1,表明该细胞仍具有角膜上皮的表型,且具有形成完整HCEP结构的潜能。致瘤性检验结果显示,该细胞无致瘤性。因此,该细胞为TE-HCEP体外重建提供了种子细胞
     为了获得TE-HCEP体外重建的理想载体支架,本文以新鲜AM为材料,采用胰酶倒置消化法对其进行去上皮层处理,再使用Ⅳ型胶原进行包被,并通过接种HCEPC研究dAM的生物相容性。通过光镜、电镜以及石蜡切片HE染色等方法对处理后的AM以及HCEPC在经包被的dAM上的生长情况进行了观察和鉴定,结果显示利用胰酶于37℃倒置消化20min,再经Ⅳ型胶原包被后获得的dAM表面平整,无上皮细胞残留,且有基底膜结构;dAM对HCEPC具有理想的生物相容性,且光学性能良好。因此,dAM能够作为理想的载体支架进行TE-HCEP的体外重建研究。
     为了建立TE-HCEP体外规模化重建的技术工艺条件,本文以生长状态良好的HCEPC为种子细胞,以dAM为载体支架,采用气-液界面培养法体外重建TE-HCEP。利用石蜡切片HE染色、免疫组织化学检测及电镜观察等方法对重建的TE-HCEP形态结构、潜在功能等方面进行了鉴定。结果显示TE-HCEP经气-液界面法培养5d后即可形成6~7层的复层结构,结构与正常HCEP结构最为相近,且光学性能良好,表层的HCEPC平整呈卵圆形,且形成了丰富的微绒毛结构。TE-HCEP仍具有HCEP属性以及形成细胞间、细胞与dAM间连接的潜能,超微结构与正常的角膜上皮层结构相近。因此该方法能够获得理想的TE-HCEP,有望在将来进行规模化生产。
     为了研究体外重建的TE-HCEP在新西兰兔模型角膜上皮移植中的作用,本文利用DiI标记的第80代HCEPC在经包被的dAM上进行体外重建。根据改良的三种方法分别制作了LSCD新西兰兔模型,并利用TE-HCEP分别对其进行角膜上皮移植。利用角膜测厚、裂隙灯显微镜观察、印迹细胞学检查等方法跟踪记录了创伤以及移植后兔模型在体角膜的厚度、透明度、上皮完整性和新生血管情况;利用石蜡切片HE染色、免疫组织化学、电镜观察等方法进行TE-HCEP角膜上皮移植效果的离体检测。结果显示利用碱烧伤、机械创伤和联合法均能获得LSCD的新西兰兔模型;利用TE-HCEP对碱烧伤的LSCD模型进行角膜上皮移植,术后80d角膜仍为白瓷色,有新生血管;利用TE-HCEP对机械创伤获得的LSCD模型进行角膜上皮移植,术后第12d角膜开始透明,厚度明显下降,新生血管减少,第25d角膜厚度恢复到正常眼水平,且能够长时间保持较透明状态。术后120d的离体检测结果显示角膜上皮细胞来源于体外重建的TE-HCEP,约4~5层,角蛋白3表达呈阳性,上皮细胞之间存在紧密连接结构,与对照组存在显著性差异;利用TE-HCEP对联合法获得的LSCD模型进行角膜上皮移植,术后第12d角膜厚度明显下降,第49d角膜新生血管明显减少,第70d角膜厚度恢复到正常眼水平,角膜长时间保持较透明状态。术后147d的离体检测结果显示角膜上皮细胞来源于TE-HCEP,约3~4层,角蛋白3表达呈阳性,上皮细胞之间存在紧密连接结构并有基底膜结构,与对照组存在显著性差异。新西兰兔角膜上皮移植实验的结果表明,所移植TE-HCEP形成了形态结构较正常的角膜上皮层,新生血管明显减少,并能够使角膜长时间保持较透明状态。
     综上所述,本文首次以非转染、无致瘤性的第80代HCEPC为种子细胞,以dAM为载体支架,体外重建出了形态结构和潜在功能与正常HCEP相近的TE-HCEP,其移植后能够长时间保持LSCD兔角膜较透明状态。因此,该TE-HCEP有望作为角膜上皮的替代物从根本上解决角膜供体材料严重不足的现状,为角膜上皮异常疾病的患者带来重见光明的希望,这不仅具有重要的理论意义,而且能产生巨大的社会效益和经济效益。
Human corneal epithelium (HCEP) is a multi-cellular membrane located at the anteriorend of cornea. As the first defence barrier against foreign invasion, HCEP cells (HCEPCs)are crucial for the maintenance of corneal transparency and oxygen and nutrients absorbing.HCEPCs are in dynamic equilibrium state that is maintained by a population of unipotentlimbal stem cells located at the limbus. Chemical or thermal burns, multiple surgicalprocedures, severe microbial infection, cryotherapy in the limbal region, contact lenses orocular cicatricial pemphigoid may lead to limbal stem cell deficiency (LSCD), which resultsin conjunctivalization and vascularization of the cornea thus impairing visual clarity.Although the treatment for ocular surface reconstruction including epithelial keratoplasty,limbal autograft and allograft transplantation has made some progress, the application ofthese treatments in clinic was limited due to severe shortage of donor cornea and hightransplant rejection percentage. However, corneal tissue engineering has opened a new pathfor in vitro reconstruction of tissue-engineered human corneal epithelium (TE-HCEP) whichwill cure LSCD by clinical corneal transplantation recently. HCEP cell lines as a powerfulresearch tool can provide a readily available source of HCEPCs for long-term studies onTE-HCEP. Unfortunately, there is no report on the application of HCEP cell lines as seedercells to treat LSCD because most of cultured HCEP cell lines have only been established bytransfection. These immortalized cell lines cannot be used for clinical purpose due to theirabnormal phenotypes, latent risk of tumorigenicity and decreased potency to reconstructmultilayered epithelia. Nor did spontaneously derived HCEP cell line which was establishedthrough serial culture of limbal cells from a normal human limbus be applied to the studieson TE-HCEP. Amniotic membrane facilitates epithelialisation, inhibits fibrosis, possessesanti-inflammatory, anti-angiogenic, anti-microbial and anti-viral properties, and it also has ahigh hydraulic conductivity and shows low or no immunogenicity. These advantages makeamniotic membrane an extremely useful biomaterial for ophthalmologcial surgery. Therefore,TE-HCEP was in vitro reconstructed with passage80HCEPCs presenting normal karyotype and based on the molecular identification from a continuous untransfected HCEP cell lineestablished by our laboratory as seeder cells and epithelium-denuded amniotic membrane(dAM) as scaffold carrier, and to examine their functions by corneal epitheliumtransplantation in LSCD rabbit models in this thesis.
