二硅酸锂微晶玻璃的制备及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用熔融法和热压烧结工艺制备了致密的二硅酸锂微晶玻璃及其复合材料。研究了热处理工艺、形核剂含量和烧结温度对微晶玻璃的物相组成、微观组织和力学性能的影响。阐明了晶化处理和热压烧结过程中微晶玻璃的析晶机理以及氧化锆/微晶玻璃复合材料中的强韧化机制。
     采用熔融法制备二硅酸锂微晶玻璃的研究中,随着P_2O_5含量的增加,玻璃的晶化温度先降低而后又有轻微提高。采用一步法和两步法工艺进行晶化热处理时,Li_2Si_2O_5晶体的相对含量逐渐降低,Li_2SiO_3和Li_3PO_4晶体的相对含量却是增加的趋势。微晶玻璃的组织结构随着P_2O_5含量的增加从片状多晶团聚体转变为无序的棒状晶体甚至是球形晶体。对比发现两步法晶化处理有利于获得较高的析晶度,其中含有1mol%和2mol%P_2O_5的试样经过两步法热处理后具有较好的韧性和强度。另外,根据热力学和结晶学的分析发现Li_2Si_2O_5晶体可能会借助Li_2SiO_3晶体的某些晶面进行外延生长。
     通过调整SiO_2:Li_2O摩尔比和P_2O_5的含量,采用热压烧结工艺制备了一系列二硅酸锂微晶玻璃。随着SiO_2:Li_2O摩尔比的增加,由于粘度升高,微晶玻璃的致密度不断下降。而Li_2Si_2O_5晶体的含量没有明显变化,但是Li_2SiO_3和SiO_2晶体的含量表现为先降低后增加的趋势。而P_2O_5的含量从1mol%增加到4mol%,由于分相的作用导致玻璃中富-Li区的Li_2O含量减少,体系粘度升高引起致密度下降。而且分相导致Li_2SiO_3和Li_2Si_2O_5晶体的相对含量不断降低。其中Li_2SiO_3晶体在P_2O_5含量为3mol%和4mol%的试样中完全消失。因此认为热压烧结过程中Li_2Si_2O_5晶体的生长是按照反应转化机制不断消耗Li_2SiO_3进行的。
     在微晶玻璃的组织结构和力学性能的研究中发现,随着SiO_2:Li_2O摩尔比的提高,Li_2Si_2O_5主晶相的形貌从等轴状转变为棒状晶体,然后又有部分等轴状晶体出现。微晶玻璃的力学性能表现为先提高后降低的趋势,其中SiO_2:Li_2O摩尔比为2.0的微晶玻璃具有较好的力学性能。另外,P_2O_5含量的增加一方面促使形核密度提高,微观组织结构得到不断细化,Li_2Si_2O_5晶体的形貌从棒状转变为针状结构。另一方面,由于玻璃体系的分相作用,导致致密度随着P_2O_5含量的增加而降低,因此力学性能也呈现下降的趋势。调整烧结温度的试验结果表明,P_2O_5的含量为1mol%的试样在820℃热压烧结后制备得到的微晶玻璃具有较好的力学性能,其抗弯强度为290MPa,断裂韧性达到3.0MPa·m~(1/2)。随着烧结温度从780℃提高到840℃,晶体尺寸有所增加,但是对物相组成、晶体相貌和分布状态没有明显影响。
     对真空热压烧结工艺制备氧化锆/二硅酸锂微晶玻璃复合材料的分析表明,在Li_2O-SiO_2-ZnO-K2O-CaO-1mol%P_2O_5体系中加入不同含量的氧化锆后在800℃下进行真空热压烧结,氧化锆含量从5wt%增加到30wt%,复合材料的析晶度表现为先提高后下降的趋势。微观组织结构与不含氧化锆的微晶玻璃的组织相比得到明显细化。随着氧化锆含量的增加,晶体形貌从棒状转变为球形颗粒,而后又长大为短棒状晶体。力学性能也呈现先提高后下降的趋势,其中含有15wt%ZrO_2的复合材料具有最优的性能,其抗弯强度为333MPa,断裂韧性可以达到3.5MPa·m~(1/2)。分析证实复合材料中存在残余压应力强化、相变增韧、裂纹偏转和晶粒桥接这些强韧化机制。
The lithium disilicate glass-ceramics and their composites with high relative density were prepared by melting method and hot-pressing technology, respectively. The influences of heat treatment processes, content of nucleation agent and sintering temperature on crystalline phase, microstructure and mechanical properties have been studied. Furthermore, the crystallization mechanism of glass-ceramics has been analyzed during heat treatment and hot-pressed sintering. In the glass-ceramics composite systems, strengthen and toughened mechanisms also have been investigated.
