汶川地震区灾后重建中再生混凝土基本性能及结构应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在“国家科技支撑计划项目(2009AA032304)和四川省科技厅攻关项目(2009GZ0043)”联合资助下进行的。在城市建设过程中以及遭遇类似汶川地震这样的重大自然灾害后,都会产生数量巨大的建筑废弃物需要处理。如何妥善处理好巨量建筑垃圾,尽可能地重复利用各种建材,最大程度地减少对环境的破坏,具有显著的经济和生态效益。对于废弃混凝土,通过回收清理分选,经过破碎加工后可用于生产各种再生骨料混凝土制品,是一种有效的消除建筑废物,循环利用资源的技术途径。但由于再生骨料受产地、原始强度、龄期以及生产条件等影响,产品性能具有很大的不稳定性。在汶川地震灾后重建过程中,四川地区急需实用的生产技术进行建筑垃圾处理并生产重建用各类建材。针对以上需求,本文以试验研究为主,结合本地区混凝土再生骨料的应用条件,分别从基本性能测定、设计理论和方法,以及实用新产品的开发和应用等三方面展开研究。主要内容如下:
     1.作为再生骨料应用的基础研究,对再生骨料及不同替代率再生混凝土的基本物理性能进行了对比试验研究。测得了地震灾区再生骨料的吸水率、含水率、表观密度、堆积密度和压碎指标等参数,探讨了骨料粒径、级配、原生混凝土强度等因素对骨料性能的影响;采用正交试验方法,进行了C30强度再生混凝土的配合比设计参数比选,探讨了颗粒级配、外掺料、水灰比等对混凝土和易性和强度的影响,确定了再生混凝土的基准配合比;通过对比试验,测得50%、70%和100%三种替代率的再生混凝土不同龄期(3-28d)的立方体抗压强度,推定了不同龄期和替代率的再生混凝土的强度公式;采用回弹法和超声回弹法对78组试块进行了强度无损检测,与普通混凝土的测强曲线进行对比,给出了修正建议。
     2.结合四川地区民房灾后重建对墙材的急迫需求,开发了利用再生骨料加工保温空心砌块的生产技术。采用理论分析和有限元分析方法,考虑保温和承重两方面要求,对空心砌块的开孔方式进行优化,使砌块既满足国家墙体节能标准有具有较高承载能力;完成了4个无配筋墙片的低周反复水平荷载试验,研究了保温空心砌体在低周反复水平荷载作用下的抗剪承载力、破坏形态、滞回特性、骨架曲线等性能,分析了影响砌体抗震性能的主要因素。
     3.针对配筋再生混凝土的粘结性能可能降低的问题,采用中心拔出试验方法,得到不同类型组合钢筋与混凝土的粘结滑移曲线。探讨了再生骨料替代率、钢筋形状、直径、锚固长度、保护层厚度以及配筋和外掺料等对粘结性能的影响:获得了粘结强度沿锚固长度的变化曲线,并求出拟合公式;借助有限元方法,分别采用接触单元方法和非线性弹簧对钢筋与混凝土的粘结滑移关系进行模拟,对比了两种算法的优缺点,提出计算建议。
     4.对再生混凝土在现浇板构件中应用的可行性进行对比试验研究。制作了4块30%替代率的再生混凝土板和2块普通混凝土板。采用两点加载方式进行了抗弯性能试验,测得了普通混凝土和再生混凝土板的开裂荷载、开裂挠度、极限荷载及挠度等参数;对再生混凝土板进行了不同卸载条件的碳纤维布加固修复,比较加固前后构件的承载能力和变形情况,观察不同加固条件下构件的破坏模式,探讨了用粘贴碳纤维方式加固再生混凝土的受弯构件的使用条件。
This dissertation was funded jointly by two projects, which are the project of national science and technology supporting plan (2009AA032304) and the key project of the Science and Technology Department in Sichuan province (2009GZ0043). A huge number of building wastes need to be disposed in the process of urban construction and after the serious natural disasters like the Wenchuan earthquake. Thus, it has significant impact in economics and ecology to dispose a vast quantity of construction waste properly, to recycle all kinds of building materials as much as possible, and to reduce the damage to the environment furthest. And all these have the guiding and demonstration effect. As far as the waste concrete, after recycling, cleaning and sorting, it can be crushed into pieces and used in the production of various types of recycled aggregate concrete products, which is an effective technical approach in eliminating the construction waste and re-utilizing the resources. However, the properties of these products are not that stable on account of the effect of the producing area, original strength, age and producing condition. At the same time, for the situation that a set of practical production technique is needed urgently in disposing the construction waste and producing all kinds of building materials in the process of post-disaster reconstruction in Sichuan, based on a lot of experimental studies, this dissertation focused on the application conditions of renewable concrete aggregate, and it studied three aspects, namely the essential performance measurement, theory and method of designing, and the development and application of new products.
