面向地铁突发事件的行车调度系统人误预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:
     近年来,随着地铁列车运行控制系统技术的发展,行车调度系统自动化程度越来越高,降低了由行车调度员失误引发事故的可能性,但与此同时,当地铁突发事件发生后,由于行车调度员处理不当而导致事故发生或结果恶化的问题日益凸显。行车调度系统是地铁安全运营的重要保障,行车调度员则是地铁突发事件下系统的最终保护和恢复机制,如何有效地避免和减少地铁突发事件中行车调度系统人误是各国地铁亟需解决的安全问题。为此,本文以国家高技术研究发展计划(863计划)“列车运行综合优化控制技术”为背景,从分析地铁行车调度系统人误致因出发,提出研究地铁突发事件下行车调度系统人误预测的两个关键方面——人误行为风险预测和人误诱发因素风险预测,提出基于场景的突发事件人误行为识别、预测指标定级和人误行为风险评价技术,同时提出考虑因果作用的人误诱发因素风险预测技术,并形成与提出的人误预测技术相匹配的规范化的行车调度系统人误数据采集和管理方法,为地铁行车调度系统人误预防与减少提供理论方法和技术支撑,具有重要的理论与实际应用价值。
     首先,对行车调度员突发事件处理任务和行车调度系统人机交互特点进行了详细分析,在此基础上构建了地铁行车调度员人误机理模型,从人误行为和人误诱发因素两个方面对人误机理进行描述,先后基于层次任务分析法和m-SHEL模型建立了人误行为分析模型和人误诱发因素识别模型,形成了以多资源理论为基础的行车调度员人误模式分类框架和以Jae W. Kim研究为基础的行车调度系统人误诱发因素备选库,并以国内某地铁公司1997-2011年间的98份行车调度员突发事件处理的人误分析报告为对象,通过灰色关联分析、数据挖掘技术和评分者信度评估验证了人误模式分类框架、人误诱发因素分类、人误模式分析模型和人误诱发因素识别模型的合理性和正确性。
     针对行车调度系统人误数据缺乏而引起的无法直接或间接计算、估计和预测人误率的问题,参考硬件故障模式、影响及危害性分析技术提出了以人误行为可能性、可恢复性和后果严重性为指标的人误行为风险预测模型,并结合行车调度系统人误模式分类框架确定了人误行为可能性等级划分标准;结合系统人误屏障的特点确定了人误行为可恢复性等级划分标准;结合地铁事故管理规定确定了人误行为后果严重性等级划分标准,形成了对人误行为风险进行评价和定级的度量图和风险度量矩阵。
     考虑到人误行为风险预测模型定量化的需要,参考硬件故障模式发生概率等级的评分准则和系统人误屏障的失误率减少作用确定了人误行为可能性和可恢复性指标的定量化定级标准,研究了基于贝塔分布的定量化人误数据的采集和估计方法,解决了人误率数据采集难的问题,设计并开发了基于典型任务的ATS模拟实验系统,通过视线追踪技术对定量化人误数据进行采集,完成了对采集方法的验证,为行车调度系统定量化人误数据收集提供思路。
     在建立的人误行为风险预测技术上研究突发事件场景人误行为风险的识别方法。根据行车调度员突发事件处理任务可模块化的特点,建立了基本任务模块库及相应的突发事件人误场景生成技术,以人误场景构建规则为对象,分析和确定了突发事件场景的失误后果严重性等级、可恢复性等级、可能性等级和风险等级的计算规则,以及关键人误行为识别技术,并通过对接触轨断电突发事件人误风险预测实例验证了方法的实用性。
     在人误诱发情景风险预测方面,充分考虑人误诱发因素间因果关系,以及因果关系而导致的其对系统人误的综合和整体效应的变化情况,构建了以模糊认知图来进行描述的人误诱发情景图模型,引入模糊认知图在因素关系推理、权重计算方面的理论成果,形成人误诱发情景影响效应的评价技术,完成了对某地铁公司人误诱发情景风险预测的实例分析。为了保证构建的图模型的正确性,采用证据理论和不一致性判断方法对专家判断进行综合,同时引入小样本数据筛选技术提高了图模型构建的效率。
     最后,根据建立的行车调度系统人误预测技术特点,对地铁行车调度系统人误数据需求和不确定性进行了详细分析,建立了规范化的人误数据采集方法。
ABSTRACT:
     In recent years, with the development of the subway train operation control system technology, the degree of automation of traffic dispatching system is higher and higher, which reduces the probability of accident caused by the traffic dispatcher human error. But at the same time, the problem of accident or consequence deterioration leading by the traffic dispatcher human error in emergency is increasing. Traffic dispatching system is an important guarantee of the subway safety, while the traffic dispatcher is the system's ultimate protection and recovery mechanism under the emergency. How to effectively avoid and reduce the subway traffic dispatching system human error under emergency is an urgently security problem for the world subway companies. Therefore, relying on the National High Technology Research and Development Program863of 'Integrated Optimizing Control Technology for Train Operation', this thesis analyzes the subway traffic dispatching system human error causing, and proposes two key research aspects of human error behavior risk prediction and human error forcing factor prediction. Thereby, the scenario based emergency human error behavior identification technique, prediction indexes grading technique and human error risk assessment technique are constructed. At the same time, the human error forcing factor risk prediction technique based on the causal relations between factors is buit, and the normalized human error data collecting and management method based on the proposed human error prediction technique is also built to provide the theory method and technical support for subway traffic dispatching system human error prevention and reduction. Research on the problem of traffic dispatching system human error prediction has important theoretical and actual application value.