     Growth properties, chromosome morphological observation, RT-PCR, immuno-cytochemistry analysis and tumorigenesis assay were used to identify the properties,functions and latent risk of tumorigenicity of passage80HCEPCs. The results showed thatthe cells, with high transparency and cobblestone appearance in shape, proliferated activelyand constantly with a population doubling time of40.75hours. Predominant chromosomenumber of the cells is46. The HCEPCs express keratin3/12positively, which is a specificmarker of HCEPCs. This provestheir HCEP origin. Results of immunocytochemistry showedthat HCEPCs expressed zonula occludens1, E-cadherin, connexin-43, and integrin β1positively, which suggested that the HCEPCs still had normal phenotypes and the potentialto form normal HCEP. Besides, the cells had no tumorigenicity. Therefore, the passage80HCEPCs can be used as seeder cells for in vitro reconstruction of TE-HCEP.
     A reverse trypsin digestion and scraping by scraper were used to get dAM. Then thedAM was coated collagen IV coating on its epithelial side. By microscopy, paraffin sectionHE, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), theresults showed that the surface of processed dAM was smooth and acellular for20min aftertrypsin digestion at37°C. Besides, the dAM with high transparency had goodbiocompatibility to HCEPCs, which can be used as scaffold carriers for in vitroreconstruction of TE-HCEP.
     TE-HCEP was reconstructed in vitro by using passage80HCEPCs as seeder cells anddAM as scaffold carries in air-liquid interface culture system. Light microscope observation,paraffin section HE, immunohistochemical staining, SEM and TEM were used to identifythe TE-HCEP morphology and potential functions. The results showed that HCEPCs, withhigh transparency and cobblestone shape, formed a6~7layers of an HCEP-like structure ondAM in air-liquid interface culture for5days. Under scanning electron microscopy andtransmission electron microscopy, the HCEPCs were rich in microvilli on apical surface, andconstructed numerous intercellular cell junctions including desmosomes and cell-dAMhemidesmosomes. Results of immunohistochemistry showed that the seeder cells ofTE-HCEP still had HCEP properties, and could potentially form tight junction, anchoringjunction and communicating junction. All these indicated that the reconstructed TE-HCEPhad almost the same morphology and histological structure as that of innate HCEP, providing a promise for scale production of TE-HCEP.
     New Zealand white rabbit LSCD models were made for corneal epitheliumtransplantation to examine the functions of in vitro reconstructed TE-HCEP. There werethree improved menthod used for producing LSCD models. All of alkaline burning,mechanical trauma and composite method succeeded establishing LSCD models based oncorneal opacity, epithelial fluorescence staining, neovascularization and impression cytology.TE-HCEPs, reconstructed with CM-DiI labeled passage80HCEPCs as seeder cells anddAM as scaffold carries in air-liquid interface culture, were transplanted into LSCD rabbitmodels. The results showed that in alkaline burning LSCD group, the cornea had beenentirely opaque and covered with blood vessels, because the corneal limbus, cornealepithelium, even stroma and endothelium had been totally damaged, which are not suitablefor making LSCD pathological model because of unpredictable subsequent lesions; inmechanical removed LSCD group, the corneal stroma began to become transparent and newblood vessels formation reduced on day12after transplantation. The corneal thicknessreturned to normal level at day25. The HCEPCs with DiI labels, formed4~5layers structureand constructed tight cell junctions. Keratin3was expressed at day120, but the surfaceretained a little vascular ingrowth; in composite method LSCD group, the corneal stromabegan to become transparent and the new blood vessels reduced on day49aftertransplantation. The corneal thickness returned to normal level at day70. The HCEPCs withDiI labels, formed3~4layers structure and constructed tight cell junctions. Keratin3wasexpressed at day147, but the surface retained a little vascular ingrowth. Therefore, the invitro reconstructed TE-HCEP can make cornea of the transplanted eyes of LSCD modelstransparent for a long time.
