羟基喜树碱脂质体抑制肝癌介入栓塞后缺氧应答的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:选取兔VX2细胞和人肝癌细胞HepG2,体外研究羟基喜树碱脂质体对肝肿瘤细胞HIF-1a表达的影响。
     材料与方法:体外培养人HepG2肝癌细胞和兔VX2瘤细胞,分别在常氧(21%02)和缺氧(1%02)条件下采用不同浓度的羟喜树碱脂质体处理两种肿瘤细胞。采用CCK-8试剂盒检测羟基喜树碱脂质体对两种肿瘤细胞的毒性效应。采用RT-PCR检测两种细胞HIF-1αmRNA的表达,采用Western blot检测相应蛋白的表达。
     结果:在常氧和缺氧两种状态下,HCPT-lipo对VX2和HepG2两种细胞的毒性作用无差异。缺氧不影响HIF-lamRNA表达,但是可以上调HIF-1α蛋白表达。随着HCPT-lipo浓度增高,其对HIF-1α蛋白抑制作用加强。
     结论:HCPT-lipo能够抑制缺氧诱导的HepG2和VX2细胞HIF-1α蛋白表达,该抑制效应发生在转录后水平;HCPT-lipo对肿瘤细胞HIF-1α蛋白表达抑制作用与药物本身的细胞毒效应不具有相关性;该抑制作用具有剂量依赖性。
     目的:研究肝癌动物模型介入栓塞术后缺氧诱导因子1α的表达及其与血管生成VEGF、多重耐药MDR1、浸润和转移MMP-2的关系。
     材料与方法:建立20只VX2兔肝癌模型,实验组(n=10)经导管肝动脉栓塞处理,栓塞材料为150-250μm大小聚乙烯醇(PVA)。对照组(n=10)经导管肝动脉推注生理盐水处理。于干预后6小时,3天处死动物模型。采用RT-PCR检测缺氧诱导因子1(HIF-1α)、血管内皮生长因子(VEGF)、多重耐药(MDR1)、浸润和转移(MMP-2) mRNA的表达;采用免疫组化染色检测HIF-1α、VEGF、MMP-2和G-pg蛋白表达。
     结果:成功建立兔肝癌模型,MR检测肿瘤大小,组间差别无统计学意义(P=0.524)。实验组HIF-1a蛋白表达明显高于对照组(P=0.001)。HIF-1α、VEGF、MDR1、MMP-2mRNA表达实验组均高于对照组(分别为P=0.00、P=0.00、P=0.00),并且HIF-1α蛋白表达水平与VEGF、MMP-2、MDR1mRNA和蛋白表达存在相关性(mRNA分别为r=0.635、r=0.773、r=0.758;蛋白分别为r=0.818、r=0.634、r=0.683)。
     结论:肝癌介入栓塞后缺氧,残存肿瘤细胞感受缺氧并诱导HIF-1a表达,并且上调VEGF、MMP-2、MDRl转录活性,与相应蛋白表达具有显著相关性。
     目的:研究经导管肝动脉内给药羟基喜树碱脂质体对肝癌动物模型介入栓塞术后缺氧应答的抑制作用。
     材料与方法:将40只兔VX2肝癌模型随机分为4组,每组10只。干预方式及分组:A组:HCPT-lipo与碘油混悬后经导管动脉灌注+聚乙烯醇(PVA)栓塞;B组:PVA经导管动脉栓塞;C组:HCPT-lipo经导管动脉灌注;D组:生理盐水经导管灌注。分别于干预后6小时,3天处死动物模型。采用免疫组化染色检测HIF-1α、VEGF、、MMP-2多重耐药蛋白G-gp蛋白表达。
     结果:B组HIF-1a、VEGF、MMP-2、G-gp蛋白表达水平明显高于A、C、D组(P<0.05),A、C、D三组之间比较无显著差异(P>0.05)。
     结论:经导管动脉灌注HCPT-lipo能够抑制肝癌TAE后HIF-1α表达以及血管生成、肿瘤侵袭转移和多重耐药。
Purpose:To determine the inhibitory effect of10-hydroxycamptothecin liposome on hypoxia-induced factor-la (HIF-la) in rabbit VX2cells and human HepG2cells in vitro.