     Firstly, a subway traffic dispatcher human error mechanism model is constructed based on the detail analysis of the emergency processing task and the human interaction features of the subway traffic dispatching system, which describes traffic dispatcher human error mechanism in two aspects of human error behavior and human error forcing factors. Then, a human error mode analysis model and a human error forcing factors identification model are built based on the hierarchical task analysis method and the m-SHEL model respectively, and the related traffic dispatcher human error mode classification framework and the human error forcing factors optional library are also developed by modifying the multi-resource theory and Jae W. Kim's human error forcing factors set respectively. Furthermore, the created models and classification framework's validation are tested and verified by grey correlation analysis, data mining and intra-rate reliability of98emergency human error analysis reports of1997-2011from a domestic subway company.
     In order to solve the problem that the subway traffic system human error probability is difficult to calculate, estimate and predict both in direct and indirect way because of the lack of human error data, a human error behavior risk prediction model is proposed by referring to the failure mode, effects and criticality analysis technique, which estimates the human behavior risk based on the three aspects of human error behavior possibility, restorability and consequences seriousness. Thereby, the human error behavior possibility grading standard is determined according to the traffic dispatching system human error mode classification framework, while the human error behavior restorability grading standard is built by considering the human error barrier character, and the human error consequences seriousness grading standard is established with the subway accident management regulations. Also, the measurement figure of criticality matrix and risk assessment matrix are constructed for human error behavior risk calculating and grading.
     Considering the requirement of human error behavior risk prediction model's quantification, the human error behavior possibility and restorability quantification grading standard are built referring to the failure mode probability grading standard and traffic dispatching system human error barrier's error probability reduction degree. As a support, the difficulty of quantification human error data collection is also solved by introducing Beta Distribution into human error data collection and estimation method. And an ATS experiment simulator based on the traffic dispatcher's typical tasks is designed and developed to collect the qualification human error data by the eye tracking technique. The experimental result verifies the rationality of the data collection method and provids the idea for the subway traffic dispatching system quantification data collection.
     Based on the established human behavior risk prediction technique, the emergency scenario human error risk prediction method is studied. In this study, the emergency human error scenario generation technique is created according to the modularized characteristics of traffic dispatcher emergency processing task, and the emergency scenario human error behavior consequences seriousness, restoration, possibility, risk degree calculation rules and key human error behavior identification technique are analyzed and identified on the basis of the human error scenario building rules. Additionally, an example of the contact rail power off emergency human error risk prediction is used to verify the practical applicability of the structured emergency scenario human error risk prediction method.
     In the aspect of human error forcing context risk prediction, the causal relations between human error forcing factors and the changes of the human error forcing context comprehensive and the overall effect caused by the causal relations are taken into full account. By the time, the human error forcing context graph model described by the fuzzy cognitive map is built. Consequently, the human error forcing context effect assessment technique is formed by introducing the fuzzy cognitive map's research achievement in causality reasoning and factors weight calculating, and is used to complete the example analysis of a subway company's traffic dispatching system human error forcing context risk prediction. In order to ensure the constructed graph model's validity, evidence theory and inconsistency judgment method are utilized to synthesize and evaluate the experts judgment. Meanwhile, a small sample data screening technique is introdued to improve the graph model construction efficiency.