     In conclusion, TE-HCEP was reconstructed in vitro by using passage80HCEPCs asseeder cells and dAM as scaffold carries in this thesis. The TE-HCEP with normal structureand function can make cornea of the transplanted eyes of LSCD models transparent for along time, which can be used promisingly as LESC equivalents for clinical cornealepithelium transplantation. Therefore, successful in vitro reconstruction of TE-HCEP andtheir future clinical applications have not only great theoretical significance, but also veryimportant social and economic benefits.
引文
曹谊林,崔磊,商庆新,刘伟.组织工程的研究现状与应用展望[J].中国医疗器械信息,2002,8(4):11-14
    曹谊林.组织工程学的研究进展[J].中国美容医学,2005,14(2):134-135
    陈国玲,吴欣怡.角膜上皮细胞屏障及创伤愈合的调节[J].中国实用眼科杂志,2005,23(5):445-449
    陈建苏,丁勇,李沁华,徐锦堂,周长忍,赵松滨.壳聚糖复合共混膜培养兔角膜缘上皮及其移植[J].眼外伤职业眼病杂志,2004,26(12):793-796
    丁勇,徐锦堂,陈建苏,陈剑,吴春云,张志雄,周长忍.兔角膜缘上皮细胞在体外壳聚糖共混膜上的培养及生物学鉴定[J].暨南大学学报(自然科学与医学版),2005,26(2):205-209
    付瑶.组织工程化角膜组织的研究新进展[J].国外医学眼科学分册,2001,25(2):65-69
    范先群,陈平,傅瑶.以异种角膜脱细胞基质为载体构建角膜上皮-载体-内皮复合物的实验研究[J].中华眼科杂志,2007,43(5):437-441
    葛坚,黄丹平,高楠,高前应.诱导骨髓间质干细胞分化为角膜上皮样细胞的初步研究[J].中国病理生理杂志,2007,23(5):999-1003
    顾国贞,王芳,谷树严,等.以纤维蛋白为基质网架的组织工程角膜上皮的构建[J].吉林大学学报,2008,34(5):814-816
    韩桂林,梅举,丁芳宝.组织工程食管种子细胞的选择[J].中华医学杂志,2006,86(23):1654-1656
    黄冰,王智荣,葛坚,陈系古,刘敬波,范志刚,陶靖,刘炳乾,郭芬芬.利用皮肤干细胞的横向分化重建角膜上皮的初步研究[J].中华医学杂志,2004,84(10):838-842
    李冰一,蔺嫦燕.组织工程支架材料的研究进展[J].生物医学工程与临床,2007,11(3):241-246
    梁晓东,陈建苏,邓佩娥,陈小琳.纤维蛋白胶与兔角膜3种细胞构建组织工程细胞片研究[J].中国病理生理杂志,2008,24(4):797-801
    刘海俊,钟世镇,曾静,龚向明,葛坚.自体角膜缘移植治疗兔单眼碱烧伤的实验研究[J].第一军医大学学报,2003,23(4):344-346
    刘先宁,吴洁,朱秀萍.角膜上皮干细胞缺失动物模型的方法研究[J].国际眼科杂志,2009,9(8):1583-1584
    刘燕霞,赵敏.眼表组织工程种子细胞的来源及种植技术研究进展[J].国际眼科杂志,2008,8(2):351-354
    柳子星,张惠珍,王建,张勇,赵阳,周光炎,葛海良. MHC II类抗原的诱导性表达和同种异体软骨细胞移植的免疫排斥[J].上海免疫学杂志,2002,22(3):178-181
    刘祖国.眼表疾病学[M].北京:人民卫生出版社,2003, p47
    刘祖国.角膜缘干细胞研究进展[J].医学研究通讯,2005,34(3):2-4
    屈雷.组织工程化角膜上皮与内皮的构建和移植[D].西北农林科技大学博士学位论文,2004, p19
    王馨.羊膜生物支架与组织工程化角膜上皮的构建[D].西北农林科技大学硕士学位论文,2004, p53
    王雪.组织工程角膜上皮支架材料研究进展[J].眼科研究,2010,28(10):998-1002
    吴静.角膜上皮的研究概况[J].国外医学眼科学分册,1997,21(4):225-228
    吴欣怡.构建组织工程人工角膜的支架材料与种子细胞研究进展[J].山东大学耳鼻喉眼学报,2011,25(5):79-82
    谢立信.角膜移植学[M].北京:人民卫生出版社,2000, p16-17
    薛庆善.体外培养的原理与技术(第一版)[M].北京:科学出版社,1999, p78
    杨洪收.人角膜上皮细胞系的鉴定与组织工程人角膜上皮体外重建的研究[D].中国海洋大学硕士学位论文,2010, p28
    杨珂.角膜上皮干细胞的研究进展[J].医学综述,2001,7(12):711-712
    闫涛.组织工程角膜支架材料再生丝素膜的生物相容性[J].国际眼科杂志,2008,8(8):1557-1559
    张蓓,姚玉峰.印迹细胞学在检查眼表面疾病中的应用[J].浙江大学学报(医学版),2002,31(5):383-387
    赵君.组织工程人角膜内皮的体外重建及其在兔角膜内皮移植中的作用研究[D].中国海洋大学博士学位论文,2010, p14-15
    Alaminos M, Sánchez-Quevedo MDC, Mu oz-ávila JI, Serrano D, Medialdea S, Carreras I, Campos A.Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold[J]. InvestOphthalmol Vis Sci,2006,47(8):3311-3317
    Amano S. Transplantation of cultured human corneal endothelial cells[J]. Cornea,2003,22(7):66-74
    Andri KR, Roger WB, Laurence SL, Jodhbir SM. Preservation, sterilization and de-epithelialization ofhuman amniotic membrane for use in ocular surface reconstruction[J]. Biomaterials,2010,31(2):216-225
    Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H. An SV40-immortalizedhuman corneal epithelial cell line and its characterization[J]. Invest Ophthalmol Vis Sci,1995,36(3):614-621
    Arakisasaki K. An sv40-immortalized human corneal epithelial-cell line and its characterization[J]. InvestOphthalmol Vis Sci,1995,36(3):614-621
    Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends[J]. Expert OpinBiol Ther,2005,5(7):879-892
    Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea[J]. ProcNatl Acad Sci,2004,101:6433-6438
    Blazejewska EA, Schl tzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, Kruse FE.Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells intocorneal epithelial-like cells[J]. Stem Cells,2009,27(3):642-652
    Bourne GL. The microscopic anatomy of the human amnion and chorion[J]. Am J Obstet Gynecol,1960,79:1070
    Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG. Human corneal epithelialequivalents constructed on Bombyx mori silk fibroin membranes[J]. Biomaterials,2011,32(22):5086-5091