     Materials and Methods:Rabbit VX2cells and human HepG2cells were cultured under normoxic (21%O2) and hypoxic conditions respectively (1%O2). Both of the two kinds of cells were treated with different HCPT-lipo concentrations for16hours. Cell Counting Kit-8assay was used to determine the cell viability. Real-time PCR was performed to examine the expression of HIF-1a mRNA of the cells. Western blot analysis was used to examine the expression of HIF-1α protein.
     Results:There was no significant difference in cytotoxicity caused by HCPT-lipo was noted between normoxic and hypoxic in VX2cells and HepaG2cells. Hypoxia, promote expression of HIF-la protein but not happened in its mRNA. With the increasing concentrations of HCPT-lipo, the inhibition ability of the drug enhanced.
     Conclusions:HCPT-lipo inhibits the expression of HIF-la protein induced by hypoxia in the two kinds of tumor cells, and it occurs at post-transcriptional level. The inhibition is dose-dependent.
     Purpose:To evaluate expression of hypoxia-inducible factor-la in animal models of liver tumors after transcatheter arterial embolization, and the correlation of hypoxia-inducible factor-la with angiogenesis, drug resistance, and metastasis.
     Materials and Methods:Twenty rabbit's implanted VX2liver tumors were established. The experimental group(n=10) were treated by transcatheter hepatic arterial embolization(TAE) with polyvinyl alcohol(PVA) particles sized150~250μm; The control group were treated underwent sham embolization with normal saline. Six hours and3days treatment, animals were sacrificed, and samples were harvested. Expression of HIF-la, VEGF, and G-gp and MMP-2proteins was examined immunohistochemically. Real-time PCR was used to examine the HIF-la, VEGF, MDR1, MMP-2mRNA levels.
     Results:The animal models were established successfully, the sizes of tumors were detected by MR (P=0.524). The lever of HIF-la protein was significantly higher in experimental group than that in control group(P=0.001).So as the expression of mRNA of VEGF、MDR1、MMP-2(P=0.00、P=0.00、P=0.00,respectively). And HIF-1α protein level was significantly correlated with levels of mRNA and proteins of VEGF、MDR1、MMP-2(r=0.635, P=0.001、 r=0.773,P=0.00、r=0.758, P=0.012respectively)
     Conclusions:After TAE the tumor hypoxia becomes worse, the residual cells experience and induce the expression of HIF-1α, and HIF-1α generates a overexpression of VEGF、MDR1、MMP-2, which allow the tumors to survive and even evolve.
     Purpose:To study the inhibitory effect of transcatheter hepatic artery administration of10-hydroxycamptothecin liposome on tumor hypoxia response in animal models after transcatheter arterial embolization.
     Materials and Methods:Forty rabbits with implanted VX2liver tumor were randomly divided into4groups with10of each. After a microcatheter was placed into the hepatic artery, the treatments were performed by injecting HCPT-lipo mixed lipiodol PVA particles (group A), PVA (group B), HCPT-lipo (group C) and normal saline (group D), respectively. Six hours or3days after the injection, animals were sacrificed. The mRNA levels of HIF-1α, VEGF、MDR1and MMP-2was detected by TR-PCR. Immunohistochemical staining was used to show the protein levels of HIF-1α, VEGF、MDR1and MMP-2.