     Finally, the subway traffic dispatching system human error data requirements and uncertainty are analyzed in detail according to the structured human error prediction technique characteristics of traffic dispatching system. Then, a normalized human error data collecting method is established.
引文
[1]舒小东,荣伟,曾小旭.地铁突发事件的应对技能研究[J].交通标准化,2010,25(1):24-27.
    [2]廉士乾.组织因素影响下的人因可靠性分析研究[D].南华大学,2008.
    [3]MODURBAN project group. Comprehensive operational functional and performance requirements (D80) [R]. MODURBAN consortium,2008.
    [4]Andrew W E. Fatal train accidents on Europe's railways:1980-2009 [J]. Accident Analysis and Prevention,2011(1),43:391-401.
    [5]Rail Accident Investigation Branch. Annual report 2008[R].RAIB department for transport, 2009.
    [6]赵跃,叶龙,沈梅.铁路调度系统中人的失误原因分析及控制对策[J].北方交通大学学报,2001,25(5):77-79.
    [7]曾笑雨,刘苏,张奇.基于事故统计分析的城市轨道交通运营安全和可靠性研究[J].安全与环境工程,2012,19(1):90-94.
    [8]邹磊,江毅.地铁运营事故分析及对策研究[D].企业研究,2012,392(2):179.
    [9]高文宇.核电厂人因可靠性分析的几个问题研究[D].南华大学,2011.
    [10]Telle B, Vanderhaegen F, Moray N. Railway system design in the light of human and machine unreliability[C]. Beijing:IEEE Transactions on systems, man and cybernetics,1996:2780-2785.
    [11]Vanderhaegen F. APRECIH:a human unreliability analysis method application to railway system [J]. Control Engineering Practice,1999,7(11):1395-1403.
    [12]Vanderhaegen F. A non-probabilistic prospective and retrospective human reliability analysis method-application to railway system [J]. Reliability Engineering and System Safety,2001, 71(1):1-13.
    [13]Fleishman EA, Quaintance MK. Taxonomies of human performance:the description of human task [M]. London:Academic Press Inc,1984.
    [14]Shorrock ST, Kirwan B. The development of TRACEr:a technique for the retrospective analysis of cognitive errors in ATM [C]. In:the 2nd conference on engineering psychology and cognitive ergonomics. Oxford:Ashgate Pub Ltd.1999:163-171.
    [15]Isaac A, Shorrock ST, Kirwan B. Human error in European air traffic management:the HERA project [J]. Reliability engineering and system safety,2002,75(2):257-272.
    [16]Isaac A, Lyons M, Bove T, et al. Validation of the human error in ATM (HERA-JANUS) technique[R]. BRUSSELS:EUROCONTROL,2003.
    [17]Isaac A, Duchenne C, Moulin L, et al. The investigation of human error in ATM simulation [R]. BRUSSELS:EUROCONTROL,2002.
    [18]Isaac A, Straeter O, Damme DV. A method for predicting human error in ATM (HERA-PREDICT) [R]. BRUSSELS:EUROCONTROL,2004.
    [19]Paries J, Bieder C, Reason J, et al. the development of a safety management tool within ATM (HERA-SMART) [R]. BRUSSELS:EUROCONTROL,2003.
    [20]Ferrara G. Licu T. EUROCONTROL tool kit for ATM Occurrence investigation-TOKAI user manual [R]. BRUSSELS:EUROCONTROL,2004.
    [21]Kirwan B, Gibson WH. CARA:A Human Reliability Assessment Tool for Air Traffic Safety Management-Technical Basis and Preliminary Architecture [C]. In:Proceedings of the Fifteenth Safety-critical Systems Symposium. Bristol:Springer-Verlag London Limited.2007: 197-214.
    [22]Shappell SA, Wiegmann DA. The human factors analysis and classification system-HFACS [R]. Washington, DC:Federal Aviation Administration,2000.
    [23]Pape AM, Wiegmann DA, Shappell A. Air traffic control (ATC) related accidents and incidents: a human factors analysis [C/OL]//Proceedings of the 11th International Symposium on Aviation Psychology. Columbus,2001[2012-04-10]. http://www.aviation.illinois.edu/avimain/papers/research/pub pdfs/isap/papewiegmshappavpsy Ol.pdf.
    [24]Gaur D. Human Factors Analysis and Classification System Applied to Civil Aircraft Accidents in India [J]. Aviation, Space, and Environmental Medicine.2005,76(5):501-505.