     With regard to lithium disilicate glass-ceramics prepared by melting method, with increasing the content of P_2O_5, the crystallization temperatures increase and followed by a decrease slightly. Meanwhile, the relative content of Li_2Si_2O_5 crystals decrease and those of Li_2SiO_3 and Li_3PO_4 crystals increase in the case of single-stage and two-stage heat treatments. With increasing the content of P_2O_5, the microstructure is transformed from plate-like polycrystalline aggregates to randomly rod-like crystals and even spherical grains. Two-stage heat treatment is favorable to obtain the higher crystallinity and more Li_2Si_2O_5 crystals than single-stage treatment. Moreover, the specimens heat-treated by two-stage treatment with 1mol% and 2mol% P_2O_5 appear the better fracture toughness and flexural strength, respectively. According to the analysis of thermodynamics and crystallography, Li_2Si_2O_5 crystals probable can epitaxial growth on some crystallographic planes of Li_2SiO_3 phase.
     By varyting the mole ratio of SiO_2:Li_2O and P_2O_5 content, a series of lithium disilicate glass-ceramics are prepared by hot-pressing technology. With increasing the mole ratio of SiO_2:Li_2O, the relative density of glass-ceramics decreases because the viscosity increases. The relative content of Li_2SiO_3 and SiO_2 crystalline phases decrease and followed by an increment. Furthermore, when the content of P_2O_5 increase from 1.0mol% to 4.0mol%, the relative density decreases owning to the phase separation which lead to the increment of viscosity in the Li-rich regions. In addition, the relative contents of Li_2SiO_3 and Li_2Si_2O_5 crystals decrease. Meanwhile, Li_2SiO_3 crystals disappear in the hot-pressed glass-ceramics in which P_2O_5 are 3.0mol% and 4.0mol%, respectively. During hot-pressing sintering, the growth mechanism of Li_2Si_2O_5 crystals is reaction transform which is at the cost of consuming Li_2SiO_3 crystalline phase.
     With increasing the mole ratio of SiO_2:Li_2O, the crystal morphology is transformed from equiaxed to rod-like grains, and then some equiaxed grains emerge again. Meanwhile, the mechanical properties of glass-ceramics incresase and followed by a decrease, and the specimen whose mole ratio is 2.0 appears better mechanical properties. Additionally, with increasing the content of P_2O_5, the microstructure is refined from rod-like crystals to needle-like structure. On the other hand, because of the phase separation, the relative density and mechanical properties decrease. By varying the sintering temperature, the specimen hot-pressed at 820℃with 1mol% P_2O_5 has the better mechanical properties. The flexural strength and fracture toughness are 290MPa and 3.3MPa·m~(1/2), respectively. In addition, with increasing the sintering temperature, the grain size increases slightly. The species of crystalline phases and distribution do not change significantly.
     Zirconia/lithium disilicate glass-ceramics composites have been prepared according to Li_2O-SiO_2-ZnO-K2O-CaO-1mol%P_2O_5 system with different content of 3Y-TZP by hot-pressing technology at 800℃in vacuum. The crystallinity of the composites increases slightly and followed by a decrement with increasing 3Y-TZP from 5wt% to 30wt%. Furthermore, the microstructure is refined by comparing with that of zirconia-free glass-ceramics. The crystals morphology transforms from rod-like to equiaxial and then converts to short rod-like crystals. In addition, the mechanical properties tend to increase firstly and followed by a decrease. G1P15Z has the best mechanical properties whose flexural strength and fracture toughness are 333MPa and 3.5MPa·m~(1/2), respectively. Strengthening and toughening mechanisms, such as strengthening by residual compressive stress, transformation toughening, crack deflection and bridge connection mechanisms are confirmed.