     Results:The levels of HIF-1α and VEGF, MMP-2, G-gp in tumors of group B were significantly higher than those of group A, C and D (P<0.05). There was no significant differences were noted among group A, C and D (P>0.05). The protein level of HIF-la was significantly correlated with that of VEGF、MMP-2、G-gp(r=0.816,r=0.655,r=0.677,respectively)
     Conclusion:Transcatheter infusion of HCPT-lipo has inhibitory effect on HIF-1α expression and angiogenesis, multidrug resistant, invasion and metastasis in liver tumors after transcatheter arterial embolization.
引文
1. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954; 30(5):969-77.
    2. Liapi E, Georgiades CC, Hong K, et al. Transcatheter arterial chemoembolization: current technique and future promise. Tech Vasc Interv Radiol.2007; 10(1):2-11.
    3.陈晓明,罗鹏飞,林华欢等.肝癌介入治疗模式的探讨.中华肿瘤杂志.2002;24(5):501-504.
    4. Gupta S, Kobayashi S, Phongkitkarun S, et al. Effect of transcatheter hepatic arterial embolization on angiogenesis in an animal model. Invest Radiol.2006; 41(6):516-21.
    5. Wu XZ, Xie GR, Chen D. Hypoxia and hepatocellular carcinoma:The therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol.2007; 22(8): 1178-82.
    6. Li X, Feng GS, Zheng CS, et al. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J Gastroenterol.2004; 10(19):2878-82.
    7. Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A.2012; 109(50):20491-6.
    8. Bu W, Tang ZY, Sun FX, et al. Effects of matrix metalloproteinase inhibitor BB-94 on liver cancer growth and metastasis in a patient-like orthotopic model LCI-D20. Hepatogastroenterology.1998; 45(22):1056-61.
    9. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.2002;62(12):3387-94.
    10. Kim YB, Park YN, Park C. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transcatheter arterial embolization. Histopathology.2001; 38(2):160-6.
    11. Kobayashi N, Ishii M, Ueno Y, et al. Co-expression of Bcl-2 protein and vascular endothelial growth factor in hepatocellular carcinomas treated by chemoembolization. Liver.1999; 19(1):25-31.
    12. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer.2003; 3(10): 721-32.
    13. Shi W, Yu S. Inhibitory effect of HCPT on expression of HIF-lalpha and downstream genes in hypoxic human cervical SiHa cancer cells. J Huazhong Univ Sci Technolog Med Sci.2007; 27(5):586-9.
    14. Rapisarda A, Zalek J, Hollingshead M, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1 alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res.2004; 64(19):6845-8.
    15. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids.2005;135(2): 117-29.
    16.冯敢生郑,孔健.羟基喜树碱在介入治疗肿瘤中的应用研究.放射学实践.2007;15(4):293-5.
    1. Hockel M, Vaupel P. Tumor hypoxia:definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst.2001; 93(4):266-76.
    2. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer.2003;3(10): 721-32.
    3. Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A.1997;94(15):8104-9.
    4. Hsiang YH, Hertzberg R, Hecht S, et al. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem.1985; 260(27): 14873-8.
    5.赵斌葛,朱娟娟.小议在MTT法测细胞增殖抑制率中IC50的计算方法.安徽医药.2007;11(9):834-6.
    6. Schmittgen TD, Zakrajsek BA, Mills AG, et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay:comparison of endpoint and real-time methods. Anal Biochem.2000; 285(2):194-204.
    7. Brown DB, Gould JE, Gervais DA, et al. Transcatheter therapy for hepatic malignancy:standardization of terminology and reporting criteria. J Vasc Interv Radiol.2007; 18(12):1469-78.
    8. Yang ZF, Poon RT, To J, et al. The potential role of hypoxia inducible factor 1 alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma. Cancer Res.2004; 64(15):5496-503.
    9. Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE.2007; 2007(407):cm8.
    10. Liu LF, Duann P, Lin CT, et al. Mechanism of action of camptothecin. Ann N Y Acad Sci.1996; 803:44-9.
    11. Beppu K, Nakamura K, Linehan WM, et al. Topotecan blocks hypoxia-inducible factor-1 alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res.2005;65(11): 4775-81.
