汽车三维碰撞事故再现分析模型及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自汽车问世以来,世界各国的道路交通运输事业就开始了飞速的发展,但随之而来的道路交通事故却成为“双刃剑”中的另一面,威胁着人们的生命财产安全。在交通视频监控设施尚未覆盖的道路上,交通事故一旦发生,将不可能真实重演。正是由于道路交通事故的这种不可逆特性,使得事故发生后,诸如车辆事故前行驶速度、行驶方向或碰撞点位置等因素难以准确确定,甚至可能出现当事人对于事故发生情节各执一词的情况。在各类道路交通事故中,伴随车辆翻滚运动的三维碰撞事故,属于运动形式复杂、理论分析困难、计算较为繁琐的事故类型之一。因此,如何利用相关理论,构建适用于再现分析汽车三维碰撞事故的模型与方法,实现该类碰撞事故发生过程的仿真再现,是事故再现分析领域的重要课题。
     目前国内对于汽车三维碰撞事故的分析手段主要是依赖国外进口的事故再现软件进行分析,或将其简化为二维碰撞事故进行理论计算。前者往往受到国外技术条件的约束,后者的计算精度较差且不能完整再现事故的发生过程。论文主要依托国家高技术研究发展计划(863计划)专题课题“道路交通运行安全仿真评价与事故再现分析系统”,以再现汽车三维碰撞事故的发生过程为研究目的,探讨该类碰撞事故的再现分析模型与方法,在正确处理交通事故、明确划分事故责任、公正维护事故当事人的切身利益等方面具有重要的实际应用价值;为进一步探讨多次三维碰撞等复杂事故类型的再现分析模型与方法,奠定了理论基础。
     针对汽车与汽车单次三维碰撞事故类型的碰撞瞬间运动参数求解问题开展研究。在分析该类碰撞事故动力学特点并借鉴已有的二维碰撞运动参数动力学计算模型的基础上,将碰撞冲量扩展至三维空间。基于经典力学原理,推导了汽车三维运动临界条件。基于经典动力学理论,建立了计算汽车碰撞分离瞬间的竖向速度、纵向倾覆角速度及横向翻滚角速度三个三维运动参数的动力学模型,实现了根据汽车碰撞接触瞬间的运动状态参数推算碰撞分离瞬间的运动状态参数,及其逆向运算。
     针对汽车与汽车碰撞事故类型,借鉴汽车无转向运动的质心二维运动轨迹模型,构建了汽车转向行驶状态下的质心二维运动轨迹模型,并分析指出该模型也同样适用于描述汽车与二轮车碰撞事故类型中,汽车的运动轨迹。借鉴两轴汽车二维运动轮胎轨迹模型,推导了三轴汽车二维运动轮胎轨迹模型。考虑事故发生地点的纵向与横向坡度,提出了汽车三维运动临界状态倾斜度的计算公式。以碰撞分离瞬间汽车的三维运动状态参数为初始条件,基于经典运动学理论,给出了无地面反力状态下的汽车三维运动质心轨迹模型。在已有汽车滚筒模型的基础上,构建了地面反力作用下的,汽车三维运动的四棱柱翻滚轨迹模型与六棱柱翻滚轨迹模型。
     针对汽车与二轮车碰撞事故类型开展碰撞动力学模型与轨迹模型的研究。在分析汽车与二轮车碰撞动力学特点的基础上,构建了碰撞瞬间二轮车三维运动参数动力学计算模型。分别构建二轮车翻滚阶段与滑移阶段的质心运动轨迹模型。在此基础上,推导了二轮车平面运动状态下,特征点运动轨迹模型。针对汽车正面碰撞二轮车侧面与二轮车正面碰撞汽车侧面两种情况,提出了分析二轮车“人车分离”现象的简化模型。
     对基于经典力学原理构建的汽车三维碰撞动力学模型及轨迹模型,在道路交通事故再现分析工作中的应用进行了研究。在实际事故再现工作过程中,总结了事故现场勘察及数据采集的内容。针对两起汽车与汽车三维碰撞事故案例及一起汽车与二轮车碰撞事故案例,分别利用论文提出的再现分析模型与PC-Crash软件进行事故再现分析,对比分析了二者的再现结果,同时也将事故再现分析结果与实际案例中车辆静止位置、翻滚方式及路面痕迹等因素进行了对比分析。
     根据基于经典力学原理构建的汽车碰撞事故再现分析模型在实际事故案例中的应用情况,分析总结了碰撞事故再现经典力学法的应用局限性。提出了碰撞事故再现经典力学与有限元结合法的理论框架。在该框架的指导下,结合一起实际事故案例,利用ANSYS有限元分析软件,分别构建了轿货车与面包车的有限元模型,并进行了碰撞过程仿真实验。通过有限元碰撞仿真,分析了汽车碰撞过程中的速度与加速度变化规律、动能转化规律、变形形成过程与应力分布状态,从而弥补了经典力学方法在事故再现分析领域中的应用局限性。
Since automobile came out, road transportation cause began to rapidly development all over the world. However, road traffic accidents have became the negative aspect of the“double-edged sword”at the same time. It has been threatening people's life and property security. At roads without traffic video monitoring facilities, once traffic accidents occurred, it can not be replayed veritably. Because of these irreversible characteristics of road traffic accidents,it is difficult to determine some factors such as vehicles’driving speed, driving direction before collision or position of collision point accurately after accidents occurred. Furthermore, the description about the accident plot provided by accident parties may be different even contradictory from each other. In all kinds of road traffic accident, the three-dimension collision accident which accompanies vehicle rolling movement, is one of complex for its movement form, difficult for theoretical analysis and tedious for calculation. Therefore, how to use ralated theory to construct the reconstruction analysis models which are appropriate for automobile three-dimension collision accidents, and realize simulation reconstruction of this kind of accident, is an important issue in the field of accident reconstruction.