    [25]Shappell SA, Detwiler C, Holcomb K, et al. Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system [J]. Human Factors,2007, 49 (2):227-242.
    [26]Melissa TB, Andrew SM, John RW. Understanding the human factors contribution to railway accidents and incidents in Australia [J]. Accident Analysis and Prevention,2008,40(5): 1750-1757.
    [27]Shappell S, Wiegmann D. Applying Reason:the human factors analysis and classification system (HFACS) [J]. Human Factors and Aerospace Safety,2001:1(1):59-86.
    [28]Reinach S, Viale A. Application of a human error framework to conduct train accident/incident investigations [J]. Accident Analysis and Prevention,2006,38(2):396-406.
    [29]Reinach S, Viale A, Green D. Human Error Investigation Software Tool (HEIST) [R]. Federal Railroad Administration,2007.
    [30]Olsen NS, Shorrock ST. Evaluation of the HFACS-ADF safety classification system: Inter-coder consensus and intra-coder consistency [J]. Accident Analysis and Prevention,2010, 42(2):437-444.
    [31]谷鸿溪,张建伟.铁路行车关键工种人员可靠性研究的几个问题[J].中南工学院学报,1999,13(2):93-97.
    [32]魏新平,雷珍国.铁路行车调度系统人员可靠性分析[J].铁道运营技术,2009,15(4):51-53.
    [33]鲍枫,唐祯敏.铁路安全与人为失误问题的研究[J].中国安全科学学报,2003,13(10):45-47.
    [34]戢晓峰,刘澜.铁路系统安全的人因研究综述[J].人类工效学,2007,13(4):51-54.
    [35]苏春华,吴武林,陈兆仁,等.基于主成分分析法的铁路军事运输系统人因可靠性评价模型研究[J].军事交通学院学报,2009,11(1):22-25.
    [36]陈喜春.基于人因紧张度的铁路编组站可靠性研究[J].铁道运输与经济,2010,32(5):86-90.
    [37]刘仲谦.铁路行车作业岗位安全可靠性研究[D].西南交通大学,2006.
    [38]魏新平.铁路列车调度系统可靠性研究[D].西南交通大学,2010.
    [39]杨家忠,张侃.民用航空中的人误分类与分析[J].人类工效学,2003,9(4):41-44.
    [40]罗晓利,李海燕.基于灰色关联理论的空管人误分类分析[J].中国民航大学学报,2009,27(4):26-30.
    [41]黄宝军,王洁宁.影响空管人为差错发生的原因因素调查及分析[J].中国民用航空,2010, 120(12):64-66.
    [42]何云中,郭定.空中交通管制中人的可靠性模糊综合评价研究[J].中国安全科学学报,2004,14(11):57-60.
    [43]隋东,韩明良,董襄宁,等.空中交通管制员认知可靠性研究[J].南京航空航天大学学报,2007,39(3):384-388.
    [44]王世锦,隋东.空中交通管制员人因可靠性定量分析研究[J].人类工效学,2009,15(4):46-50.
    [45]李海峰,李文权,武喜萍.基于全决策树的空管人因可靠性研究[J].人类工效学,2010,16(2):34-39.
    [46]刘继新,沈丽楠.空管安全系统中人为因素的本体建模研究[J].武汉理工大学学报(信息与管理工程版),2011,33(4):656-660.
    [47]Julie Bell, Justin Holroyd. Review of human reliability assessment methods [R]. Health and Safety Executive,2009.
    [48]Reason J. Human error [M]. Cambridge:Cambridge university press,1990.
    [49]Swain AD, Guttman HE. Handbook of human reliability analysis with emphasis on nuclear power plant application [R]. Washington DC:NUREG/CR-1278,1983.
    [50]Altman JW. Classification of human error [M]//Askren WB. Symposium on reliability of human performance in work. Ohio:Wright-Patterson Air Force Base,1967:67-88.
    [51]刘正江.船舶避碰过程中的人的可靠性分析[D].大连海事大学,2004.
    [52]Norman DA. Categorizing of action slips [J]. Psychological review,1981,88(1):1-14.
    [53]Rouse W, Rouse S. Analysis and classification of human error [J]. IEEE Transactions on system, man and cybernetics,1983,13(3):539-549.
    [54]Thomas B. Development and validation of a human error management taxonomy in air traffic control [D]. University of Roskilde,2002.