引文
1 阮建明, 邹俭鹏, 黄伯云. 生物材料学. 科学出版社, 2004: 110
    2 H. Iwase, Y. Inoue. Experimental study of ceramic coated stainless steel as a biomaterial. Journal of Japanese Society of Tribologists. 1991, 36(12): 917-921
    3 J. Escobedo. Effect of nitrogen on the microstructure and mechanical properties of a Co-Cr-Mo alloy. Materials & Design. 1996, 17(2): 79-87
    4 J. Pan. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J. Biomed. Mater. Res.. 1997, 35(3): 309
    5 浦素云. 金属植入材料及其腐蚀. 北京航空航天大学出版社, 1990, 12: 63
    6 陈治清. 最新口腔材料学. 四川科学技术出版社, 1988, 10: 325
    7 曲远方. 功能陶瓷的物理性能. 化学工业出版社, 2007: 426-427
    8 郭卫红, 王济奎. 现代功能材料及其应用. 化学工业出版社, 2002: 158-159
    9 J. Tinschert, D. Zwez, R. Marx, K. J. Anusavice. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. Journal of Dentistry. 2000, 28: 529-535
    10 G. H. Wu, L. T. Jiang, J. F. Chen. Interfacial structure of sub-micron Al 2 O3 particals in aluminum matrix. Composite Interfaces. 2002, 9(5): 445-449
    11 S. D. Campbell, A. Sirakian, L. B. Pelletier. Effects of firing cycle and surface finishing on distortion of metal-ceramics castings. J. Prosthet. Dent.. 1995, 74(5): 476-481
    12 J. R. Kelly, I. Nishimura, S. D. Campbell. Ceramics in dentistry: Historical roots and current perspectives. J. Prosthet. Dent.. 1996, 75(1): 18-32
    13 杨华明, 宋晓岚, 金胜明. 新型无机材料. 化学工业出版社, 2005: 111
    14 G. H. Beall. Design and properties of glass-ceramics. Annu. Rev. Mater. Sci.. 1992, (22): 91
    15 E. D. Zanotto. Metastable phases in lithium disilicate glasses. J. Non-Crystal. Solids. 1997, 219: 42-47
    16 P. F. James. Kinetics of crystal nucleation in silicate glasses. J. Non-Crystal.Solids. 1985, 73(3): 517-540
    17 M. C. Weinberg. Transformation kinetics of particles with surface and bulk nucleation. J. Non-Crystal. Solids. 1992, 142:126-132
    18 D. R. Uhlmann. On the internal nucleation of melting. J. Non-Crystal. Solids. 1980, 41(3): 347-357
    19 徐化兵, 万隆, 余舜, 张志飞. 热处理制度对氟金云母系微晶玻璃结构和性能的影响. 陶瓷. 2004, 6: 25-27
    20 L. L. Hench, R. L. Splinter, W. C. Allen. Bonding mechanism at the interface of ceramics prosthetic material. J. Biomed. Mater. Res. Symp.. 1972, 2: 117-123
    21 李立华. 生物微晶玻璃研究的现状与展望. 材料导报. 1994, 5: 39-43
    22 W. H?land, G. H. Beall. Glass-ceramic technology. American Ceramic Society, Westerville, OH. 2001,
    23 仇越秀, 苗鸿雁, 夏傲, 谈国强. 牙科修复中陶瓷的应用. 陶瓷科学与艺术. 2004, 6: 38-43
    24 刘爱红, 孙康宁, 赵萍. 磷酸钙骨水泥的研究进展. 材料导报. 2005, 19(2): 17-21
    25 袁媛, 刘昌胜. 生物医用纳米羟基磷灰石的研究进展. 硅酸盐通报. 2003,22(6): 55-59
    26 J. X. Wang, W. Q. Chen, Y. B. Li. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials. 1998, 19: 1387-1392
    27 郑昌琼, 冉均国. 新型无机材料. 科学出版社, 2003: 588
    28 A. Slosarczyk, E. Stobierska, Z. Paszkiewicz. Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios. J. Am. Ceram. Soc.. 1996, 79(10): 2539-2543
    29 J. B. Park, R. S. Lakes. Biomaterials. An Introduction,2nd ed. New York: Plenum Press, 1992: 26
    30 盛相军, 金志浩, 王永兰. 氧化锆用于牙修复的研究进展. 硅酸盐通报. 2003, 5: 74-78
    31 J. M. Drouin, B. Cales, J. Chevalier, et al. Fatigue behabior of zirconia hip joint heads: experimental results and finite element analysis. J. Biomed. Mater. Res.. 1997, 34(2): 149-155
    32 M. Kern, M. Wegner. Bonding to Zirconia ceramic: adhesion methods andtheir durabilitly. Dental Materials. 1998, 14: 64-71
    33 E. A. Mclaren, S. N. White. Glass-infiltrated zirconia/alumina-based ceramic for crowns and fixed partial dentures. Pract Periodontics Aesthet Dent.. 1999, 11(8): 985-994
    34 D. J. Kin, M. H. Lee, D. Y. Lee. Mechanical properties phase stability and biocompatibility of (Y, Nb)-TZP/Al 2 O3 composite abutments for dental implant. J. Biomed. Mater. Res.. 2000, 53(4): 438-443
    35 M. C. Jackson. Restoration of Posterior implants using new ceramic material. J. Dent. Technol.. 1999, 16(7): 19-22
    36 H. Lüthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, et al. Strength and reliability of four-unit all-ceramic posterior bridges. Dental Materials. 2005, 21: 930-937
    37 曲远方. 功能陶瓷及应用. 化学工业出版社, 2003: 611
    38 I. L. Denry, J. A. Holloway. Effect of Additive on the Microstructure and Thermal Properties of a Mica-Based Glass-ceramics. J. Biomed. Mater. Res.. 2002, 55: 146-151
    39 W. H?land. Biocompatible and bioactive glass-ceramics-state of the art and new directions. J. Non-Crystal. Solids. 1997, 219: 192-197
    40 L. H. Li, H. H. Yu. Research on bioactive glass-ceramics. J. Non-Crystal. Solids.1989, 112(1): 156-160
    41 G. H. Beall, K. Chyung, K. P Gadkaree. Fiber-reinforced composite comprising mica-doped ceramic matrix. United States Patent. 1992, No.5,132,256
    42 李春华. 微晶玻璃的发展及重要作用. 玻璃. 1994, 22(5): 43-45
    43 李红, 冉均国, 苟立. CaO-MgO-Al 2 O 3 -SiO2-F系可切削微晶玻璃的晶化机理研究. 材料科学与工程. 2002, 20(1): 28-31.