    Brouard M, Barrandon Y. Controlling skin morphogenesis: hope and despair[J]. Curr Opin Biotechnol,2003,14(5):520-525
    Burman S, Tejwani S, Vemuganti GK, Gopinathan U, Sangwan VS. Ophthalmic applications of preservedhuman amniotic membrane: a review of current indications[J]. Cell Tissue Bank,2004,5:161-175
    Chang JH, Gabison EE, Kato T, Dimitri T. Corneal neovascularization[J]. Currt Opin Ophthalmol,2001,12(4):242-249
    Chen HC, Chen HL, Lai JY, Chen CC, Tsai YJ, Kuo MT, Chu PH, Sun CC, Chen JK, Ma DH. Persistenceof transplanted oral mucosal epithelial cells in human cornea[J]. Invest Ophthalmol Vis Sci,2009,50(10):4660-4668
    Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium[J].Nature,1971,229:560-561
    Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, James SE. Outcomes and DNA analysis ofex vivo expanded stem cell allograft for ocular surface reconstruction[J]. Ophthalmology,2005,112(3):470-477
    de Rotth A. Plastic repair of conjunctival defects with fetal membrane[J]. Arch Ophthalmol,1940,23:522-525
    Deng C, Li F, Hackett JM, Chaudhry SH, Toll FN, Toye B, Hodge W, Griffith M. Collagen andglycopolymer based hydrogel for potential corneal application[J]. Acta Biomat,2010,6(1):187-194
    Di G, Zambito Y, Burgalassi S, Serafini S, Saettone MF. Effect of chitosan on in vitro release and oculardelivery of ofloxacin from erodible inserts based on poly (ethylene oxide)[J]. Int J Pharm,2002,248(1-2): l15-122
    Du YQ, Chen J, Funderburgh JL, Zhu X, Li LS. Functional reconstruction of rabbit corneal epithelium byhuman limbal cells cultured on amniotic membrane[J]. Mol Vis,2003,9:635-643
    Dua HS, Joseph A, Shanmuganathan VA, Jones RE. Stem cell differentiation and the effects ofdeficiency[J]. Eye,2003,17:877-885
    Eble JA, Golbik R, Mann K, Kuhn K. The alpha1beta1integrin recognition site of the basementmembrane collagen molecule [alpha1(IV)]2alpha2(IV)[J]. EMBO J,1993,12:4795-4802
    Egbert PR, Lauber S, Maurice DM. A simple conjunctival biopsy[J]. Am J Ophthalmol,1977,84(6):798-801
    Espana EM, Romano AC, Kawakita T, Pascuale MD, Smiddy R, Tseng SC. Novel enzymatic isolation ofan entire viable human limbal epithelial sheet[J]. Invest Ophthalmol Vis Sci,2003,44:4275-4281
    Fan TJ, Zhao J, Ma XY, Xu XH, Zhao WZ, Xu B. Establishment of a continuous untransfected humancorneal endothelial cell line and its biocompatibility to denuded amniotic membrane[J]. Mol Vis,2011,17:469-480
    Fan TJ, Xu B, Zhao J, Yang HS, Wang RX, Hu XZ. Establishment of an untransfected human cornealepithelial cell line and its biocompatibility with denuded amniotic membrane[J]. Int J Ophthalmol,2011,4(3):228-234:
    Fang XF, Zhao J, Shi WY, Xie LX. Reconstruction tissue-engineered corneal epithelium using xenogeneicacellular corneal stroma as scaffold[J]. Zhonghua Yan Ke Za Zhi,2008a,44(9):825-830
    Fang XF, Zhao J, Shi WY, Xie LX. Biocompatibility of acellular corneal stroma and transplantation oftissue-engineered corneal epithelium[J]. Zhonghua Yan Ke Za Zhi,2008b,44(10):934-942
    Farazdaghi, M. Electron microscopy of human amniotic membrane. In: Advances in Tissue Banking[M].New York: World Scientific Publishing,2001
    Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surfacereconstruction[J]. Cornea,2005,24(6):643-653
    Friess W. Collagen-biomaterial for drug delivery[J]. European Eur J Pharm Biopharm,1998,45:113-136
    Gao X, Liu W, Han B, Wei X. Preparation and cytocompatibility of chitosan-based carriers of cornealcells[J]. Sheng Wu Gong Cheng Xue Bao,2008,24(8):1381-1386
    Gimeno FL, Lavigne V, Gatto S, Croxatto JO, Correa L, Gallo JE. One-year follow-up of epithelialcorneal cell sheet allografts mounted on platelet poor plasma in rabbits[J]. Mol Vis,2009,15:2771-2779
    Glaso M, Sandvig K, Haaskjold E. Apoptosis in the rat corneal epithelium during regeneration[J]. APMIS,1993,101(12):914
    Griffth M, Osborne R, Munger R, Xiong XJ, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA.Functional human corneal equivalents constructed from cell lines[J]. Science,1999,286(5447):2169-2172
    Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amnioticmembrane serving as a stem cell niche[J]. Surv Ophthalmol,2003,48:631-646
    Gu SF, Xing CZ, Han JY, Tso MO, Hong J. Differentiation of rabbit bone marrow mesenchymal stemcells into corneal epithelial cells in vivo and ex vivo[J]. Mol Vis,2009,15:99-107
    Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatoryproteins in human amniotic membrane[J]. Cornea,2000,19(3):348-352
    Harkin DG, George KA, Madden PW, Schwab IR, Hutmacher DW, Chirila TV. Silk fibroin in oculartissue reconstruction[J]. Biomaterials,2011,32(10):2445-2458
    Hill P, Brantley H, Van Dyke M. Some properties of keratin biomaterials: Kerateines[J]. Biomaterials,2010,31(4):585-593
    Hino M, Ishiko O, Honda KI, Yamane T, Ohta K, Takayuki T, Tatsumi N. Transmission of symptomaticparvovirus B19infection by fibrin sealant used during surgery[J]. Br J Haematol,2000,108(1):194-195
    Homma R, Yoshikawa H, Takeno M, Kurokawa MS, Masuda C, Takada E, Tsubota K, Ueno S, Suzuki N.Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application forreconstruction of damaged cornea in mice[J]. Invest Ophthalmol Vis Sci,2004,45(12):4320-4326
    Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, Dua HS. Optimization ofamniotic membrane (AM) denuding for tissue engineering[J]. Tissue Eng Part C,2008,14:1-11
    Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surfacereconstruction using cultivated autologous oral mucosal epithelial transplantation[J]. Am JOphthalmol,2006,141(2):267-267
    Jin Y, Liu Y, Zhang C, Lei J. Treatment of rabbit cornea wounds with skin epidermal stem cells[J]. ActaAcad Med Sin,2005,27(6):674-677
    Kahn CR, Young E, Lee IH, Rhim JS. Human corneal epithelial primary cultures and cell lines withextended life span: in vitro model for ocular studies[J]. Invest Ophthalmol Vis Sci,1993,34(12):3429-3441
    Kim JC, Tseng SC. Transplantation of preserved human amniotic membrane for surface reconstruction inseverely damaged rabbit corneas[J]. Cornea,1995,14(5):473-484
    Kim JS, Kim JC, Na BK, Jeong JM, Song CY. Amniotic membrane patching promotes healing andinhibits proteinase activity on wound healing following acute corneal alkali burn[J]. Exp Eye Res,2000,70(3):329-337
    Kim SW, Ha BJ, Kim EK, Tchah H, Kim T. The Effect of topical bevacizumab on cornealneovascularization[J]. Ophthalmology,2008,115(6): e33-e38
    Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocularsurface reconstruction[J]. Exp Eye Res,2004,78(3):483-491
    Kinoshita S, Nakamura T. Development of cultivated mucosal epithelial sheet transplantation for ocularsurface reconstruction[J]. Artif Organs,2004,28:22-27
    Koizumi N, Cooper L, Fullwood NJ, Nakamura T, Inoki K, Tsuzuki M, Kinoshita S. An evaluation ofcultivated corneal limbal cells using cell suspension culture[J]. Invest Ophthalmol Vis Sci,2002,43(7):2114-2121
    Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock AJ. Cultivation of cornealepithelial cells on intact and denuded human amniotic membrane[J]. Invest Ophthalmol Vis Sci,2000,41:2506-2513
    Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated comeal epithelial stem celltransplantation in ocular surface disorders[J]. Ophthalmology,2001,108(9):1569-1574
    Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, Kociok N, Joussen AM,Kinoshita S. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspensionculture of human limbal epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol,2006,245:123-134
    Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, Kociok N, Joussen AM,Kinoshita S. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspensionculture of human limbal epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol,2006,245:123-134
    Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNAand protein in preserved human amniotic membrane[J]. Curr Eye Res,2000,20(3):173-177
    Krues FE. Stem cells and corneal epithelial regeneration[J]. Eye,1994,8:170-183
    Li W, He H, Kuo CL, Gao YY, Kawakita T, Tseng SC. Basement membrane dissolution and reassemblyby limbal corneal epithelial cells expanded on amniotic membrane[J]. Invest Ophthalmol Vis Sci,2006,47:2381-2389