     1. For the issue that the differences between recycled aggregates are big, the fundamental physical properties, including absorption rate, moisture content, apparent density and bulk density were measured in this dissertation. Then, the effects of aggregate size, graduation and The original concrete strength on properties of aggregate were discussed. As for the experiment, the method of orthogonal test was used to design mixture ratio for C30regenerated concrete. After analyzing the influence of grain composition, admixture and cement ration to the workability and strength of the concrete, the benchmark proportion for regenerated concrete was set finally. Through comparison tests, the compression strength of regenerated concrete aged3d to28d with50%,70%and100%substitution rate are measured, and the strength equation of regenerated concrete with different ages and substitution rates were deduced. Meanwhile, the non-destructive strength tests were conducted on78sets of test specimens with rebound method and ultrasound rebound method respectively. And then after contrasting the strength-measuring curve of ordinary concrete, the correction advices were presented.
     2. According to the requirement of wall materials in reconstruction after earthquake in Sichuan area, production technique was developed to process the recycled aggregate into insulation hollow blocks. In this dissertation, through the methods of theoretical analysis and finite element analysis, considering the demand of heat insulation and bearing, the aperture-opening method of cavity blocks has been optimized, thus not only meet the national criteria for wall's energy conservation, but also have relatively high bearing capacity. At the same time, after horizontal low cyclic loading tests on four non-reinforcing wall pieces, properties of shear resistant strength, fracture morphology, hysteretic properties and skeleton curve of insulation hollow brick masonry under horizontal low cyclic loading have been researched. And then the factors that affect the anti-seismic capability of brickwork were studied.
     3. For the issue that the adhesive property of reinforced recycled concrete may reduce, the method of internal fracture test was used in this dissertation to obtain the bond-slip curves between concrete and bars with different kinds of combinations. And the influences of substitution rate, the shape and diameter of reinforced, anchorage length, thickness of concrete cover, and the admixture to adhesive property have been researched. And after obtaining the curve that the bonding strength changed along with the anchorage length, the fitting formula has been obtained. Furthermore, the bonding-slip relationship between bars and concrete was simulated with the methods of contact elements and nonlinear elasticity. And after contrasting the two methods, the suggestions on calculations were presented.
     4. For the situation that the recycled concrete are used a lot in situ concrete structure, in this dissertation four recycled concrete slabs with30%substitution rate and two common concrete slabs were made. And then the experiments on bending strength were conducted with the method of two-point loading, the parameters such as cracking load, cracking deflection and ultimate load of common concrete and recycled concrete were obtained. In addition, the recycled concrete slabs were reinforced and repaired by carbon fiber sheet under different unloading conditions. Comparing the bearing capacity and deformation before and after the reinforcement, observing the failure mode of construction members under different reinforcement conditions, the service conditions under which the recycled concrete flexural member can be reinforced by carbon fiber sheet were discussed.
引文
[1]Naik, Tarun R., Moriconi, G. Environmental-Friendly DurableConcrete Made with Recycled Materials for Sustainable Concrete Construction. International Symposium on Sustainable Development of Cement. Concrete and Concrete Structures, Toronto, Ontario,2005.11:277-298
    [2]Mehta, P. Kumar. Reducing the Environmental Impact of Concrete[J]. Concrete International.2001.23(10):61-66.
    [3]Parekh D. N., Dr. Modhera C. D. Assessment of recycled aggregate concrete[J]. Journal of engineering research and studies.2011,2:1-9
    [4]Hansen, Torben C., Hedegard, Soren E. Properties of Recycled Aggregate Concretes as Affected by Admixtures in Original Concretes. ACI Journal,1984,1:21-26.
    [5]Poon C.S., Kou S.C., Lam L. Use of recycled aggregates in molded concrete bricks and blocks[J]. Const and Build Mat.2002.16(5):281-89.
    [6]高桥泰一,阿部道彦.废混凝土骨料适用现状与未来[J].混凝土工程(日).1995.33(2)
    [7]James T. Smith, M.A.Sc.Ph.D Candidate. Coarse Recycled Aggregate Concrete Pavements-Design, Instrumentation, and Performance. Recycled Materials and Recycling Process for Sustainable Infrastructure Session of the 2008 Annual Conference of the Transportation Association of Canada Toronto, Ontario.2008
    [8]Bairagi, N. K., Vidyadhara, H. S., Ravande, Kishore. Mix Design Procedure for Recycled Aggregate Concrete[J]. Construction and Building Materials.1990.4(4):188-193.
    [9]Oikonomou, Nik. D.Recycled Concrete Aggregates[J].Cement andConcrete Composites.2003.25(2):315-318.