    44 李红, 冉均国. 钙云母可切削微晶玻璃的非等温晶化过程研究. 中国陶瓷工业. 2005, 12(1): 15-18.
    45 郝玉全, 艾红军, 秦小梅. CaO, P 2 O5添加量对可切削生物微晶玻璃机械性能的影响. 中国医科大学学报. 2003, 32(5): 423-425
    46 秦小梅, 孙祥云, 苏雷. ZrO2-云母复相微晶玻璃的微观组织研究. 金属学报. 2003, 39(2): 145-149
    47 W. H?land, W. Vogel, K. Naumann, J. Gummel. Interface reactions betweenmechinable bioactive glass-ceramics and bone. J. Biomed. Mater. Res.. 1985, 9: 103-110
    48 J. L. Drummond, T. J. King, M. S. Bapna, R. D. Koperski, Mechanical property evaluation of pressable restorative ceramics. Dental Materials. 2000, 16: 226-233
    49 W. H?land, V. Rheinberger, M. Frank. Mechanisms of nucleation and controlled crystallization of needle-like apatite in glass-ceramics of the SiO 2 -Al 2 O 3 -K 2 O-CaO-P 2 O5 system. J. Non-Crystal. Solids. 1999, 253(1-3): 170-177
    50 W. Vogel, W. H?land, K. Naumann, J. Gummel. Development of machineable bioactive glass ceramics for medical uses. J. Non-Crystal. Solids. 1986, 80(1-3): 34-51
    51 W. Pannhorst. Glass ceramics: State-of-the-art. J. Non-Crystal. Solids. 1997, 219: 198-204
    52 R. Müller, L. A. Abu-Hilal, S. Reisch. Coarsening of needle-like apatite crystals in SiO 2 -Al 2 O 3 -Na 2 O-K 2 O-CaO-P 2 O5-F glass. J. Mater. Sci.. 1999, 34: 65-69
    53 G. V?lksch, I. Szab?, T. H?che, W. H?land. Nucleation and crystallization phenomena in glass-ceramics. Glastech. Ber. Glass. Sci. Technol.. 2000, 73C1: 358-362
    54 I. Szab?, S. Barnaby, T. H?che, W. H?land. Nucleation and crystallization phenomena in glass-ceramics. Glastech. Ber. Glass. Sci. Technol.. 2000, 73C1: 354-357
    55 M. Atai, E. Yassini, M. Amini. The effect of leucite-containing ceramic filler on the abrasive wear of dental composites. Dental Materials. 2007, 23(9): 1181-1187
    56 尹衍升, 李嘉. 氧化锆陶瓷及其复合材料. 化学工业出版社, 2004: 13-15
    57 G. F. Neilson. Nucleation and crystallization in ZrO2-nucleated glass-ceramics. In: L. L. Hench, S. W. Freiman. Advances in nucleation and Crystallization in Glasses, OH: American Ceramic Society. 1982, 65(1): 78-82
    58 A. G. Evans. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc.. 1990, 73(2): 187-191
    59 K. D. Keefer, T. A. Michalske. Phase transformation toughened glass-ceramic. Am. Ceram. Soc. Bull.. 1983, 62(3): 419-423.