     At present, there exsist two main means to analyze automobile three-dimension collision accidents in domestic, one is depending on accident reconstruction software imported from foreign countries, the other is theoretically calculation after simplifying it to two-dimension collision accidents. The former is often constrained by foreign technology conditions. The latter’s calculation precision is poor and cannot reconstruct accidents process completely. For the research purpose of reconstructing occurrence process of automobile three-dimension collision accidents, this paper studied the reconstruction analysis models and method of this kind of accidents, relying on the special subject of National High Technology Research and Development Program of China(863 Program)which was titled“Road Traffic Operation Safety Simulation Assessment and Accident Reconstruction Analysis System”. There will be prominent practical application value in aspects of handling traffic accidents correctly, dividing accident responsibility clearly, and ensuring interests of accident parties impartially. It will also have great theoretical significance for further research of reconstruction analysis models and methods of more complicated accident types, such as multiple three-dimension collision.
     For the accident type of automobile to automobile single three-dimension collision, the problem of solving movement parameters at the moment of collision was studied. On the basis of analyzing dynamic characteristics of this kind of accident and referring existing movement parameters dynamics calculation model of two-dimension collision, collision impulse was extended to three-dimensional space. Based on the principles of classical mechanics, critical condition of vehicle’s three-dimension movement was proposed. Based on classic dynamics theory, the three-dimension movement state parameters dynamic model for calculating vertical velocity, pitching angular velocity and rolling angular velocity at the moment of post-collision was constructed. Thus, the movement state parameters at the moment of pre-collision or post-collision could be calculated according to each.
     Aiming at the accident type of automobile to automobile collision,the automobile’s centroid two-dimension movement trajectory models of turning driving were constructed on the basis of the automobile’s centroid two-dimension movement trajectory models of no-turning driving. Furthermore, these models are also appropriate for describing automobile’s movement trajectory of automobile to two-wheel vehicle collision accident. On the basis of the tires two-dimension movement trajectory model of automobile with two axles, the tires trajectory model of automobile with three axles was derived. Considering longitudinal and transverse slope at scene of accident, the calculation formula of gradient at the critical condition of automobile three-dimension movement was proposed. Taking three-dimension movement state parameters at the moment of post-collision as initial conditions, the centroid trajectory model of automobile three-dimension movement without ground reaction force was provided based on classic kinematics theory. On the basis of the existing automobile rolling model, the quadrangular prism rolling trajectory model and the hexagonal prism rolling trajectory model with ground reaction force were constructed.