    [10]Teranishi, K., Dosho, Y., Narikawa, M. & Kikuchi, M. Application on recycled aggregate concrete for structural concrete, Part 3-Production of recycled aggregate by real-scale plant and quality of recycled aggregate concrete[R]. Sustainable Construction:Use of Recycled Concrete Aggregate.,1998. London, UK, University of Dundee,144-156.
    [11]Kuroda, Y., Mori, K. & Miyachi, Y. Application of Closed-Loop Concrete System to Replacement Work[J]. Concrete Journal,41(1):150-153.
    [12]Kuroda, Y. & Hashida, H. A Closed-Loop Concrete System on a Construction Site. International Symposium on Sustainable Development of Cement, Concrete and Concrete Structures.2005. Toronto, Canada:371-388
    [13]Kikuchi, M., Dosho, Y., Narikawa, M. & Miura, T. Application on recycled aggregate concrete for structural concrete, Part 1- Experimental study on the quality of recycled aggregate concrete[R]. Sustainable Construction:Use of Recycled Concrete Aggregate.1998. London, UK, University of Dundee:55-68.
    [14]Kondo, M., Nukui, Y. & Dosho, Y. Recycling System of Concrete Waste Incurred from Building Demolition-Long-term properties of recycled coarse aggregate concrete produced by means of the aggregate replacing method[J]. AIJ Journal of Technology and Design.2005.21:7-10.
    [15]Kondo, M., Dosho, Y., Koyama, A. & Kikuchi, M. Use of Recycled Aggregate Concrete for Large Scale Electric Power Stations, Part 31-Drying shrinkage crack of recycled aggregate concrete applied to a real structure[R]. Summaries of Technical Papers of Annual Meeting AIJ.2006:687-688.
    [16]Hansen, Torben C.,Boegh, Erik. Elasticity and Drying Shrinkage of Recycled-Aggregate Concrete[J].ACI Materials Journal.1985.82(5):648-652.
    [17]Ajdukiewicz, Andrzej, and Kliszczewica, Alina. Influence of Recycled Aggregates on Mechanical Properties of HS/HPS[J]. Cement and Concrete Composites.2002.24(2):269-279.
    [18]Tavakoli, Mostafa, Soroushian, Parviz. Drying Shrinkage Behavior of Recycled Aggregate Concrete[J]. Concrete International.1996.18(11):58-61.
    [19]Gokce, A., Nagataki, S., Saeki, T., Hisada, M. Freezing and Thawing Resistance of Air-Entrained Concrete Incorporating Recycled Coarse Aggregate:The Role of Air Content in Demolished Concrete[J]. Cement and Concrete Research.2002.34(5):799-806.
    [20]Salem, Rohi M., Burdette, Edwin G. Role of Chemical and Mineral Admixtures on Physical Properties and Frost-Resistance of Recycled Aggregate Concrete[J] ACI Materials Journal.1998.95(5):558-563.
    [21]Salem, Rohi M., Burdette, Edwin G., and Jackson, N. Mike.Resistance to Freezing and Thawing of Recycled Aggregate Concrete[J]. ACI Materials Journal.2003.100(3):216-221.
    [22]Building Construction Society of Japan. Study on recycled aggregate and recycled aggregate concrete[J]. Concrete Journal.1978.16(1):18-31.
    [23]Dosho, Y., Kikuchi, M., Narikawa, M., Ohshima, Y.Koyama, A. & Miura, T. Application of Recycled Concrete for Structural Concrete, Experimental Study on the Quality of Recycled Aggregate and Recycled Aggregate Concrete.Fourth CANMET/ACI/JCI International Conference on Recent Advances in Concrete Technology, Tokushima, Japan, 1998:1073-1101.
    [24]Dosho, Y., Nukui, Y., Saito, Y., Kondo, M., Mura,Y, Harada, S., Yamashita, Y.& Ozaki, M. Recycling System of Concrete Waste Incurred from Building Demolition-The quality control method of recycled aggregate concrete produced by the aggregate replacing method. AIJ Journal of Technology and Design.2005.21:15-20.
    [25]Dosho, Y. Applicability of Recycled Aggregate Concrete for Structural Concrete-A Recycling System for Concrete Waste. Internationa Symposium on Sustainable Development of Cement, Concrete and Concrete Structures, Toronto, Canada.2005:459-478
    [26]Dosho, Y., Ue, T., Kaneko, Y. & Otabe, Y. Application of Recycled Coarse Aggregate Concrete based on Aggregate Replacing Method to Building Structure. Proceedings of the Japan Concrete Institute.2006.28(1):1493-1498
    [27]杜婷,李惠强,吴贤国.再生混凝土的研究现状和存在的问题[J].建筑技术.2003(2):133-134
    [28]Buck, A. D. Recycled concrete as a source of aggregate[J], Journal of American ConcreteInstitute.1977:212-219.