    60 M. Guazzato, M. Albakry, S. P. Ringer, W. V. Swain. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part 1. Pressable and alumina glass-infiltrated ceramics. Dental Materials. 2004, 20: 441-448
    61 M. Guazzato, M. Albakry, S. P. Ringer, W. V. Swain. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part 2. Zirconia-based dental ceramics. Dental Materials. 2004, 20: 449-456
    62 W. H?land, M. Frank, M. Schweiger, S. Wegner, V. Rheinberger. Control of nucleation in glass-ceramics. Glastech. Ber. Glass. Sci. Technol.. 1996, 69: 25-32
    63 张玉峰, 杨涵美, 郭景坤. LCMAS 微晶玻璃/Y-TZP 复相材料. 无机材料学报. 1994, 9(2): 156-160
    64 梁开明, 程慷果, 段仁官, 万菊林. 云母微晶玻璃/Y-TZP 复相材料的制备和力学性能. 无机材料学报. 1998, 13(3): 315-319
    65 苗鸿雁, 夏傲, 李永强. Y-TZP/微晶玻璃牙科复合材料的物相和性能研究. 中国陶瓷工业. 2004, 11(3): 7-9
    66 夏傲, 苗鸿雁, 李永强. 牙科用 Y-TZP 增韧生物微晶玻璃材料的工艺研究. 陕西科技大学学报. 2004, 22(6): 5-8
    67 夏傲, 苗鸿雁, 李永强. 烧结法制备 Y-TZP/微晶玻璃复合材料的研究. 陶瓷. 2004, 167: 15-17
    68 T. Kasuga, M. Yoshida, T. Uno, K. Nakajima. Preparation of zirconia-toughened bioactive glass-ceramics, J. Mater. Sci.. 1988, 23: 2255-2258
    69 T. Kasuga, K. Nakajima, T. Uno, M. Yoshida. Preparation of zirconia-toughened bioactive glass-ceramic composite by sinter-Hot Isostatic Pressing. J. Am. Ceram. Soc.. 1992, 75(5): 1103-1107
    70 J. S. Moya, M. I. Osendi. Microstructure and mechanical propertie of mullite/ZrO 2 composites. J. Mater. Sci.. 1984, 19: 2909-2914
    71 Yang Jei OH, Tae-Sung OH, Hyung-Jim JUNG. Microstructure and Mechanical properties of cordierite ceramics toughened bu monoclinic ZrO2. J. Marter. Sci.. 1991, 26: 6491-6495
    72 R. D. Sarno, M. Tomozawa. Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic. J. Mater. Sci.. 1995, 30: 4380-4388
    73 W. H?land, V. Rheinberger, M. Schweiger. Nucleation and Crystallization Phenomena in Glass-Ceramics. Advanced Engineering Materials. 2001, 3: 768-774
    74 Y. Iqbal, W. E. Lee, D. Holland, P. F. James. Crystal nucleation in P 2 O 5-doped lithium disilicate glasses. J. Mater. Sci.. 1999, 34: 4399-4411
    75 I. W. Donald. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC. J. Non-Crystal. Solids. 2004, 345&346: 120-126.
    76 L. L. Burgner, M. C. Weinberg, P. Lucas, P. C. Soares Jr. XRD investigation of metastable phase formation in Li 2 O-SiO2 glass. J. Non-Crystal. Solids. 1999, 255(3): 264-268
    77 R. Ota, N. Mishima, T. Wakasugi, J. Fukunaga. Nucleation of Li 2 O-SiO2 glass and its interpretation based on a new liquid model. J. Non-Crystal. Solids. 1997, 219: 70-74
    78 E. D. Zanotto, M. L. G. Leite. The nucleation mechanism of lithium disilicate glass revisited. J. Non-Crystal. Solids. 1996, 202(2): 145-152
    79 J. R. Jacquin, M. Tomozawa. Crystallization of lithium metasilicate from lithium disilicate glass. J. Non-Crystal. Solids. 1995, 190(3): 233-237
    80 A. P. Novaes de Oliveira, T. Manfredini. Sintering and crystallization of a P 2 O 5 -added Li 2 O-ZrO 2 -SiO2 glass powder system. J. Mater. Sci.. 2001, 36: 2581-2587
    81 O. Kanert, R. Küchler, D. Suter, G. N. Shannon, H. Jain. Effent of devitrification on the ionic diffusion of Li-disilicate. J. Non-Crystal. Solids. 2000, 274(1-3): 202-207
    82 A. R. Studart, R. Andre, F. Filser. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges. Dental Materials. 2007, 23(1): 115-123
    83 李智勇, 程祥荣. IPS Empress2 研究新进展. 国外医学口腔医学分册. 2002, 29(6): 370-372
    84 W. H?land, G. H. Beall. Nanophase glass-ceramics. J. Am. Ceram. Soc.. 1999, 82: 64-76
    85 J. A. Sorensen, E. Sultan, J. R. Condon. Three-body in-vitro wear of enamelagainst dental ceramics. J. Dent. Res.. 1999, 78: 219-225
    86 C. Schmidt, P. Weigl. Machinability of IPS Empress 2 Framework Ceramic:Potential for Ceramic Dentures. J. Biomed. Mater. Res.. 2000, 53: 348-352
    87 M. Albakry, M. Guazzato, M. V. Swain. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. Journal of Dentistry. 2003, 31: 181-188
    88 J. B. Quinn, V. Sundar, I. K. Lloyd. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dental Materials. 2003, 19: 603-611