     Aiming at the kind of automobile to two-wheel vehicle collision accident, the collision dynamics model and trajectory model were studied. On the basis of analyzing dynamic characteristics of automobile to two-wheel vehicle collision, the three- dimension movement parameters dynamics calculation model of this kind of collision was constructed. The two-wheel vehicle’s centroid movement trajectory models at the rolling stage and sliping stage were constructed respectively. Based on this, the feature points movement trajectory model was derived, at the stage of two-wheel vehicle planar moving. For two cases of automobile’s front colliding with two-wheel vehicle’s side and two-wheel vehicle’s front colliding with automobile’s side, a simplified model for analyzing“occupant and vehicle separating”phenomenon was proposed.
     The dynamics model and trajectory models of automobile three-dimension collision which were constructed based on the classical mechanics theory were applied to road traffic accident reconstruction and studied. In the processes of actual accident reconstructions, the contents of accident scene survey and data collection were summarized. By using the reconstructed analysis model proposed in the paper and PC-Crash, two cases of automobile to automobile three-dimension collision and a case of automobile to motorcycle collision accidents were reconstructed respectively. The reconstruction results of the two methods were contrasted. The reconstruction results of the methods in this paper were also compared with the vehicles’stationary position, rolling way and pavement trace in the actual accident scene.
     According to the application situation of the automobile collision accident reconstruction analysis model which were constructed based on the classical mechanics theory, the application limitations of the classical mechanics method in collision accident reconstruction were analyzed and summaried. The theoretical framework of the classical mechanics and finite element comprehensive method in collision accident reconstruction were proposed. According to this framework and combined with an actual accident case, using ANSYS finite element analysis software, the finite element models of minibus and pickup can be constructed. By the finite element collision simulation experiment, the changes rule of velocity, acceleration and kinetic energy, the shape of deformation and the distribution state of Von mises stress of automobiles at collision process were all analyzed. Thus, the accident reconstruction application limitations of the classical mechanics analysis method were made up.
引文
1牛会永.我国道路交通事故的基本特点及预防对策[J].中国安全科学学报. 2006,16(7):87~ 91
    2宋传平,闫彬皖.汽车和行人碰撞事故的预防措施[J].汽车与安全. 2009,(3):66~ 68
    3黄金敢.交通事故动力学分析及再现研究[D].福州大学硕士学位论文. 2004: 2~6
    4 Bruce Hongola, Ching-Yao Chan. Simulation and Animation Tools for Analysis of Vehicle Collision: SMAC (Simulation Model Automobile Collisions) and Carmma (Simulation Animations) [R]. California PATH Working Paper. ISSN: 1055-1417. 1999: 3~5
    5 Ching-Yao Chan. Studies of Vehicle Collisions-A Documentation of the Simulation Codes: SMAC (Simulation Model of Automobile Collisions) [R]. California PATH Working Paper. ISSN 1055-1417. 1998: 2~7
    6 Mchenry B G, Mchenry R R. SMAC97- Refinement of the Collision Algorithm [J]. SAE Paper, No. 970947, 1997: 1~3
    7 Mchenry B G, Mchenry R R. SMAC87 [J]. SAE Paper, No. 880227, 1988:1~3
    8 Mchenry B.G., Mchenry R.R. CRASH 97-refinement of the Trajectory Solution Procedure [J]. SAE Paper. No. 970949. 1997: 2~4
    9 James A. Neptune, James E. Flynn. Impact Analysis Based Upon the CRASH Damage Algorithm [J]. SAE paper. No.950358. 1995: 1~2
    10 Cheng P H, Sensm J, Wiechel J F, Guenther D A. An Overview of the Evolution of Computer Assisted Motor Vehicle Accident Reconstruction [J]. SAE Paper, No. 871991, 1987
    11 Nystrom G A, Kost G, Werne S M. Stiffness Parameters for Vehicle Collision Analysis [J]. SAE Paper, No. 910119, 1991
    12 Day T D, Hargens R L. An Overview of the Way EDCRA SH Computes Delta-V [J]. SAE Paper, No. 870045, 1987
    13 Strother C E, Woolley R L, et al. Crush Energy in Accident Reconstruction [J]. SAE Paper, No. 860371, 1986
    14 Robnette R D, Fay R J, et al. Delta-V: Basic Concepts, Computational Methods, and Misunderstandings [J]. SA E Paper, No. 940915, 1994
    15 Mchenry R R, Mchenry B G.. A Revised Damage Analysis Procedure for the CRA SH Computer Program [J]. SAE Paper, No. 861894, 1986.