    [29]陆凯安.我国建筑垃圾的现状与综合利用[J].施工技术.1995.(5)
    [30]Federal Highway Administration. Transportation Applications Of Recycled Concrete Aggregate:FHWA State of the Practice National Review September 2004[R]. U.S. Department of Transportation. Washington. DC.2004.
    [31]史巍,侯景鹏.再生混凝土技术及其配合比设计方法[J].建筑技术开发.2001.28(2):18-20
    [32]李惠强.杜婷.建筑垃圾资源化循环再生骨料混凝土研究[J].华中科技大学学报.2001(6)
    [33]肖建庄,孙振平.李佳彬.等.废弃混凝土破碎及再生工艺研究[J].建筑技术.2005(12):141-144
    [34]肖建庄,李佳彬.兰阳.再生混凝土技术研究最新进展与评述[J].混凝士.2003(10):17-20
    [35]崔正龙,大芳贺羲喜,北迁政文,等.再生混凝土耐久性的试验研究Ⅲ再生混凝士的干燥收缩试验.科学技术与工程[J].2006.21(11):3516-3519
    [36]李秋义,李云霞.朱崇绩,等.再生混凝土骨料强化技术研究.混凝土[[J].2006(1):74-77
    [37]李惠强,杜婷,吴贤国.混凝土再生骨料强化试验研究[J].新型建筑材料.2002(3):6-8
    [38]李佳彬,肖建庄,孙振平.再生混凝土骨料特性及其对再生混凝士性能的影响[J].建筑材料学报.2004(12):390-395
    [39]卫国祥,雷颖占.混凝土再生骨料的研究分析[J].四川建筑科学研究.2006(8):115-117
    [40]孙成诚,袁东.宋建学.二次搅拌工艺对再生混凝土强度的影响研究[J].混凝土.2008(6):125-128
    [41]邱怀中,何雄伟,万惠文,等.改善再生混凝土工作性能的研究[J].武汉理工大学学报.2003(12):34-37
    [42]孙德玉,方诚,杜建根.再生骨料高强高性能混凝土配制研究[J].工业建筑.2003(33).50-53
    [43]师金锋,张德思,王莉莉.再生骨料混凝土实验研究[J].山东建材.2004.25(5):47-49
    [44]肖建庄,朱晓晖.再生混凝土框架节点抗震性能研究[J].同济大学学报.2005.33(4):436-440
    [45]刘佳亮,孙伟民.郭樟根,等.再生混凝土粱抗弯性承载力的试验[J].南京工业大学学报.2008,33(5):38-42
    [46]兰阳,肖建庄.再生混凝土材料与粱抗剪性能研究[J].2006.23(2)
    [47]肖建庄,沈宏波.黄运标.再生混凝土柱受压性能试验[J].结构工程师.2006,22(6):73-77
    [48]周静海,王新波,于铁汉.再生混凝土四边简支板受力性能试验[J].沈阳建筑大学学报.2008.24(3):411-415
    [49]刘数华,冷发光.再生混凝土技术[M].中国建材工业出版社,2007.
    [50]许岳周.石建光.再生骨料及再生骨料混凝土的性能分析与评价[J].混凝土.2006(7):41-46
    [51]王莉莉.建筑废料再生混凝土的试验研究.硕士学位论文[D].西北工业大学,2004.
    [52]《再生混凝土应用技术规程》(DG/TJ 08-2018-2007)
    [53]Tomosawa F. The Recycling Concrete-The Japanese Experience, proceedings of the 4th Cement/ACI/JCI International conference on Recent Advance in Concrete Technology. Tokuahima, Japan.1998:221-237
    [54]Vivian W.Y.Tam C.M.Tam. New Approach in Assessing Cement Mortar Remains on Recycled Aggregate [J].Magazine of Concrete Research,2007,59 (6):413-422
    [55]Works Bureau Technical Circular 12 /2002, Specifications facilitating the use of recycled aggregates[R]. Hong Kong SAR Government
    [56]文辉,张金龙.基于自由水灰比的再生混凝土配合比设计研究.绍兴文理学院学报.2009.99270:52-55
    [57]何世钦,王海超.高性能混凝土配合比设计的正交试验研究.工业建筑.2003.8(33):8-10
    [58]李俊,尹健,周士琼,等.基于正交试验的再生骨料混凝土强度研究.土木工程学报.2006.9(39):4346
    [59]张亚梅,秦鸿根,孙伟,等.再生混凝土配合比设计初探索[J].混凝土与水泥制品,2002.1(123):7-9
    [60]邢振贤,王晓蕾,赵玉青,胡玉珊.正交设计选择粉煤灰再生混凝土最佳配合比[J].低温建筑技术,2004,(1):4-5
    [61]Dhir R.K., Limbachiya. M.C., Leelawat T.,Suitability of recycled concrete aggregate for use in BS 5328 designated mixes, Proc. Inst.Civil Eng. Struct. Build.1999.134 (3):257-74
    [62]Topcu I.B、N.F.Gunean. Using waste concrete as aggregate. Cement and Concrete Research,1995.25(7)
    [63]Topcu I.B、Physical and mechanical properties of concrete porduced with waste concrete. Cement and Concrete Research,1997.27(12):1817-1823.