    Liu JB, Song G, Wang ZC, Huang B, Gao QY, Liu BQ, Xu Y, Liang XW, Ma P, Gao N, Ge J.Establishment of a corneal epithelial cell line spontaneously derived from human limbal cells[J]. ExpEye Res,2007,84(3):599-609
    Liu W, Merrettb K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scainao JC, Watsky MA, Shinozaki N,Lagali N, Munger R, Li FF. Recombinant human collagen for tissue engineered corneal substitutes[J].Biomaterials,2008,29(9):1147-1158
    Lu L, Reinach PS, Kao WW. Corneal epithelial wound healing[J]. Exp Biol Med,2001,226(7):653-664
    Luo JC, Li XQ, Yang ZM. Preparation of human acellular amniotic membrane and its cytocompatibilityand biocompatibility[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2004,18:108-111
    Ma DH, Lai JY, Cheng HY, Tsai CC, Yeh LK. Carbodiimide cross-linked amniotic membranes forcultivation of limbal epithelial cells[J]. Biomaterials,2010,31:6647-6658
    Ma YL, Xu YS, Xiao ZF, Yang W, Zhang C, Song E, Du YQ, Li LS. Reconstruction of chemically burnedrat corneal surface by bone marrow derived human mesenchymal stem cells[J]. Stem Cells,2006,24:315-321
    Madhira SL, Vemuganti G, Bhaduri A, Gaddipati S, Sangwan VS, Ghanekar Y. Culture andcharacterization of oral mucosal epithelial cells on human amniotic membrane for ocular surfacereconstruction[J]. Mol Vis,2008,14:189-196
    Matter K, Balda MS. Functional analysis of tight junctions[J]. Methods,2003,30(3):228-234
    Mehta JS, Beuerman R, Thein ZM. Modification of human amniotic membrane as a carrier for stem celltransplantation[J]. Invest Ophthalmol Vis Sci,2007,48: E-Abstract453
    Mi S, Chen B, Wright B, Connon CJ. Ex vivo construction of an artificial ocular Surface by combinationof corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes[J]. TissueEng Part A,2010,16(6):2091-2100
    Milyavsky M, Shats I, Erez N, Tang XH, Senderovich S, Meerson A, Tabach Y, Goldfinger N, Ginsberg D,Harris CC, Rotter V. Prolonged culture of telomerase immortalized human fibroblasts leads to apremalignant phenotype[J]. Cancer Res,2003,63:7147-7157
    Minami Y, Sugihara H, Oono S. Reconstruction of cornea in three-dimensional collagen gel matrixculture[J]. Invest Ophthalmol Vis Sci,1993,34(7):2316-2324
    Miyashita H, Shimmura S, Kobayashi H, Taguchi T, Kato NA, Uchino Y, Kato M, Shimazaki J, Tanaka J,Tsubota K. Collagen-immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports astratified corneal epithelium[J]. J Biomed Mater Res,2006,76(1):56-63
    Miyoshi S, Nakazawa H, Kawata K, Tomochika K, Tobe K, Shinoda S. Characterization of thehemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysinfamily[J]. Infect Immun,.1998,66:4851-4855
    Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C. Extracellular matrix of human amnionmanufactured into tubes as conduits for peripheral nerve regeneration[J]. J Biomed Mater Res,2002,65:591-600
    Modesti A, Scarpa S, D’Orazi G, Simonelli L, Caramia FG. Localization of type IV and V collagens in thestroma of human amnion[J]. Prog Clin Biol Res,1989,296:459-463
    Mohamad H. Anatomy and embryology of human placenta, amnion and chorion. In: Advances in TissueBanking[M]. New York: World Scientific Publishing,2001, p5
    Nadia Z,Carina K, Viggo VT, Zwi Berneman, Andrew H, Marie-José T. Standardized limbal epithelialstem cell graft generation and transplantation[J]. Tissue Eng Part C,2010,16(5):921-927
    Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivatedautologous oral mucosal epithelial cells in patients with severe ocular surface disorders[J]. British JOphthalmol,2004,88(10):1280-1284
    Nakamura T, Inatomi T, Sotozono C, Ang LPK, Koizumi N, Yokoi N, Kinoshita S. Transplantation ofautologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocularsurface disease[J]. Ophthalmology,2006,113(10):1765-1772
    Nakamura T, Kinoshita S. Ocular surface reconstruction using cultivated mucosal epithelial stem cells[J].Cornea,2003,22(l1):75-80