    16 Woolley R L. The“IMPAC”Computer Program for Accident Reconstruction [J]. SAE Paper, No.850254, 1985
    17 Ishikawa H. Impact Model for Accident Reconstruction-normal and Tangential Restitution Coefficients [J]. SAE Paper, No. 930654, 1993:928~936
    18 Ishikawa H. Impact Center and Restitution Coefficients for Accident Reconstruction [J]. SAE Paper, No.940564, 1994
    19 Raymond M Brach. A Review of Impact Models for Vehicle Collision [J]. SAE Paper, No.870048, 1987:3~7
    20 Stephan H, Moser A. The Collision and Trajectory Models of PC-CRASH [J]. SAE 960886; 1996
    21 Dario Vangi. Simplified Method for Evaluating Energy Loss in Vehicle Collisions [J]. Accident Analysis and Prevention.2009,41(3):1~9
    22 D Vangi. Collision Stage Reconstruction in Traffic Accidents: Sensitivity Analysis [J]. Proc. IMechE. 2004,219: 285~294
    23 Hiroshima University. Practical Vehicle Collision Analysis [R]. Auto Technology. 2006,6:32
    24 Takeshi Kasuga. Design of a Dependable Model Vehicle for Rear-End Collision Avoidance and Its Evaluation [C]. 2010 IEEE International Instrumentation and Measurement Technology Conference. 2010:641~646
    25 K. F. Orlowski, E. A. Moffatt, R. T. Bundorf, M, P Holcomb. Reconstruction of Rollover Collisions [J]. SAE 890857, 1989
    26 J. E. Martinez, R. J. Schlueter. A Primer on the Reconstruction and Presentation of Rollover Accidents [J]. SAE 960647, 1996
    27 Neil K. Cooperrider, T. Thomas, S. Hammoud. Testing and Analysis of Vehicle Rollover Behavior [J]. SAE 900366, 1990
    28 Steven E, Meyer, Mark Davis, Stephen Forrest, David Chng and Brian Herbst. Accident Reconstruction of Rollovers-A Methodology [J]. SAE 2000-01-0853, 2000
    29 Jon E, Bready, Andrew A, May. Physical Evidence Analysis and Roll VelocityEffects in Rollover Accident Reconstruction [J]. SAE 2001-01-1284, 2001
    30 Cooperrider, N., Hammoud, S., Colweel, J., Jones, I., Wilson, L. Techniques For The Reconstruction of Rollover Accidents Involving Sport Utility Vehicles, Light Trucks and Minivans [J]. SAE 2000-01-0851, 2000
    31 Anon. Accident Reconstruction: Automobiles, Tractor-Semitrailers, Motorcycles, and Pedenstrians [J]. SAE 87568470, 1987
    32 H. Steffan. Validation of the Coupled PC-CRASH-MADYMO Occupant Simulation Model [J]. SAE Paper. No.2000-01-0471, 2000
    33 Cliff W E, Montgomery D T. Validation of PC-Crash-A Momentum-based Accident Reconstruction Program [J]. SA E Paper, No. 960885, 1996.