    [55]Embrey D. Understanding human behavior and error [EB/OL]. (2006-10-03) [2012-04-10].http://www.humanreliabilitv.com/articles/Understanding%20Human%20Behavio ur%20and%20Error.pdf.
    [56]刘伟,袁修干.人机交互中情境认知的理论与应用[M].北京:中国科学技术出版社,2005.
    [57]Wiegmann DA, Shappell SA. Human Factors analysis of postaccident data:Applying theoretical taxonomies of human error [J]. The International Journal of Aviation Psychology, 1997,7(1):67-81.
    [58]Wicken CD. Engineering Psychology and Human Performance [M]. New York:Harper Collins Publishers,1992.
    [59]Rasmussen J. Skills, Rules and Knowledge; Signals, Signs and Symbols and Other Distinctions in Human Performance Models [J]. IEEE Transactions on system, man and cybernetics,1983, 13(3):257-266.
    [60]威肯斯CD,李JD,刘乙力,等.人因工程学导论(第2版)[M].上海:华东师范大学出版社,2007.
    [61]Klein GA. Recognition-primed decisions [M]//Rouse WB. Advances in Man-Machine Systems Research. Greenwich:JAI Press,1989:47-92.
    [62]Sanders MS, McCormick EJ. Human Factors in Engineering and Design (Seventh Edition) [M]. New York:McGraw-Hill Inc,1992.
    [63]McCoy WE, Funk KH. Taxonomy of ATC Operator errors based on a model of human information processing [C]. In:Proceedings of the Sixth International Symposium on Aviation Psychology.1991:532-537.
    [64]Helmreich RL, Merritt AC. Safety and error management:The role of Crew Resource Management [M]//Hayward BJ, Lowe AR. Aviation Resource Management. Aldershot, UK: Ashgate,2000:107-119.
    [65]Sarter NB, Alexander HM. Error types and related error detection mechanisms in the aviation domain:An analysis of aviation safety reporting system incident reports [J]. The international journal of aviation psychology,2001,10(2),189-206.
    [66]Swain AD. Human reliability analysis:Need, status, trends and limitations [J]. Reliability engineering and system safety,1990,29:301-313.
    [67]Williams JC. A data-based method for assessing and reducing human error to improve operational performance [C]. In Proceedings of the IEEE Fourth Conference on Human Factors and Power Plants, Monterey.1988:436-450.
    [68]Hollnagel E. Cognitive reliability and error analysis method [M]. Oxford:Elsevier Science Ltd., 1998.
    [69]Cooper SE, Ann MR, Gareth SW, et al. A technique for human error analysis, NUREG/CR-6350 [R]. USA:NRC,1996.
    [70]Julius J, Jorgenson E, Parry GW, et al. A procedure for the analysis of errors of commission in a probabilistic safety assessment of a nuclear power plant at full power [J]. Reliability engineering and system safety,1995,50(2):189-201.
    [71]Gerdes G. Identification and analysis of cognitive errors:application to control room operators [D]. Delft University of Technology,1997.
    [72]Rasmussen J, Pedersen OM, Mancini G, et al. Classification system for reporting events involving human malfunctions, RISO-M-2240 [R]. Denmark:RISO National Laboratory,1981.
    [73]KEPRI. Development of Korean HPES (human performance enhancement system) for nuclear power plants, TR.95ZJ04.J 1998.21 [R]. Korea:KEPRI,1998.
    [74]Bellamy LJ. The quantification of human fallibility [J]. Journal of Health and Safety,1991,6(3): 13-22.
    [75]Macwan J, Mosleh A. A methodology for modeling operator errors of commission in probabilistic risk assessment [J]. Reliability Engineering and System Safety,1994,45(1-2): 139-157.
    [76]Katrina MG. A data-informed model of performance shaping factors for use in human reliability analysis [D]. University of Maryland,2009.
    [77]何旭洪,黄祥瑞.工业系统中人的可靠性分析:原理、方法和应用[M].清华大学出版社,2007.
    [78]Gertman D, Blackman H, Marble J, et al. The SPAR-H human reliability analysis method, NUREG/CR-6883 [R]. USA:NRC,2005.
    [79]Whalley SP. Factors affecting human reliability in the chemical process industry [D]. Aston University,1987.
    [80]Williams JC. A proposed Method for Assessing and Reducing Human error [C]. In:Proceedings of.9th Advances in Reliability Technology Symposium. University of Bradford,1986:1-13.