    12. Rapisarda A, Zalek J, Hollingshead M, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1 alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res.2004; 64(19):6845-8.
    13. Rapisarda A, Uranchimeg B, Sordet O, et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1:mechanism and therapeutic implications. Cancer Res.2004; 64(4):1475-82.
    14. Namiki Y, Namiki T, Date M, et al. Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharmacol Res.2004; 50(1):65-76.
    1. Han KH, Kudo M, Ye SL, et al. Asian consensus workshop report:expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia. Oncology.2011;81 Suppl 1:158-64.
    2. Yeung YP, Lo CM, Liu CL, et al. Natural history of untreated nonsurgical hepatocellular carcinoma. Am J Gastroenterol.2005; 100(9):1995-2004.
    3. Liapi E, Georgiades CC, Hong K, et al. Transcatheter arterial chemoembolization: current technique and future promise. Tech Vasc Interv Radiol.2007; 10(1):2-11.
    4. Pauser S, Wagner S, Lippmann M, et al. Evaluation of efficient chemoembolization mixtures by magnetic resonance imaging therapy monitoring: an experimental study on the VX2 tumor in the rabbit liver. Cancer Res.1996; 56(8):1863-7.
    5. Sadzuka, SaehiyoHirotsu Y. Effeet of liposomalization on the antitumor aetivity, side-effects and tissue distribution of CPT-11 Caneer Letters.1998; 127(1-2): 99-106.
    6. Liu JJ, Hong RL, Cheng WF, et al. Simple and efficient liposomal encapsulation of topotecan by ammonium sulfate gradient:stability, pharmacokinetic and therapeutic evaluation. Anticancer Drugs.2002; 13(7):709-17.
    7.郑延波,徐克.缺氧诱导因子-1a在兔VX2肝癌模型TACE术后的表达及其临床意义.介入放射学杂志.2007;16(5):334-8.
    8. Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology.2002; 35(5):1164-71.
    9. Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma:a randomised controlled trial. Lancet.2002; 359(9319): 1734-9.
    10. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954; 30(5):969-77.
    11. Liang B, Zheng C, Feng G, et al. Expression of hypoxia-inducible factor-1 alpha in liver tumors after transcatheter arterial embolization in an animal model. J Huazhong Univ Sci Technolog Med Sci.2009; 29(6):776-81.
    12. Virmani S, Rhee TK, Ryu RK, et al. Comparison of hypoxia-inducible factor-1 alpha expression before and after transcatheter arterial embolization in rabbit VX2 liver tumors. J Vasc Interv Radiol.2008; 19(10):1483-9.
    13.王勇冯,钱骏.肝动脉阻断对大鼠种植性肝癌的HIF-1α及VEGF表达的影响.临床放射学杂志.2006;25(8):775-7.
    14. Serganova I, Doubrovin M, Vider J, et al. Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res.2004; 64(17):6101-8.
    15. Tanaka H, Yamamoto M, Hashimoto N, et al. Hypoxia-independent overexpression of hypoxia-inducible factor lalpha as an early change in mouse hepatocarcinogenesis. Cancer Res.2006; 66(23):11263-70.
    16. Kimura S, Kitadai Y, Tanaka S, et al. Expression of hypoxia-inducible factor (HIF)-l alpha is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer.2004;40(12):1904-12.
    17. Park YN, Kim YB, Yang KM, et al. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med.2000; 124(7):1061-5.
    18. Liao X, Yi J, Li X, et al. Expression of angiogenic factors in hepatocellular carcinoma after transcatheter arterial chemoembolization. J Huazhong Univ Sci Technolog Med Sci.2003; 23(3):280-2.
    19. Liao XF, Yi JL, Li XR, et al. Angiogenesis in rabbit hepatic tumor after transcatheter arterial embolization. World J Gastroenterol.2004; 10(13):1885-9.