    34 A.Moser, H.Steffan and G.Kasanicky. The Pedestrian Model in PC-Crash-The Introduction of a MultiBody System and Its Validation [J]. SAE Paper. No. 1999-01-0445. 1999: 794~802
    35 Hermann steffan, B.C.Geigl. A New Approach to Occupant Simulation through the Coupling of PC-Crash and MADYMO [J]. SAE Paper. No. 1999-01-0444. 1999: 1~5
    36 William E. Cliff, James J. Bowler. The Measured Rolling Resistance of Vehicles for Accident Reconstruction [J]. SAE Paper. No.980368. 1998: 1~8
    37 William E. Cliff, Andreas Moser. Reconstruction of Twenty Staged Collisions with PC-Crash’s Optimizer [J]. SAE Paper. No.2001-01-0507. 2001: 2~11
    38 Terry D. Day. Differences Bbetween EDVDS and Phase 4[J]. SAE Paper. No. 1999-01-0103. 1999:1~18
    39 Richard Fay. PC-Crash and HVE, an Overview of Similarities and Differences [J]. SAE Paper. No. 2001-01-0505. 2001:1~12
    40 Mohamed. Crash Simulation and Animation[R]. University of Central Florida. 2001: 3~6
    41 Shahram Rezaei, Raja Sengupta. Kalman Filter Based Integration of DGPS and Vehicle Sensors for Localization [C]. IEEE Transactions on Control Systems Technology. 2007,15(6):1080~1088
    42 Robert Ervin, Christopher Winkler, Steven Karamihas. A Centrifuge Concept for Measuring the Rollover Threshold of Light-Duty Vehicles [J]. SAE 2002-01-1603, 2000
    43 M. Kroninger, R. Lahmann, T. Lich, M. Schmid, H. Güttler, T. Huber, K.Williams, A New Sensing Concept for Tripped Rollovers[J]. SAE 2004-01-0340, 2004
    44黄世霖,张金换,王晓冬等.汽车碰撞与安全[M].北京:清华大学出版社, 2000: 128~132
    45徐文岷.汽车碰撞过程的有限元数值模拟[D].哈尔滨工程大学硕士学位论文, 2007:5
    46 Allen R. York, Terry D. Day. The DyMesh Method for Three-Dimensional Multi-Vehicle Collision Simulation [J]. SAE Paper. No.1999-01-0104. 1999: 1~16
    47 Dario Vangi. Energy Loss in Vehicle to Vehicle Oblique Impact [J]. International Journal of Impact Engineering. 2009,36:512~521
    48 E. Isaksson, P. Jonsen, K.G. Sundin and M. Oldenburg. Correlation of Vehicle Crash Model Parameters to Car Properties in Low-speed Collisions: a Design of Experiments Approach [J]. International Journal of Crashworthiness. 2010,15(3):241~249
    49 Abdi, Frank. Bowcutt, Kevin. Godines, Cody. Bayandor. Collision Provoked Failure Sequencing in Space Reentry Vehicles [J]. Computers and Structures. 2011,89:930~939
    50 Itoh, Yoshito. Liu, Chunlu. Kusama, Ryuichi. Dynamic Simulation of Collisions of Heavy High-speed Trucks with Concrete Barriers [J]. Chaos, Solitons and Fractals. 2007,34(4):1239~1244
    51 Texas Transportation Institute. Collision Loads on Bridge Piers: Phase 2. Report of Guidelines for Designing Bridge Piers and Abutments for Vehicle Collisions [R].2011
    52 Ostin D. Untaroiua, Jaeho Shina, Jeff R. Crandalla. Development and Validation of Pedestrian Sedan Bucks Using Finite-element Simulations: a Numerical Investigation of the Influence of Vehicle Automatic Braking on the Kinematics of the Pedestrian Involved in Vehicle Collisions [J]. International Journal of Crashworthiness. 2010,15(5):491~503