    Nelson JD, Havener VR, Cameron JD. Cellulose acetate impressions of the ocular surface: Dry eyestates[J]. Arch Ophthalmol,1983,101(12):1869-1872
    Nishida K, Yamato M, Hayashida Y, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, KikuchiA, Maeda N, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheetscomposed of autologous oral mucosal epithelium[J]. New Eng J Med,2004,351(12):1187-1196
    Kohji N, Masayuki Y, Yasutaka H, Katsuhiko W, Naoyuki M, Hitoshi W, Kazuaki Y, Shigeru N, AkihikoK, Yasuo T, Teruo O. Functional bioengineered corneal epithelial sheet grafts from corneal stem cellsexpanded ex vivo on a temperature-responsive cell culture surface[J]. Transplantation,2004,77(3):379-385
    Nishida K. Tissue engineering of the cornea[J]. Cornea,2003,22(7):28-34
    Noriko K, Tsutomu I, Andrew Q, Nigel F, Atsuyoshi D, Shigeru K. Amniotic membrane as a substrate forcultivating limbal corneal epithelial cells for autologous transplantation in rabbits[J]. Cornea,2000,19(1):65-71
    Notara M, Alatza A, Gilfillan J, Harris AR, Levis HJ, Schrader S, Vernon A, Daniels JT. In sickness and inhealth: Corneal epithelial stem cell biology, pathology and therapy[J]. Exp Eye Res,2010,90(2):188-195
    Ohno-Matsui K, Mori K, Ichinose S, Sato T, Wang JY, Shimada N, Kojima A, Mochizuki M, Morita I. Invitro and in vivo characterization of iris pigment epithelial cells cultured on amniotic membrane[J].Mol Vis,2006,12:1022-1032
    Ormerod LD, Abelson MB, Kenyon KR. Standard models of corneal injury using alkali-immersed filterdiscs[J]. Invest Ophthalmol Vis Sci,1989,30(10):2148-2153
    Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix,epithelial cells and keratocytes[J]. Biomaterials,2010,31(28):7257-7265
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, Luca MD. Long-term restoration ofdamaged corneal surface with autologous cultivated corneal epithelium[J]. Lancet,1997,349(9057):990-993
    Perreault N, Jean-Francois B. Use of the dissociating enzyme thermolysin to generate viable humannormal intestinal epithelial cell cultures[J]. Exp Cell Res,1996,224:354-364
    Peter S, Max W, Salvatore G, Sigrid R, Jens R, Sabine A, Radoslaw, Karl BS. Sutureless amnioticmembrane fixation using fibrin glue for ocular surface reconstruction in a rabbit model[J]. Cornea,2006,25(4):460-466
    Pi YL, Tang WQ, Lu JY, Dong Y. Tissue-engineered corneal epithelium transplantation for treatment ofcorneal alkaline burn in rabbits[J]. J Clin Rehab Tis Eng Res,2009,13(41):801-8016
    Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency[J].Ophthalmology,1995,102(10):1476-1485
    Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G. Autologousfibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbalstem cell deficiency[J]. Transplantation,2001,72(9):1478-1485
    Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction[J]. Biomaterials,2011,32(13):3375-3386
    Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, Cavanagh HD, Jester JV.Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelialcell line[J]. Invest Ophthalmol Vis Sci,2005,46(2):470-478
    Sakuragawa N, Elwan MA, Uchida S, Fujii T, Kawashima K. Non-neuronal neurotransmitters andneurotrophic factors in amniotic epithelial cells: expression and function in humans and monkey[J].Jpn J Pharmacol,2001,85:20-23
    Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major64K corneal keratin in vivoand in culture suggests limbal location of corneal epithelial stem cells[J]. J Cell Biol,1986,103(1):49
    Schneider AI, Maier-Reif K, Graeve T. Constructing an in vitro cornea from cultures of the three specificcorneal cell types[J]. In Vitro Cel Dev-Biol,1999,35(9):515-526
    Seder A, Forte J. Effects of calcium depletion on the junctional complex between oxyntic cells of gastricglands[J]. J Cell Biol,1964,30:173-188
    Shao C, Sima J, Zhang SX, Jin J, Reinach P, Wang Z, Ma J. Suppression of corneal neovascularization byPEDF release from human amniotic membranes[J]. Invest Ophthalmol Vis Sci,2004,45:1758-1762
    Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ, Daniels JT. The effect of amnioticmembrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbalepithelial cells[J]. Biomaterials,2009,30:1056-1065
    Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT. Transplantation of ex vivocultured limbal epithelial stem cells: a review of techniques and clinical results[J]. Surv Ophthalmol,2007,52(5):483-502
    Sierpinski P, Garrett J, Ma J, Apel P, Klotrig D, Smith T, Koman LA, Atala A, Dyke V. The use of keratinbiomaterials derived from human hair for the promotion of rapid regenerationof peripheral nerves[J].Biomaterials,2008,29(1):118-128
    Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SCG. Suppression of interleukin1a andinterleukin1b in human limbal epithelial cells cultured on the amniotic membrane stromal matrix[J].Br J Ophthalmol,2001,85(4):444-449
    Song IK, Joo CK. Morphological and functional changes in the rat cornea with an ethanol-mediatedepithelial flap[J]. Invest Ophthalmol Vis Sci,2004,45:423-428
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblastcultures by defined factors[J]. Cell,2006,126(4):663-676
    Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y. Antibacterial properties of human amnioticmembranes[J]. Placenta,1991,12(3):285-288
    Taylor DM. Inactivation of TSE agents: safety of blood and blood-derived products[J]. Transfus Clin Biol,2003,10(1):23-25
    Ti SE, Anderson D, Toubami A, Kim C, Tseng SCG. Factors affecting outcome following transplantationof ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits[J].Invest Ophthalmol Vis Sci,2002,43(8):2584-2592
    Touhami A, Grueterich M, Tseng SC. The role of NGF signaling in human limbal epithelium expanded byamniotic membrane culture[J]. Invest Ophthalmol Vis Sci,2002,43:987-994
    Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II,and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amnioticmembrane matrix[J]. J Cell Physiol,1999,179(3):325-335
    Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions[J]. Nat Rev Mol Cell Biol,2001,2:285-293
    Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurothopic function ofconditioned medium from human amniotic epithelial cells[J]. J Neurosci Res,2000,62:585-590
    Uy HS, Reyes JM, Flores JD, Lim-Bon-Siong R. Comparison of fibrin glue and sutures for attachingconjunctival autografts after pterygium excision[J]. Ophthalmology,2005,112(4):667-671
    Volker-Dieben HJ, D’Amaro J, Kok-van Alphen CC. Hierarchy of prognostic factors for corneal allograftsurvival[J]. Clin Exp Ophthalmol,1987,15(1):11-18
    Waring RH, Schroeder R, Oren R. Application of the pipe model theory to predict canopy leaf area[J].Can J Forest Res,1982,12:556-560
    Wilshaw SP, Kearney J, Fisher J, Ingham E. Biocompatibility and potential of acellular human amnioticmembrane to support the attachment and proliferation of allogeneic cells[J]. Tissue Eng Part A,2008,14:463-472
    Wilshaw SP, Kearney JN, Fisher J, Ingham E. Production of an acellular amniotic membrane matrix foruse in tissue engineering[J]. Tissue Eng,2006,12:2117-2129
    Wu Z, Zhou Y, Li N, Huang M, Duan H, Ge J, Xiang P, Wang Z. The use of phospholipase A2to prepareacellular porcine corneal stroma as a tissue engineering scaffold[J]. Biomaterials,2009,30(21):3513-3522
    Yamasaki K, Kawasaki S, Young RD, Fukuoka H, Tanioka H, Nakatsukasa M, Quantock A, Kinoshita S.Genomic aberrations and cellular heterogeneity in SV40-immortalized human corneal epithelialcells[J]. Invest Ophthalmol Vis Sci,2009,50(2):604-613
    Yang K, Jiang Z, Wang D, Lian X, Yang T. Corneal epithelial-like transdifferentiation of hair follicle stemcells is mediated by pax6and β-catenin/Lef-1[J]. Cell Biol Int,2009,33(8):861-866
    Yang ZM, Yu XJ, Huang FG. The influence of type I collagen on the cell behavior of human embryonicperiosteous osteoblasts[J]. Hua Xi Yi Ke Da Xue Xue Bao,2001,32(1):1-4
    Zhang C, Nie X, Hu D, Liu Y, Deng Z, Dong R, Zhang Y, Jin Y. Survival and in tegration oftissue-engineered corneal stroma in a model of corneal ulcer[J]. Cell Tissue Res,2007,329(2):249-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700