    89 M. Albakry, M. Guazzato, M. V. Swain. Influence of Hot Pressing on the Microstructure on Fracture toughness of Two Pressable Dental Glass-Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2004, 71B: 99-107
    90 M. J. Cattell, R. J. Clarke, E. J. R. Lynch. The transverse strength, reliability and microstructural features of four dental ceramic-Part I. Journal of Dentistry. 1997, 25: 399-407
    91 M. J. Cattell, R. P. Palumbo, J. C. Knowles, R. L. Clarke, D. Y. D. Samarawickrama. The effect of veneering and heat treatment on the flexural strength of Empress 2 ceramics. Journal of Dentistry. 2002, 30: 161-169
    92 P. J. Li, I. Kangasniemi, K. de Groot, T. Kokubo. Apatite crystallization from metastable calcium phosphate solution on sol-gel prepared silica. J. Non-Crystal. Solids. 1994, 168(3): 281-286
    93 M. Kawashita, M. Nakao, M. Minoda, H.-M. Kim, T. Kokubo. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials. 2003, 24(14): 2477-2484
    94 R. Hasegawa, M. Takahashi, T. Kokubo, et al. Carcinogenicity study of sodium hypochlorite in F344 rats. Food and Chemical Toxicology. 1986, 24(12): 1295-1302
    95 T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, T. Yamamuro. Mechanical properties of a new type of apatite-containing glass-ceramics for prosthetic application. J. Mater. Sci.. 1985, 20: 2001-2012
    96 T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo. A new glass-ceramic forbone replacement: Evaluation of its bonding tissue. J. Biomed. Mater. Res.. 1985, 19: 685-691
    97 龚江宏. 陶瓷材料断裂力学. 清华大学出版社, 2001: 162
    98 S. C. von Clausbruch, Marcel Schweiger, W. H?land, V. Rhinberger. The effect of P 2 O5 on the crystallization and microstructure of glass-ceramics in the SiO 2 -Li 2 O-K 2 O-ZnO-P 2 O5 system. J. Non-Crystal. Solids. 2000, 263&264: 388-394
    99 W. H?land, E. Apel, Ch. van’t Hoen, C. Rheinberger. Studies of crystal phase formations in high-strength lithium disilcate glass-ceramics. J. Non-Crystal. Solids. 2006, 352(38-39): 4041-4050
    100 H. Fischer, R. Marx. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dental material. 2002, 18: 12-19
    101 I. L. Denry, J. A. Holloway. Effect of Post-Processing Heat Treatment on the fracture strength of a heat-pressed Dental Ceramic. Journal of Biomedical Materilas Research Part B: Applied Biomaterials. 2004, 68B: 174-179
    102 T. Kasuga. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomaterialia. 2005, 1(1): 55-64
    103 W. Sinkler, M. Monthioux, V. Bianchi, P. Goursat. Carbon Fiber-reinforced (YMAS) Glass-ceramics Matrix Compostites. J. Euro. Ceram. Soc.. 1999, 19(3): 305-316
    104 王德平. 梯度生物微晶玻璃材料的析晶性能及其物性分析. 玻璃与搪瓷. 2000, 28(1): 19-23
    105 王德平, 具有梯度构造的CaO-P 2 O 5 -Al 2 O 3 -B 2 O3系统生物微晶玻璃的制作. 玻璃与搪瓷. 1998, 27(1): 1-4
    106 W. D. 金格瑞. 陶瓷导论. 北京:中国建筑工业出版社, 1982: 15-18
    107 P. W. McMillan. Glass-ceramics. 2 nd Edition, London:Academic Pres.. 1979: 6-7
    108 潘守芹. 新型玻璃. 同济大学出版社, 1992, 5: 45
    109 E. M. Rabinovich. Preparation of glass by sintering. J. Mater. Sci.. 1985, 20(12): 42-59
    110 周曦亚, 曾群. 烧结法制备微晶玻璃材料. 陶瓷科学与艺术. 2003, 5: 55-58
    111 K. Watanabe, E. A. Giess. Coalescence and crystallization in powderedhigh-cordierite (2MgO·2Al 2 O 3 ·5SiO2). J. Am. Ceram. Soc.. 1985, 68(4): 102-108
    112 马志波, 细野秀雄, 阿部良弘. Na 2 O-CaO-TiO 2 -P 2 O5系统多孔微晶玻璃的制备. 玻璃与搪瓷. 1993, 21(1): 10-14
    113 郭伟明, 成茵, 肖汉宁. 烧结法制备Li 2 O-Al 2 O 3 -SiO2微晶玻璃的烧结温度及性能研究. 陶瓷科学与艺术. 2004, 6: 4-9
    114 温广武, 雷廷权, 周玉, 魏溯皖. Li 2 O-Al 2 O 3 -SiO2微晶玻璃的烧结特性与性能. 机械工程材料. 1996, 20(3): 24-27
    115 S. Sridharan, M. Tomozawa. Effect of various oxide additives on sintering of BaO-SiO 2 system glass-ceramics. J. Mater. Sci.. 1992, 27: 6747-6754
    116 K. Sujirote, R. D. Rawlings, P. S. Rogers. Effect of Fluoride on Sinterability of a Silicate Glass Powder. J. Euro. Ceram. Soc.. 1998, 18: 1325-1330
    117 Ki-Dong Kim, T. Khalil. Sintering behavior of gel powder in binary glass-forming SiO 2 -TiO2 system. J. Non-Crystal. Solids. 1996, 195(3): 218-222