    53李江,金同明,倪行达等.交通事故力学[M].北京:机械工业出版社. 2000: 104~128
    54许洪国,高蔚,苏键,高延令,陈礼番.汽车交通事故碰撞速度多值问题的研究[J].中国公路学报. 1996,9(1):87~93
    55许洪国,施树明,潘洪达.利用动量原理求汽车碰撞速度的方法[J].中国公路学报. 1997, 10(1):105~109
    56许洪国,任有,王利芳.交通事故抛物地面碰撞力学参数的确定[J].公路交通科技. 2003,20(2):100~107
    57许洪国,都雪静,许言,唐多名,范艳辉.汽车碰撞弹塑性散落物的运动学特性[J].吉林大学学报(工学版). 2008,38(2):263~267
    58张建,李江,倪行达,丁同强,席建峰.基于动量定理的汽车碰撞事故再现模型抗扰性分析[J].汽车工程. 2007,29(7):550~553
    59 Xue-jing DU, Hongguo XU. Distribution Characteristic of Automobile Lamp Fragments in Front Crash [C]. The First International Conference on Transportation Engineering.2007,1:296~301
    60罗智宁.汽车与摩托车碰撞事故车速估计建模[D].吉林大学硕士学位论文. 2008: 26~66
    61 Zhang Xiao-yun, Jin Xian-long, Shen Jie, Guo Lei, Chen Yi-jiu, Chen Jian-guo. Study of Vehicle Accident Reconstruction Based on the Information of the tire marks [J]. Journal of Harbin Institute of Technology, 2007,14(5):641~645
    62黄靖,金先龙,张晓云,亓文果,陆玉凯.车对车碰撞事故计算机模拟再现方法[J].上海交通大学学报. 2005,39(9):1449~1456
    63刘军勇,金先龙,张晓云,郭磊.轿车-自行车碰撞事故再现及仿真试验[J].上海交通大学学报. 2008,42(6):865~869
    64 LIU Jun-yong, JIN Xian-long, ZHANG Xiao-yun, GUOLei. The Reconstruction and Simulation Study of Vehicle-Bicycle Crash[C]. The 5th Int. Forum of Automotive Traffic Safety. Changsha, 2007:58~65
    65徐炯,金先龙,张晓云,柴象海,侯心一.基于现场多元信息的大客车事故再现[J].汽车工程. 2010,32(10): 841~845
    66魏朗,陈荫三,石川博敏.车辆碰撞过程的试验分析研究[J].汽车工程. 2000,22(4):256~261
    67魏朗,郭应时,余强.车辆实车碰撞试验的模拟再现[J].西安公路交通大学学报. 2000,20(1):88~91
    68魏朗,陈荫三,中辻隆,石川博敏.车对车碰撞事故再现计算机模拟系统的研究[J].中国公路学报. 1996,9(4):105~110
    69魏朗,陈涛,杨存义.车辆碰撞事故空间模拟再现系统开发研究[J].中国公路学报. 2003,16(4):83~86
    70王宏雁,邵文煜.基于PC-Crash的交通事故再现误差分析[J].同济大学学报(自然科学版). 2009,37(4):531~536
    71南日光,王宏雁,王勇.汽车与摩托车碰撞事故再现及摩托车驾驶员致伤特点分析[J].道路交通与安全. 2009,9(1):45~48
    72宋景芬,张国方.摩托车碰撞交通事故再现研究[J].武汉汽车工业大学学报. 1999,21(2):1~3
    73鲁光泉,李一兵,黄山.变形车辆自标定三维重建的模型研究[J]. 2007,29(2):
    128~131
    74袁泉,李一兵,张高强.交通事故再现分析的基础实验研究规划[J].实验技术与管理. 2009,26(11):35~37
    75朱西产.实车碰撞试验方法和评价指标[J].世界汽车. 1998(5):11~13
    76 GA/T643-2006,典型交通事故形态车辆行驶速度技术鉴定[S].中华人民共和国公安部.2006
    77陈琳.车辆翻滚事故再现轨迹模型及仿真的研究[D].吉林大学硕士学位论文. 2006: 13~50
    78裴剑平,袁泉,胡远志,李一兵.车辆碰撞事故再现轨迹模型的建模方法[J].农业机械学报. 2002,33(5):23~26
    79胡远志,李一兵,张伟.交通事故再现中汽车轨迹的建模验模[J],计算机仿真. 2003,20(10):96~98
    80祝军,李一兵.汽车翻滚事故的再现分析方法[J].公路交通科技. 2006,23(6): 162~165
    81祝军,李一兵.汽车侧翻和翻滚事故建模研究[J].汽车工程. 2006,18(3):254 ~258
    82魏朗.用于碰撞事故中车辆动力学模拟的轮胎模型分析[J].西安公路交通大学学报. 1999,19(2):73~76
    83魏朗.车辆碰撞事故解析计算中主要影响因素的误差界定[J].中国公路学报. 2000, 13(1):109~113
    84蒲玲玲,邵毅明,庹永恒.轿车与自行车碰撞事故再现及骑车人损伤分析.公路与汽运[J]. 2010(2):52~55
    85 Pei Yu-Long, Yi Cao, Jun Ai. Vehicle Trajectory Model in Two-dimension Collision Accidents [C]. the 9th International Conference of Chinese Transportation Professionals, ICCTP 2009, No. 20094712462574:757~762
    86 Yi Cao, Pei Yu-Long, Xiang Wen-Sen. Vehicle dynamics model in two-dimension collision accident[C]. the 9th International Conference of Chinese Transportation Professionals, ICCTP 2009, No.20094712462573:751~756
    87裴玉龙,蒋贤才,程国柱.道路交通事故分析与再现技术[M].北京:人民交通出版社: 2010