    [81]Embrey DE, Humphreys P, Rosa E, et al. SLIM-MAUD:an approach to assessing human error probabilities using structured expert judgment, NUREG/CR-3518 [R]. USA:NRC,1984.
    [82]Gertman DI, Blackman HS, Haney LN, et al. INTENT:a method for estimating human error probabilities for decision based errors [J]. Reliability engineering and system safety,1992, 35(2):127-136.
    [83]Chang YJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents, part 2:IDAC performance influencing factors model [J]. Reliability engineering and system safety,2007,92(8):1014-1040.
    [84]Forester J, Kolaczkowski S, Cooper S, et al. ATHEANA user's guide, NUREG-1880 [R]. USA: NRC,2007.
    [85]Taylor-Adams S. Development of a taxonomy for use with a human error database [M]. London: Taylor and Francis,1994.
    [86]Jae WK, Wondea J. A taxonomy of performance influencing factors for human reliability analysis of emergency tasks [J]. Journal of loss prevention in the process industries,2003,16(): 479-495.
    [87]张力.概率安全评价中人因可靠性分析技术研究[D].湖南大学,2004.
    [88]ATKINS & IOE. Rail-specific human reliability assessment technique for driving tasks[R]. RSSB,2005.
    [89]Isaac A, Shorrock ST, Kirwan B. Human error in European air traffic management:the HERA project [J]. Reliability engineering and system safety,2002,75(2):257-272.
    [90]Reece WJ. Gilbert BG, Richards RE. Nuclear computerized library for assessing reactor reliability (NUCLARR) Volume 5:data manual part2:human error probability (HEP) data, NUREG/CR-4639 [R]. Washington, DC:NRC,1994.
    [91]Kirwan B, Basra G, Taylor-Adams SE. CORE-DATA:A Computerised Human Error Database for Human Reliability Support [C]. In:IEEE sixth conference on perspectives of human factors in power generation. Orlando,1997:7-12.
    [92]Kirwan B, Gibson WH, Hickling B. Human error data collection as a precursor to the development of a human reliability assessment capability in air traffic management [J]. Reliability Engineering and System Safety,2008,93(2):217-233.
    [93]IAEA. Human error classification and data collection [R]. VIENNA:IAEA,1990.
    [94]IAEA. Collection and classification of human reliability data for use in probabilistic safety assessments [R]. VIENNA:IAEA,1998.
    [95]Zhang L, He X, Dai L, et al. The simulator experimental study on the operator reliability of Qinshan nuclear power plant [J]. Reliability Engineering and System Safety,2007,92(2): 252-259.
    [96]Basra G, Gibson H, Kirwan B. Collection of offshore human error probability data:Phase 2, Volume 1 offshore drilling data [R].UK:HSE,1998.
    [97]Everdij M, Blom H. Safety methods database [R]. Nederland:NLR,2010.
    [98]Basra G, Kirwan B. Collection of offshore human error probability data [J]. Reliability engineering and system safety,1998,61(1-2):77-93.
    [99]Zioa E, Baraldia P, Librizzia M, et al. A fuzzy set-based approach for modeling dependence among human errors [J]. Fuzzy Sets and Systems,2009,160(13):1947-1964.
    [100]张力,赵明.WANO人因事件统计及分析[J].核动力工程,2005,6(3):292-297.
    [101]Hallbert B, Kolaczkowski A. The Employment of Empirical Data and Bayesian Methods in Human Reliability Analysis:A Feasibility Study, NUREG-6949 [R]. Washington, DC:NRC, 2007.
    [102]Oliver Strater. Considerations on the elements of quantifying human reliability [J]. Reliability Engineering and System Safety,2004,83(2):255-264.
    [103]Swain AD. Human reliability analysis:need, status, trends and limitations [J]. Reliability engineering and system safety,1990,29(3):301-314.
    [104]Kirwan B. Human error identification techniques for risk assessment of high risk systems-Part 1:review and evaluation of techniques [J]. Applied Ergonomics,1998,29(3):157-177.
    [105]何旭洪,高佳,黄祥瑞.人的可靠性分析方法比较[J].核动力工程,2005,26(6):627-630.
    [106]Forester J, Kolaczkowski A, Lois E, et al. Evaluation of Human Reliability Analysis Methods Against Good Practices, NUREG-1842 [R]. Washington, DC:NRC,2006.
    [107]李鹏程,张力,王以群.框架式人误原因分析技术评价研究[J].人类工效学,2009,15(3):44-47.