    [64]T.Yamato,et al. Mechanical properties, drying shrinkage and resistance to freezing and thawing of concrete using recycled aggregate. AGI Special Publicsaon,Vol.179,June 1,1998.
    [65]Saorj MANDAL.Arundeb GUPTA. Strength and durability of recycled aggregate concrete. LABSE SYMPOSIUM MELBOURNE,2002,Australia:2002.
    [66]K.Ramamurthy,et al. Properies of recycled aggregate concrete. The Indian concrete Journal,January,1998.
    [67]王娟.再生混凝土力学性能和抗冻性耐久性研究[D].硕士学位论文.郑州:郑州大学,2005.
    [68]Tavakoli Mostafa, Soroushian Parviz. Drying shrinkage behavior of recycled aggregate concrete. Concrete International,1996,18(11):58-61
    [69]Dhir R.K., Limbachiya M.C., Leelawat T.,Suitability of recycled concrete aggregate for use in BS 5328 designated mixes, Proc. Inst.Civil Eng. Struct. Build.1999.134 (3):257-74
    [70]Poon, C. S., Shui, Z. H., and Lam, L. Effect of Microstructure of ITZ on Compressive Strength of Concrete Prepared with Recycled Aggregate.Construction and Building Materials,2004.18(6):461-468.
    [71]杜婷.高性能再生混凝土微观结构及性能试验研究[D].华中科技大学博士学位论文.2006
    [72]Shima H, Tateyashiki H, Nakato.T, Okamoto M. New Technology for Recoving High Quality Aggregate from Demolished Concrete. Proceedings of 5th International SymposiuIII on East Asia Recycling Technology.1999. PP.106-109.
    [73]Shima H, Tateyashiki H, Nakato. T, Okamoto M. New Technology for Recoving High Quality Aggregate from Demolished Concrete. Proceedings ofInternational Symposium on Recycled Concrete, Niigata, Japan,2000.
    [74]杜婷,李惠强.再生骨料回收的技术工艺探讨[A].云南大学学报《绿色建材专辑》,2002
    [75]Shima H, Tateyashiki H, Matsuhashi R, Yoshida Y. An Advanced Concrete Recycling Technology and its Applicability Assessment through Input-Output Analysis. Journal of Advanced Concrete Technology,2005.3(1):53-67.
    [76]Yanagibashi K, Yonezawa T, Arakawa K et al. A new concrete recycling technique coarse aggregate regeneration process [M]. Concrete Technology for a Sustainable Development in the 21st Century. Edited by Odd E. GjOrv and Koji Sakai.E&FN Spon,London and New York:511-522
    [77]范小平,徐银芳.再生骨料的强化试验[J].上海建材.2005.(4).22-23
    [78]毋雪梅,高耀宾,杨久俊.浸渍法强化再生骨料配制再生混凝土的试验.河南建材2009(1):56-57
    [79]程海丽,王彩彦.水玻璃对混凝土再生骨料的强化试验研究[J]新型建筑材料,2004,(12)
    [80]王智威.高品质再生骨料的生产工艺.混凝土.2006(9):48-50
    [81]Jungmann A. Building Rubble Trement using the alljig in Europe and USA.Aufbereitungs—Technik.1997.38(10).
    [82]《普通混凝十配合比设计规程》(JGJ55-2000)
    [83]《建筑用卵石、碎石》(GB/T14685-2001)
    [84]叶燕华,孙伟民,何嘉鹏,等.混凝土空心砌块墙体热绝缘系数理论分析[J].保温材料与建筑节能.2002.5
    [85]陈丽萍,魏玲,程建杰.应用二维热阻图研究空心节能墙体砌块传热特性[J].南京工业大学学报.2004.26(6)
    [86]徐生.节能型多功能混凝土多孔砖砌体试验研究.长沙理工大学硕士学位论文.2007
    [87]栾伟,何嘉鹏,杜垲.节能墙体空心砌块热阻特性的研究.南京工业大学学报.2003.9
    [88]叶燕华,何嘉鹏.混凝土空心砌块墙体热绝缘系数理论分析.保温材料与建筑节能.2002.5
    [89]李红梅,金伟良,叶甲淳.混凝土小型空心砌块建筑温度场的数值模拟.新型建筑材料.2004.3
    [90]传热学(第三版).高等教育出版社.