    88亓文果,金先龙,张晓云.冲击-碰撞问题有限元仿真的并行计算[J].振动与冲击. 2006,25(4):68~72
    89 Xiao-yun Zhang, Xian-long Jin, Wen-guo Qi, Yi-zhi Guo. Vehicle Crash Accident Reconstruction Based on the Analysis 3D Deformation of the Auto-body. Advances in Engineering Software. 2008,39:459~465
    90张晓云,金先龙,亓文果,侯心一.基于有限元法的神经网络技术的汽车碰撞事故再现[J].机械工程学报.2007,43(3):143~147
    91张晓云,金先龙,亓文果,李根国.基于关键点变形的汽车碰撞事故再现[J].上海交通大学学报. 2007, 41(2):238~243
    92 Zhang Xiao-yun, Jin Xian-long, Sun Yi, Lin Zhong-qin. Vehicle Crash- worthiness Simulation Based on Virtual Design of Auto-body [J]. Journal of Donghua University. 2004,21(2):63~68
    93亓文果,金先龙,张晓云,孙奕.汽车车身碰撞性能的有限元仿真与改进[J].上海交通大学学报. 2005,39(9):1452~1456
    94孙宏图,刘学术,宋振寰,于长吉.汽车碰撞变形计算机模拟研究[J].大连理工大学学报. 2002,42(6):185~186
    95胡玉梅.汽车正面碰撞设计分析技术及应用研究[D].重庆大学博士学位论文. 2002
    96 Tso-liang Teng, Kuan-chun Chang, Chien-hsun Wu. Development and Validation of Side-impact Crash and Sled Testing Finite-element Models [J]. Vehicle System Dynamics. 2007,45(10):925~937
    97李发宗.汽车侧面碰撞虚拟试验技术的研究[D].湖南大学硕士学位论文. 2005.3
    98裴玉龙.道路交通安全[M].北京:人民交通出版社. 2004:26~27
    99方锡邦,郑月楠.用于交通事故分析的汽车碰撞模型[J].合肥工业大学学报(自然科学版). 2006,29(4):423~426
    100丁同强.道路交通事故再现理论模型及方法研究[D].吉林大学博士学位论文.2005:25~26
    101许洪国,李世武,施树明,李江.推算交通事故汽车碰撞速度的综合约束方法[J].中国安全科学学报. 1998,8(3):60~63
    102李剑峰,高利,陈雪梅.车辆碰撞事故再现技术的发展[J].计算机仿真.2006,23(12):237~238
    103邹铁方,蔡铭,刘济科.汽车二维碰撞模型参数敏感度分析[J].中山大学学报(自然科学版).2007,46(3):17~19
    104Tiefang Zou, Yingbiao Dai. Discussion on Accuracy Degree Evaluation of Accident Velocity Reconstruction Model [C]. 2010 3rd International Conference on Power Electronics and Intelligent Transportation System.2010:215~217
    105祝军,李一兵.汽车翻滚事故的再现分析方法[J].公路交通科技. 2006,23(6):162~165
    106Pei. Jianping, Yuan. Quan, Hu. Yuanzhi, Li. Yibing Source. Method of Trajectory Model in Vehicle Impact Accident Reconstruction [J]. Transactions of the Chinese Society of Agricultural Machinery. ISSN: 1000-1298 2002,9:23
    107Szydlowski. Wieslaw M., Jenkins, P.E.. Modeling of a Sliding Phase in Accident Reconstruction [J]. SAE Paper. No.930655. 1993:35~40
    108Marcus Hiemer, Sebastian Lehr, Uwe Kiencke. A Fuzzy System to Determine the Vehicle Yaw Angle [J]. SAE Paper. No. 2004-01-1191. 2004: 1~9
    109Brach, Raymond M.. Trajectory Animation on a Personal Computer[J]. SAE Paper. No.920750. 1992:53~59
    110陈琳,李三红,许洪国,杨健.车辆翻滚事故再现轨迹模型及仿真研究[C]. The 5th Int. Forum of Automotive Traffic Safety (INFATS). China. 2007:84~91
    111Yuan Quan, Guo Rui, Li Yibing. ANN Estimate Model on Impact Speed of Car-bicycle Accidents Based on the Complete Information [C]. The 2nd International Conference on Transportation Engineering. 2009: 86~91
    112Guo Lei, Jin Xian-Long, Zhang Xiao-Yun, Shen Jie, Chen Yi-Jiu. Simulation of Dynamic Response of Bicycle Collision Accident [J]. Journal of System Simulation.2007,19(14):3331~3334
    113Tan Derong. Speed Estimation for Vehicle-bicycle Side Impact Accident Based on the Uncertainty Theory [J]. Automotive Engineering. 2010,32(3):220~222.