    [108]Konstandinidou M, Nivolianitou Z, Kiranoudis C, et al. A fuzzy modeling application of CREAM methodology for human reliability analysis [J]. Reliability Engineering and System Safety,2006,91 (6):706-716.
    [109]He X, Wang Y, Shen Z, et al. A simplified CREAM prospective quantification process and its application [J]. Reliability Engineering and System Safety,2008,93 (2):298-306.
    [110]Kim MC, Seong PH, Hollnagel H. A probabilistic approach for determining the control mode in CREAM [J]. Reliability Engineering and System Safety,2006,91 (2):191-199.
    [111]Sun Z, Li Z, Gong E, et al. Estimating Human Error Probability using a modified CREAM [J]. Reliability Engineering and System Safety,2012,100(4):28-32.
    [112]Parry GW. Suggestions for an improved HRA method for use in probability safety assessment [J]. Reliability engineering and system safety,1995,49(1):1-12.
    [113]赵炳全,方向.核电厂操纵员综合能力评价研究[J].清华大学学报,2000,40(2):74-76.
    [114]Javoadpour R. A neural network approach to dependent reliability estimation [D]. The Louisiana State University,2001.
    [115]Bertolini M. Assessment of human reliability factors:A fuzzy cognitive maps approach [J]. International Journal of Industrial Ergonomics,2007,37(5):405-413.
    [116]Kanse L, Van der Schaaf TW. Recovery from Failures in the Chemical Process Industry [J]. International Journal of Cognitive Ergonomics,2001,5(3):199-211.
    [117]张力,王以群,黄曙东.人因事故纵深防御系统模型[J].中国安全科学学报,2002,12(1):34-37.
    [118]Kontogiannis T. User strategies in recovering from errors in man-machine systems [J]. Safety Science,1999,32(1),49-68.
    [119]Melissa TB, Carlo C, Andrew SM. A reliability and usability study of TRACEr-RAV:The technique for the retrospective analysis of cognitive errors-For rail, Australian version [J] .Applied Ergonomics,2011,42(6):852-859.
    [120]Nikki SO. Coding ATC incident data using HFACS:Inter-coder consensus [J]. Safety Science, 2011,49(10):1365-1370.
    [121]Wickens CD. Multiple Resources and Mental Workload [J]. Human factors,2008,50(3): 449-455.
    [122]Yee S, Nguyen L, Green P, et al. Visual, Auditory, Cognitive, and Psychomotor Demands of Real In-Vehicle Tasks [R]. Michigan:UMTRI,2007.
    [123]李鹏程,王以群,张力.人误模式与原因因素分析[J].工业工程与管理,2006,11(1):94-99.
    [124]McCracken J, Aldrich TB. Analysis of selected LHX mission functions:Implications for Operator Workload and System Automation Goals [R]. Santa Barbara:Anacapa Sciences, 1984.
    [125]Aldrich T, Szabo S, Bierbaum GR, et al. The development and application of models to predict operator workload during system design [M]//McMillan GR, Beevis D, Salas E, et al. Applications Of Human Performance Models To System Design. New York:Plenum Press, 1988:65-80.
    [126]Keller J. HUMAN PERFORMANCE MODELING FOR DISCRETE-EVENT SIMULATION:WORKLOAD [C]//Yucesan E, Chen CH, Snowdon JL, et al. Proceedings of the 2002 Winter Simulation Conference, Boulder:Micro Analysis & Design Inc,2002: 157-162.
    [127]Neville AS. Hierarchical task analysis:developments, applications, and extensions [J]. Applied Ergonomics,2006,37(1):55-79.
    [128]Stanton NA, Baber C. Validating task analysis for error identification:reliability and validity of a human error prediction technique [J]. Ergonomics,2005,48(9):1097-1113.
    [129]李鹏程,陈国华,张力,等.人因可靠性分析技术的研究进展与发展趋势[J].原子能科学技术,2011,45(3):329-340.
    [130]Hiroko I., Nobuo M., Takeshi M., et al. An Extension of m-SHEL Model for Analysis of Human Factors at Ship Operation [C]. Tokyo:Proceeding of the 3rd International Conference on Collision and Groundings of Ships (ICCGS 2004),2004:118-122.
    [131]Reason J. A systems approach to organizational error [J]. Ergonomics,1995,38(8): 1780-1721.
    [132]宋洪涛.考虑组织管理因素整体影响的人因可靠性分析方法研究[D].华南大学,2008.