    [91]张怀金,孙伟民.复合空心砌块砌体结构和抗震性能试验研究[J].南京:南京工业出版社,2004··
    [92]郝彤,刘立新.再生骨料混凝土多孔砖及其砌体受力性能研究.世界地震工程,2008,1:93-98.
    [93]郭俊杰,张惠英.足尺混凝土小型空心砌块墙体抗震性能试验研究.建筑结构.2002,2(10):66-68.
    [94]李保德,王兴肖.混凝土普通砖素墙片抗震性能试验研究.工程抗震,2001(4):29-34.
    [95]郭樟根,孙伟民,王辰宇.低周反复荷载下预应力砌块墙体的试验研究.混凝土与水泥制品,2007··
    [96]周抚生,郭迅,郑志华,毛国成.混凝土小型空心砌块墙片伪静力试验研究.世界地震工程,2005
    [97]金伟良,徐铨彪等.构造措施对混凝土小型空心砌块墙体开裂的影响[J].新型建筑材料,2001,(6).
    [98]赵学勇,任权昌.非承重砌体墙抗震性能试验及有限元分析.天津城市建设学院学报,2009··
    [99]姚猛,杨德健,陈万山,杨洪盛.非承重页岩空心保温砖墙体抗震性能试验研究.天津城市建设学院学报,2008
    [100]叶燕华,李利群,孙伟民,顾忠,成金高.内注泡沫混凝土空心砌块墙体抗震性能的试验研究.地震工程与工程振动,2004
    [101]孙伟民,胡晓明,张怀金.水平低周反复荷载下预应力砌体墙抗震承载力试验研究.南京工业大学学报,2004
    [102]孙伟民,戴薇原,郭樟根,张怀金,张大长.新型节能复合混凝土空心砌块砌体抗震性能的试验研究.地震工程与工程振动,2006
    [103]杨德健,高永孚等.构造柱—芯柱体系混凝士砌块墙体抗震性能试验研究[J].建筑结构学报,2000,21(4):22-27.
    [104]郝彤,刘立新,王仁义.混凝土多孔砖墙体抗震性能试验研究.砌体结构理论与新型墙材应用会议论文集,2007,12
    [105]殷明娟.混凝土空心砖墙体抗震性能分析及试验研究[D].长沙交通学院硕士学位论文,2003
    [106]刘云霄,王福川,张兴虎.盲孔多孔砖墙片抗震性能的试验研究.新型墙材,2004,7:33-37
    [107]刘桂秋,施楚贤,黄靓.对砌体剪压破坏准则的研究.湖南大学学报,2007
    [108]刘桂秋,颜友清,施楚贤.砌体受压本构关系统一模型的研究.湖南大学学报,2009
    [109]过镇海.钢筋混凝土原理[M].北京:清华大学出版社.1999.3.第1版
    [110]Mains R M Measurement of the distribution of tensile and bond stresses along reinforcing bars. Am.Concrete Inst. 1951.48 (3) 225-52
    [111]J.M. Plowman. The Measurement of bond strength. RILEM Symposium. Stockholm,1957
    [112]A.H. Nilson, Internal Measurement of Bond Slip. ACI Journal, July.1972
    [113]T. P. Tassions, E. GKorones. Preliminary Result of Bond-slip Relationship by Means of Moire Method, ALCAP—CEB Symposium Rome, May,1979
    [114]R.Tepfer. Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars[J].Magazine of Concrete Research, March,1979
    [115]E.L. Kemp and W. J.Wilhelm. Investgation of the parameters influencing Bond Cracking[J]. ACI Jan.1979
    [116]L.A.Lutz. Analysis of Stresses in Concrete near a Reinforcing Bar due to Bond and Transverse Cracking[J].ACI Journal, Oct.1970
    [117]H.W. Reinhard, J. Blaauwenradd, E.Vos. Prediction of Bond between Steel and Concrete by Numerical Analysis[J].Materials and Structures, July—Aug,1984
    [118]腾智明.钢筋与混凝土间的粘结力[R].清华大学建筑工程系.1978
    [119]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社.1985(1):254~299