    114Niederer Peter F. Some Aspects of Motorcycle-vehicle Collision Reconstruction [J]. SAE Paper. No.900750,1990
    115Liu Jun-Yong, Jin Xian-Long, Zhang Xiao-Yun, Guo Lei. Car-bicycle Crash Reconstruction and Simulation Study [J]. Journal of Shanghai JiaotongUniversity. 2008,42(6):865~869
    116Kubly Kris D., Buse Charles R. Motorcycle Post-accident Inspection Techniques [J]. SAE Paper. No.850064. 1985:1904
    117Medwell Christopher J., McCarthy Joseph R., Shanahan Michael T. Motorcycle Slide to Stop Tests [J]. SAE Paper.No.970963.1997:357-364
    118K?nig Stefanie. Evaluation of the Effects of Rebuilt Bicycle Paths at Intersections [J]. Traffic Engineering and Control.2007,48(7):318~323
    119Carter E.L., Neal-Sturgess C. E.. MADYMO Reconstruction of a Real-world Collision Between a Vehicle and Cyclist [J]. International Journal of Crashworthiness.2009,14(4):379~390
    120Frank Todd A., Smith James W., Hansen Dana C., Werner Stephen M.. Motorcycle Rider Trajectory in Pitch-over Brake Applications and Impacts [J]. SAE International Journal of Passenger Cars - Mechanical Systems. 2009, 1(1): 31~ 42
    121张伟,李一兵,胡远志.道路交通事故的三维仿真方法研究[J].计算机仿真. 2003,20(10):99~101
    122李一兵,陈云刚,吴卫东.道路交通事故再现模拟分析系统的研究[J].汽车工程,2001,23(4):226~229
    123裴建廷,王金才.基于Visual C++和OpenGL交互式可视化系统的设计与实现[J].福建电脑. 2007(7):152
    124杜新光,金先龙,张晓云,赵志杰,申杰.基于摄影测量技术的交通事故再现几何特征提取[J].上海交通大学学报. 2008,42(6):861~864
    125于彦,谢里阳,何辉,张立军.汽车转动惯量的测定[J].东北大学学报(自然科学版). 2004,25(3):280~282
    126刘敏,张小发.汽车三轴转动惯量测量装置的设计[J].北京汽车.2006(4).9~12
    127高永源,余卓平,张立军.汽车三轴向转动惯量测量方法研究[J].同济大学学报. 1997,25(4):492~496
    128朱青,王书达,肖景阳.交通事故视频采集及事故再现的研究与设计[J].哈尔滨商业大学学报(自然科学版). 2007,23(6):682~685
    129白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社.2005
    130何涛,杨竞,金鑫. ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社.2007
    131张波,盛和太. ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社. 2005
    132张洪信.有限元基础理论与ANSYS应用[M].北京:机械工业出版社.2006
    133时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社. 2005
    134尚晓江,苏建宇,王化锋. ANSYS\LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社.2008
    135王勇.面向事故再现的轿车有限元模型及碰撞仿真研究[D].哈尔滨工业大学硕士学位论文.2008:14
    136薛量,姜正旭,林忠钦.轿车白车身碰撞性能的数值仿真[J].上海汽车. 1999,11:10~13
    137许亮,胡宁,杨辉.基于LS-DYNA的汽车保险杠仿真优化[J].机械与电子. 2007,5:17~20
    138葛书芳.防撞垫及其在高速公路中的应用[J].公路交通科技.2003,6:147~149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700