    20. Tanaka M, Sato H, Takino T, et al. Isolation of a mouse MT2-MMP gene from a lung cDNA library and identification of its product. FEBS Lett.1997; 402(2-3): 219-22.
    21. Morrison CJ, Butler GS, Bigg HF, et al. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem.2001; 276(50):47402-10.
    22. Shyu KG, Hsu FL, Wang MJ, et al. Hypoxia-inducible factor 1alpha regulates lung adenocarcinoma cell invasion. Exp Cell Res.2007; 313(6):1181-91.
    23. Nie YM, Dai BT. [Enhancement effects of hypoxia on invasion and metastasis of K562 cells]. Zhongguo Dang Dai Er Ke Za Zhi.2009; 11(7):566-70.
    24. Bu W, Tang ZY, Sun FX, et al. Effects of matrix metalloproteinase inhibitor BB-94 on liver cancer growth and metastasis in a patient-like orthotopic model LCI-D20. Hepatogastroenterology.1998; 45(22):1056-61.
    25. Xie T, Yuan XL, Yu SY, et al. [Interference of HIF-1alpha by RNA reduces the expression of matrix metalloproteinase-2 in human cervical carcinoma HeLa cells]. Ai Zheng.2008; 27(6):600-5.
    26. Fujiwara S, Nakagawa K, Harada H, et al. Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol.2007; 30(4):793-802.
    27. Shin JE, Jung SA, Kim SE, et al. [Expression of MMP-2, HIF-1alpha and VEGF in colon adenoma and colon cancer]. Korean J Gastroenterol.2007; 50(1):9-18.
    28. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta.1976; 455(1): 152-62.
    29. Kakinuma Y, Miyauchi T, Suzuki T, et al. Enhancement of glycolysis in cardiomyocytes elevates endothelin-1 expression through the transcriptional factor hypoxia-inducible factor-1 alpha. Clin Sci (Lond).2002; 103 Suppl 48:210S-4S.
    30. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.2002; 62(12):3387-94.
    31.Zhu H, Chen XP, Luo SF, et al. [Hypoxia-inducible factor-1 alpha dependent expression and significance of the related multidrug resistance genes induced by hypoxia in human hepatocarcinoma cell].Zhonghua Wai Ke Za Zhi.2005; 43(5): 277-81.
    32. Ding Z, Yang L, Xie X, et al. Expression and significance of hypoxia-inducible factor-1 alpha and MDRl/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol.2010; 136(11):1697-707.
    1. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954; 30(5):969-77.
    2. Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science.2005; 307(5706):58-62.
    3. Pries AR, Cornelissen AJ, Sloot AA, et al. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol.2009; 5(5): el000394.
    4. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer.2008; 8(6):425-37.
    5. Virmani S, Rhee TK, Ryu RK, et al. Comparison of hypoxia-inducible factor-1 alpha expression before and after transcatheter arterial embolization in rabbit VX2 liver tumors. J Vasc Interv Radiol.2008; 19(10):1483-9.
    6. Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1alpha in rabbit VX2 liver tumors. J Vasc Interv Radiol.2007; 18(5):639-45.
    7. Lee JK, Chung YH, Song BC, et al. Recurrences of hepatocellular carcinoma following initial remission by transcatheter arterial chemoembolization. J Gastroenterol Hepatol.2002; 17(1):52-8.
    8. Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE.2007; 2007(407):cm8.
    9. Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res.2002; 62(15):4316-24.
    10. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids.2005; 135(2): 117-29.
    11. Wang B, Xu H, Gao ZQ, et al. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol.2008; 49(5):523-9.
    12. Xiong ZP, Yang SR, Liang ZY, et al. Association between vascular endothelial growth factor and metastasis after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.2004; 3(3): 386-90.
    13. Li X, Feng GS, Zheng CS, et al. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J Gastroenterol.2004; 10(19):2878-82.