    118 杨为中, 周大利, 尹光福, 陈槐卿, 郑昌琼. 溶胶-凝胶法制备生物活性玻璃陶瓷的研究. 硅酸盐学报. 2004, 32(2): 171-176
    119 K. Yao, L. Y. Zhang, X. Yao. Preparation and properties of Barium Titanate glass-ceramics sintered from sol-gel derived power. J. Mater. Sci.. 1997, 32(14): 3659-3667
    120 B. Roy, H. Jain, S. K. Saha, D. Chakravorty. Comparision of structure of alkali silicate glasses prepared by sol-gel and melt-quench methods. J. Non-Crystal. Solids. 1995, 183(3): 268-276
    121 A. G. Dias, I. R. Gibson, J. D. Santos, M. A.Lopes. Physicochemical degradation studies of calcium phosphate glass ceramics in the CaO-P 2 O 5 -MgO-TiO 2 system. Acta Biomaterialia. 2007, 3(2): 263-269
    122 M. P. Ferraz, F. J. Monteiro, A. P. Serro, et al. Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P 2 O5 glass coatings. Biomaterials. 2001, 22 (23): 3105-3112
    123 I. Szab?, B. Nagy, G. Volksch and W. H?land. Structure, chemical durability and microhardness of glass-ceramics containing apatite and leucite crystals. J. Non-Crystal. Solids. 2000, 272(2-3): 191-199
    124 P. F. James, P. W. McMillan. Transmission electron microscopy of PartiallyCrystallized Glasses. J. Mater. Sci.. 1971, 6: 1345-1349
    125 M. Goswami, P. Sengupta, K. Sharma, et al. Crystallization behaviour of Li 2 O-ZnO-SiO2 glass-ceramics system. Ceramics International. 2007, 33(5): 863-867
    126 J. Akemper, H. Fuess. Devitrification of bioactive invert phosphate glasses. J. Non-Crystal. Solids. 1997, 210(1): 32-40
    127 P. W. McMillan, S. V. Phillips, G. Partridge. The structure and properties of a lithium zinc silicate glass-ceramics. J. Mater. Sci.. 1966, 1: 269-279
    128 X. Z. Guo, H. Yang, C. Han. Nucleation of lithium aluminosilicate glass contaning complex nucleation agent. Ceramics International. 2007, 33(7): 1375-1379
    129 K. Pallis, J. A. Griggs, R. D. Woody, et al. Fracture resistance of three all-ceramic restorative system for posterior applications. J. Prosthet. Dent.. 2004, 91(6): 561-569
    130 A. D. Bona, J. J. Mecholsky, K. J. Anusavice. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dental Materials. 2004, 20(10): 956-962
    131 N. Ikeda, K. Kawanabe, T. Nakamura. Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramics and hydroxyapatite granules. Biomaterials. 1999, 20(12): 1087-1095.
    132 N. T. Silva, C. A. Bertran, M. A. S. Oliveira, G. P. Thim. Orgnic acids effect of crystallization kinetics of cordierite obtained by diphasic gels. J. Non-Crystal. Solids. 2002, 304(1-3): 31-35.
    133 李红, 以钙云母为主相的高强度可切削牙科微晶玻璃的研究. 四川大学博士论文. 2002: 15-16.
    134 H. Yilmaz, C. Aydin, B. E. Gul. Flexural strength and fracture toughness of dental core ceramics. J. Prosthet. Dent.. 2007, 98(2): 120-128
    135 马轩祥. 口腔修复学. 辽宁科学技术出版社, 1999: 327
    136 W. H. Mormann, A. Bindl. The new creativity in ceramicd restoration: Dental CAD/CAM. Quintesence Int.. 1996, 27(12): 821-828
    137 K. Lambrinou, O. Van der Biest, A. R. Boccaccini. Densification and crystallisation behaviour of barium magnesium aluminosilicate glass powder compacts. J. Euro. Ceram. Soc.. 1996, 16(11): 1237-1244
    138 C. M. Gorman, W. E. McDevitt, R. G. Hill. Comparison of two heat-pressed all-ceramic dental materials. Dental Materials. 2000, 16: 389-395
    139 K. Cheng, J. Wan, K. Liang. Enhanced mechanical properties of oriented mica glass-ceramics. Materials Letters. 1999, 39: 350-353
    140 Yun-Mo Sung. Mechanical Properties of α-Cordierite and β-Spodumene Glass-Ceramics Prepared by Sintering and Crystallization Heat Treatments. Ceramics International. 1997, 23: 401-407
    141 Z. Matamoros-Veloza, K.Yanangisaza. Preparation of porous glass-ceramics under different hydrothermal hot pressing conditions. Solid State Ionics. 2004, 172: 597-600
    142 P. C. Soares Jr., E. D. Zanotto, V. M. Fokin, H. Jain. TEM and XRD study of early crystallization of lithium disilcate glass. J. Non-Crystal. Solids. 2003, 331(3): 217-227