    [133]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社,2000.
    [134]何佳,何惧,席燕,等.评分者信度的分析方法简介及比较[J].医学教育,2007,45(6):76-78.
    [135]Ross AJ, Wallace B, Davies JB. Technical note:measurement issues in taxonomic reliability [J]. Safety Science,2004,42(8):771-778.
    [136]Wallace B, Ross A. Beyond Human Error:Taxonomies and Safety Science [M]. Boca Raton: CRC/Taylor & Francis,2006.
    [137]张锦,张力.人因失效模式、影响及危害性分析[J].南华大学学报(理工版),2003,17(2):35-39.
    [138]Yu FJ, Hwang SL, Huang YH. Task analysis for industrial work process from aspects of human reliability and system safety [J]. Risk analysis,1999,19(3):401-415.
    [139]李鹏程,陈国华,戴立操,等.基于模糊逻辑方法的人误风险严重度识别[J].原子能科学技术,2010,44(5):571-577.
    [140]张锦,张力.人因失效模式、影响及危害性分析[J].南华大学学报(理工版),2003,17(2):3542.
    [141]中国人民解放军总装备部.GJB/Z 1391-2006故障模式、影响及危害性分析指南[s].北京:中国人民解放军总装备部,2006.
    [142]Paul R, Garvey PR, Lansdowne ZF. Risk matrix:an approach for identifying, assessing, and ranking program risks [J]. Air Force Journal of Logistics,1998,22 (1),16-23.
    [143]李树清,颜智,段瑜.风险矩阵法在危险有害因素分级中的应用[J].中国安全科学学报,2010,20(4):83-87.
    [144]国家安全生产监督管理总局.职业安全健康管理体系审核规范实施指南[Z],2002.
    [145]何旭洪,童节娟,黄祥瑞.Bayes方法在人误概率估计中的应用[J].清华大学学报(自然科学版),2005,45(6):843-845.
    [146]Nathan OS, Dana LK. Bayesian parameter estimation in probabilistic risk assessment [J]. Reliability Engineering and System Safety,1998,62(1-2):89-116.
    [147]刘海滨,何旭洪,申世飞,等.人员可靠性分析中人误概率数据的修正[J].核动力工程,2006,27(3):53-57.
    [148]王晋,鲍麒.人误率预测技术方法的几个问题及应用时的建议[J].中南工学院学报,1999,13(2):59-64.
    [149]Neville AS. Hierarchical task analysis:Developments, applications, and extensions [J]. Applied Ergonomics,2006,37(1):55-79.
    [150]王洁,方卫宁,张嬿.地铁行车调度系统人误影响因素识别及评定研究[J].中国安全科学学报,21(8),2011:74-79.
    [151]Katrina M G. A data-informed model of performance shaping factors for use in human reliability analysis [D]. University of Maryland,2009.
    [152]Massimo B. Assessment of human reliability factors:a fuzzy cognitive maps approach [J]. International Journal of Industrial Ergonomics,2007,37(5):405-413.
    [153]Ksoko B. Fuzzy engineering [M]. Prentice Hall,1997.
    [154]Ksoko B. Fuzzy cognitive maps [J]. International Journal of Man-Machine Studies,1986, 24(1):65-75.
    [155]Athanasios KT, Konstantinos GM. The MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons [J]. Fuzzy Sets and Systems, 1998,93(3):263-274.
    [156]Sangjae L, Byung GK, Kidong L. Fuzzy cognitive map-based approach to evaluate EDI performance:a test of causal model [J]. Expert Systems with Applications,2004,27(2): 287-299.
    [157]Papageorgiou E, Stylios CD, Groumpos PP. Active Hebbian learing algorithm to train fuzzy cognitive maps [J]. International Journal of Approximate Reasoning,2004,37(3):219-249.
    [158]Elpiniki IP, Konatantinos EP, Chrysostomos SS, et al. Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization [J]. Journal of Intelligent Information Systems,2005,25(1): 95-121.
    [159]张炯.核反应堆人误数据的收集[J].核动力工程,1991,12(3):27-29.
    [160]张力,张宁,王普,等.大亚湾核电站人因数据库管理系统机构设计[J].核动力工程,2000,21(2):167-172.
    [161]何旭洪,童节娟,黄祥瑞.人的可靠性分析中不确定性的影响、来源以及处理[J].核科学与工程,2004,24(4):289-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700