    14. Shweiki D, Neeman M, Itin A, et al. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A.1995; 92(3): 768-72.
    15. von Marschall Z, Cramer T, Hocker M, et al. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut.2001; 48(1):87-96.
    16. Zhao Q, Du J, Gu H, et al. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas.2007; 34(2):242-7.
    17. Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets.2006; 10(2):267-80.
    18. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.2002; 62(12):3387-94.
    19. Liu XQ, Xiong MH, Shu XT, et al. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm. 2012;9(10):2863-74.
    1. Semenza GL. Life with oxygen. Science.2007; 318(5847):62-4.
    2. Garber K. New drugs target hypoxia response in tumors. Journal of the National Cancer Institute.2005; 97(15):1112-4.
    3. Hockel M, Vaupel P. Tumor hypoxia:definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute.2001; 93(4): 266-76.
    4. Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science.2005; 307(5706):58-62.
    5. Pries AR, Cornelissen AJ, Sloot AA, et al. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS computational biology.2009; 5(5):e1000394.
    6. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature reviews Cancer.2008; 8(6): 425-37.
    7. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature.1996; 379(6560):88-91.
    8. Erler JT, Cawthorne CJ, Williams KJ, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and-independent mechanisms and contributes to drug resistance. Mol Cell Biol.2004; 24(7):2875-89.
    9. Rouschop KM, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. The Journal of clinical investigation. 2010; 120(1):127-41.
    10. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nature reviews Cancer.2011;11(2):85-95.
    11. Wang Y, Ohh M. Oxygen-mediated endocytosis in cancer. Journal of cellular and molecular medicine.2010; 14(3):496-503.
    12. Semenza GL. Hypoxia, clonal selection, and the role of HTF-1 in tumor progression. Critical reviews in biochemistry and molecular biology.2000; 35(2): 71-103.
    13. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Seminars in radiation oncology.2009; 19(2):106-11.
    14. Yotnda P, Wu D, Swanson AM. Hypoxic tumors and their effect on immune cells and cancer therapy. Methods in molecular biology.2010; 651:1-29.
    15. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer cell.2003; 3(4): 347-61.
    16. Chang Q, Jurisica I, Do T, et al. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer research.2011; 71(8):3110-20.
    17. Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab.2005; 1(6):401-8.
    18. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature reviews Cancer.2008; 8(3):180-92.
    19. Tanaka H, Yamamoto M, Hashimoto N, et al. Hypoxia-independent overexpression of hypoxia-inducible factor lalpha as an early change in mouse hepatocarcinogenesis. Cancer research.2006; 66(23):11263-70.
    20. Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants & redox signaling.2007; 9(8):1221-35.
    21. Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia:importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International journal of radiation biology.2006; 82(10):699-757.
    22. Jubb AM, Buffa FM, Harris AL. Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. Journal of cellular and molecular medicine.2010; 14(1-2):18-29.
    23. Nagasawa H, Uto Y, Kirk KL, et al. Design of hypoxia-targeting drugs as new cancer chemotherapeutics. Biological & pharmaceutical bulletin.2006; 29(12): 2335-42.
    24. Ahn GO, Brown M. Targeting tumors with hypoxia-activated cytotoxins. Frontiers in bioscience:a journal and virtual library.2007; 12:3483-501.
    25. Chen Y, Hu L. Design of anticancer prodrugs for reductive activation. Medicinal research reviews.2009; 29(1):29-64.
    26. Nagasawa H, Mikamo N, Nakajima Y, et al. Antiangiogenic hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. Anticancer research.2003; 23(6a):4427-34.
    27. Bachur NR, Gordon SL, Gee MV. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer research.1978; 38(6):1745-50.
    28. Mason RP, Holtzman JL. The role of catalytic superoxide formation in the 02 inhibition of nitroreductase. Biochemical and biophysical research communications.1975; 67(4):1267-74.