    143 M. P. Borom, A. M. Turkalo, R. H. Doremus. Strength and Microstructure in Lithium Disilicate Glass-Ceramics. J. Am. Ceram. Soc.. 1975, 58: 385-391
    144 I. W. Donald, B. L. Metcalfe, D. J. Wood, J. R. Copley. The preparation and properties of some lithium zinc silicate glass-ceramics. J. Mater. Sci.. 1989, 24: 3892-3899
    145 I. W. Donald, B. L. Metcalfe, A. E. P. Morris. Influence of transition metal oxide additions on the crystallization kinetics, microstructures and thermal expansion characteristics of a lithium zinc silicate glass. J. Mater. Sci.. 1992, 27: 2979-2985
    146 H. Harper, P. W. McMillan. The formation of glass-ceramic microstructures. Physics and Chemistry of Glasses. 1972, 13(4): 97-101
    147 W. F. Hammetter, R. E. Loehman. Crystallization kinetics of a complex lithium silicate glass-ceramic. J. Am. Ceram. Soc.. 1987, 70: 577-582
    148 P. F. James, P. W. McMillan. Quantitative measurements of phase separation in glasses using transimission electron microscopy. Phys. Chem. Glasses. 1970, 11: 14-18
    149 P. F. James, Y. Iqbal, U. S. Jais, S. Jordery, W. E. Lee. Crystallisation of silicate and phosphate glasses. J. Non-Crystal. Solids. 1997, 219: 17-29
    150 A. Benedetti, G. Cocco, G. Fagherazzi, S. Meriani, G. Scarinci. Mechanisms of nucleation and crystallization of lithium disilcate in Li-Zn-Silicateglass-ceramic fibres. J. Mater. Sci.. 1983, 18: 1049-1056
    151 S. M. Johnson, R. H. Lamoreau, R. E. Loehman. Crystallization of a lithium silicate glass-ceramic under pressure. J. Am. Ceram. Soc..1995, 78(4): 1115-1117
    152 G. Partridge. Phases and transformations in lithium-zinc-silicate glass ceramics. Glass Technology. 1979, 20(6): 246-251
    153 T. J. Headley, R. E. Loehman. Crystallization of a Glass-Ceramic by Epitaxial Growth. J. Am. Ceram. Soc.. 1984, 67(9): 620-625
    154 梁英教, 车荫昌. 无机热力学数据手册. 东北大学出版社, 1993: 214-337
    155 X. Z. Guo, H. Yang, M. Cao, C. Han. Crystallinity and crystallization mechanism of lithium aluminosilicate glass by X-ray diffractometry. Transactions of Nonferrous Metals Society of China. 2006, 16: 593-597.
    156 E. G. Rowlands, P. F. James. Analysis of steady state crystal nucleation rates in glasses. Phys. Chem. Glasses. 1979, 20: 9-16
    157 M. Albakry, M. Guazzato, M. V. Swain. Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics. Journal of Prosthodotics. 2004, 13(3): 141-149.
    158 W. H?land, M. Schweiger, M. Frank. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J. Biomed. Mater. Res.. 2000, 53: 297-303.
    159 M. J. Cattell, J. C. Knowles, R. L. Clarke. The biaxial flexural strength of two pressable ceramic systems. Journal of Dentistry. 1999, 27(3): 183-196
    160 L. L. Burgner, M. C. Weinberg. An Assessment of Crystal growth behavior in lithium disilicate glass. J. Non-Crystal. Solids. 2001, 279: 28-43
    161 M. F. Barker, T. H. Wang, P. F. James. Nucleation and growth kinetics of lithium disilicate and lithium metasilicate in litha-silica glasses. Phys. Chem. Glasses. 1988, 29(6): 240-246
    162 M. Mirkazami, V. K. Marghussian, A. Beitollahi, et al. Effect of ZrO2 nucleation on crystallisation behaviour, microstructure and magnetic properties of BaO-Fe 2 O 3 -B 2 O 3 -SiO2 glass ceramics. Ceramics International. 2007, 33(3): 463-469
    163 陈伟民. ZrO2在微晶玻璃中的增韧作用. 材料科学与工程. 1998, 16(3): 73-77
    164 G. L. Leatherman, M. Tomozawa. Mechanical properties of a transformation-toughened glass-ceramic. J. Mater. Sci.. 1990, 25: 4488-4494
    165 A. P. Nanaes de Oliveira, T. Manfredini, L. Barbieri, C. Leonelli. Sintering and Crystallization of a Glass Powder in the Li 2 O-ZrO 2 -SiO2 System. J. Am. Ceram. Soc.. 1998, 81(3): 777-790
    166 A. P. Novaes de Oliveira, T. Manfredini. Sintering and Crystallization of a P 2 O 5 -added Li 2 O-ZrO 2 -SiO2 glass powder system. J. Mater. Sci.. 2001, 36: 2581-2587
    167 L. V. J. Lassila, J. Tanner, A. Bell. Fleural properties of fiber reinforced root canal posts. Dental Materials. 2004, 20: 29-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700