    [120]冶金建筑研究总院钢筋组.钢筋粘结锚固性能试验研究综合报告[R].1984
    [121]宋启根.用有限元法探讨钢筋混凝土粘结试件[J].南京工学院学报[J].1981.4
    [122]滕智明,叶知满.月牙纹钢筋粘结滑移关系的试验研究[R].清华大学土木工程系1984
    [123]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报.1987
    [124]宋玉普,赵国藩.钢筋与混凝土间粘结力_滑移关系的应力变分模型[J].大连理工大学学报,1994
    [125]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究:[工学博士学位论文].北京:清华大学,1990
    [126]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报.1994.3(15)26-37
    [127]山显彬.变形钢筋与自密实混凝土之间粘结锚固性能试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2008.7
    [128]李丕胜.再生混凝土与钢筋间的粘结性能研究[D].同济大学,2006
    [129]易成,刘燕,等.再生混凝土与钢筋的粘结性能试验研究[J].河北工程大学学报(自然科学版).2010.27(3)
    [130]陈月顺,曾三海,董富枝,等.轻骨料混凝土中变形钢筋粘结应力分布试验研究[J].建筑结构.2006.36(11)
    [131]王冰.高强混凝土与变形钢筋粘结锚固性能的试验研究[D].哈尔滨建筑大学硕士论文.1995
    [132]王冰,李学章,计学润.浮石混凝土与变形钢筋粘结锚固性能的研究[J].哈尔滨建筑大学.1998,31(6):30-38
    [133]卫纪德,麻建锁,金岳声.陶粒混凝土与粘性钢筋粘结锚固性能的试验研究[J].哈尔滨建筑工程学院学报.1993,26(1):95-99
    [134]陈伟伟.再生混凝土与钢筋粘结锚固性能的试验研究[D].哈尔滨工业大学硕士论文.2007.7
    [135]赵军.再生混凝土粘结锚固性能的试验研究[D].广西大学硕士学位论文2007.12
    [136]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能试验研究[J].建筑结构学报.1994.15(3):26-36
    [137]肖建庄.再生混凝土.中国建筑工业出版社[M].(2008)
    [138]肖建庄.李丕胜,秦薇.再生混凝土与钢筋间的粘结滑移性能[J].同济大学学报{自然科学版}.2006(34).1:3-16
    [139]孙彬,牛荻涛.锈蚀钢筋与混凝土的粘结强度模型.建筑结构[J].2009.39(2):36-38
    [140]管品武,刘立新,徐有邻.冷轧扭钢筋粘结锚固性能的试验研究[J].郑州工业大学学报.1997.18(1):8-16
    [141]徐有邻.各类钢筋粘结锚固性能的分析比较[J].福州大学学报.1996.9(s):69-75
    [142]李声抑,王建华.钢筋煤矸石混凝土粘结性能的试验研究[J].沈阳简直工程学院学报.1990.(6).3:18-22
    [143]胡琼,山显彬.自密实混凝土中变形钢筋锚固长度设计建议[J].武汉理工大学学报.2009(31).12:103-116
    [144]徐有邻,宇秉训,刘立新,等.高强混凝土中变形钢筋的粘结锚固性能.高强混凝土及其应用第二届学术讨论会.1995.
    [145]高向玲,李杰.钢筋与混凝土粘结强度的理论计算与试验研究[J].建筑结构.2005.35(4):10-12
    [146]彭松枭,尹健,王德辉.矿物掺合料对再生混凝土耐磨性能的影响研究[J].混凝土.2009(233).3:56-59;
    [147]张健,李秋义,杜俊,等.矿物掺合料和再生骨料对高性能再生混凝土渗透性的影响[J].混凝土.2009(232)2:94-116;
    [148]楼志辉.钢纤维再生混凝土基本力学性能和断裂性能试验研究[D].郑州大学硕士学位论文.2007
    [149]Katz Amnon. Treatments for the improvement of recycled aggregate. Journal of Materials in Civil Engineering,2004, 16(6):597-603
    [150]高春,王志伟.活性掺合料对再生混凝土与钢筋粘结性能的影响[J].中国新技术新产品.2009.13
    [151]楼志辉.钢纤维再生混凝土基本力学性能和断裂性能试验研究[D].郑州大学硕士学位论文.2007
    [152]王艺霖.钢筋与混凝土粘结性能的若干问题研究[D].武汉:华中科技大学硕士学位论文.2005.4.
    [153]赵鸣,洪小健.随机数学建模方法在钢筋与混凝土粘结强度分析中的应用[J].数学的实践与认识.2003(3):1~3
    [154]洪小健,张誉.粘结滑移试验中的粘结应力的拟合方法[J].结构工程师2000(3)
    [155]H.G.Kwak. A new reinforcing steel model with bond-slip[J]. Structural Engineering and Mechanics. Vol 3. No.4 (1995)299-312
    [155]王依群,王福智.钢筋与混凝土之间的黏结滑移在ANAYS中的模拟[J].天津大学学报.2006(39).2:209-213
    [157]吴苗苗,张国学,曾小林.等.钢筋混凝土粘结强度拔出试验的有限元模拟分析[J].工业建筑.2007(37)s:908-911
    [158]刘云平、包华、洪俊青,等,ANSYS的接触分析在钢筋混凝土滑移中的应用[J].南通大学学报(自然科学版).2009.8(2)
    [159]康希良.钢管混凝土组合力学性能及粘结滑移性能研究[D].西安建筑科技大学博士学位论文.2008
    [160]康希良,程耀芳,涂昀,等.钢管混凝土粘结-滑移性能试验研究及数值分析[J].工程力学.2010(27)9.102-106
    [161]Uwe Starossek, Nabil Falah and Thomas Lohning. Numerical Analyses of the Force Transfer in Concrete-Filled Steel Tube Columns. The 4th International Conference on Advances in Structural Engineering and Mechanics(ASEM'08) Jeju, Korea, May 26-28,2008
    [162]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安建筑科技大学博士学位论文.2003
    [163]Nilson A H.Nonlinear analysis of reinforced concrete by FEM[J]. ACI Journal.1968
    [164]狄生林.钢筋混凝土梁的非线性有限元分析[J].南京工学院学报.1984.2:87-96
    [165]杨勇,薛建阳,赵鸿铁.考虑粘结滑移的型钢混凝土结构ANSYS模拟方法研究[J].西安建筑科技大学学报.2006(38).6:302-310
    [166]高向玲,李杰.钢筋与混凝土粘结强度的理论计算与试验研究[J].建筑结构.2005(35)4:10-12
    [167]罗晓辉,卫军,何立红.钢筋粘结滑移的理论模型分析[J].武汉理工大学学报.2008(30)10:68-72
    [168]赵彤,刘明国,谢剑,等.应用碳纤维布增强钢筋混凝土柱抗震能力的研究.地震工程与工程振动.2000(4);
    [169]Fyfe.E.R. New concept for wrapping columns with a high strength fiber/epoxy system. Proceedings of the Materials Engineering Conference 804. ASCE.1994.pp.1156-1162;
    [170]Youssef.M.N., Haroun, M., Feng, M.and Mosallam.A. Experimental study on RC bridge columns retrofitted using fiber composite materials. Proceedings of45'h International SAMPE Symposium and Exhibition(Ⅱ).2000.pp.1803-1812
    [171]李贵炳,张爱晖,金伟良.钢筋混凝土梁加固时的既有荷载对其抗弯性能的影响[J].土木工程学报.2006(39)1.13-20;
    [172]王荣国,代成琴.刘文博,等CFRP加固混凝土梁抗弯极限承载力的计算分析[J].哈尔滨工业大学学报.2002(34)3.312-319
    [173]王苗春,冯振宇.不同卸载时外贴CFRP加固RC梁正截面承载力计算[J].石家庄铁道学院学报.2004(17)1.72-75
    [174]王滋军,刘伟庆,姚秋来.等.考虑二次受力的碳纤维加固钢筋混凝土梁抗弯性能的试验研究[J].2004(34)7.85-87
    [175]尚守平,彭晖,童桦,等.预应力碳纤维布材加固混凝士受弯构件的抗弯性能研究[J].建筑结构学报.2003(24)5.24-30
    [176]张轲,叶列平.岳清瑞.预应力碳纤维布加固钢筋混凝土T形梁试验研究[J].工业建筑.2006(36)]2.86-95
    [177]杨桂新,吴瑾,叶强.再生骨料钢筋混凝土梁短期刚度研究[J].土木工程学报.2010(43)2:55-63
    [178]吕春明.轻骨料钢筋混凝土板强度裂缝刚度研究[D].广西大学硕士学位论文.2002
    [179]毛土明.冷轧螺旋钢筋的粘结性能及其混凝土板的受弯性能研究[D].浙江大学硕士学位论文.2010
    [180]周效谅.FRP片材加固钢筋混凝土单向板受弯性能研究[D].东南大学硕士学位论文.2006;
    [181]左明汉,袁礼仁,左成平.粘钢加固受弯构件考虑二次受力的简化算法.建筑结构.2006(36)12.
    [182]徐福泉.碳纤维布加固钢筋混凝土梁静载性能研究[D].中国建筑科学研究院博士学位论文.2001
    [183]王依群.王福智.钢筋与混凝土间的粘结滑移在ANSYS中的模拟[J].天津大学学报.2006.(39)2.
    [184]黄羽立,叶列平.碳纤维布加固RC梁中粘结性能的非线性有限元分析[J].工程力学.2004.21(4)
    [185]于天来.碳纤维布加固钢筋混凝土梁受力性能的研究[D].东北林业大学博士学位论文.2005.
    [186]《轻骨料混凝土结构设计规程》JGJ12-99
    [187]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700