    29. Adams GE, Dische S, Fowler JF, et al. Hypoxic cell sensitisers in radiotherapy. Lancet.1976; 1(7952):186-8.
    30. Wardman P. Chemical radiosensitizers for use in radiotherapy. Clinical oncology. 2007; 19(6):397-417.
    31. Schwartz HS, Sodergren JE, Philips FS. Mitomycin C:Chemical and Biological Studies on Alkylation. Science.1963;142(3596):1181-3.
    32. Szybalski W, Iyer VN. Crosslinking of DNA by Enzymatically or Chemically Activated Mitomycins and Porfiromycins, Bifunctionally "Alkylating" Antibiotics. Federation proceedings.1964; 23:946-57.
    33. Brown JM. SR 4233 (tirapazamine):a new anticancer drug exploiting hypoxia in solid tumours. British journal of cancer.1993; 67(6):1163-70.
    34. Reddy SB, Williamson SK. Tirapazamine:a novel agent targeting hypoxic tumor cells. Expert opinion on investigational drugs.2009; 18(1):77-87.
    35. Patterson LH. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents:a new class of bioreductive agent. Cancer metastasis reviews.1993; 12(2):119-34.
    36. Weiss GJ, Infante JR, Chiorean EG, et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clinical cancer research:an official journal of the American Association for Cancer Research.2011;17(9):2997-3004.
    37. Raleigh SM, Wanogho E, Burke MD, et al. Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug. International journal of radiation oncology, biology, physics.1998; 42(4):763-7.
    38. Nishida CR, Lee M, de Montellano PR. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Molecular pharmacology. 2010; 78(3):497-502.
    39. Rivera SP, Wang F, Saarikoski ST, et al. A novel promoter element containing multiple overlapping xenobiotic and hypoxia response elements mediates induction of cytochrome P4502S1 by both dioxin and hypoxia. The Journal of biological chemistry.2007; 282(15):10881-93.
    40. Nishida CR, Ortiz de Montellano PR. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. Journal of medicinal chemistry. 2008; 51(16):5118-20.
    41. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nature reviews Cancer.2006; 6(8):583-92.
    42. Durand RE, Olive PL. Physiologic and cytotoxic effects of tirapazamine in tumor-bearing mice. Radiation oncology investigations.1997; 5(5):213-9.
    43. Hicks KO, Fleming Y, Siim BG, et al. Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. International journal of radiation oncology, biology, physics.1998; 42(3):641-9.
    44. Kyle AH, Minchinton AI. Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. Cancer chemotherapy and pharmacology.1999; 43(3):213-20.
    45. Hay MP, Pchalek K, Pruijn FB, et al. Hypoxia-selective 3-alkyl 1,2,4-benzotriazine 1,4-dioxides:the influence of hydrogen bond donors on extravascular transport and antitumor activity. Journal of medicinal chemistry. 2007; 50(26):6654-64.
    46. Hicks KO, Siim BG, Jaiswal JK, et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clinical cancer research:an official journal of the American Association for Cancer Research. 2010; 16(20):4946-57.
    47. Hicks KO, Pruijn FB, Secomb TW, et al. Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. Journal of the National Cancer Institute.2006; 98(16):1118-28.
    48. Koch CJ. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer research.1993; 53(17):3992-7.
    49. Hicks KO, Siim BG, Pruijn FB, et al. Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine:implications for extravascular transport and activity in tumors. Radiation research.2004; 161(6):656-66.
    50. Marshall RS, Rauth AM. Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells. Cancer research.1988; 48(20):5655-9.
    51. Siim BG, Atwell GJ, Wilson WR. Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs. British journal of cancer.1994; 70(4):596-603.
    52. Wilson WR, Moselen JW, Cliffe S, et al. Exploiting tumor hypoxia through bioreductive release of diffusible cytotoxins:the cobalt(Ⅲ)-nitrogen mustard complex SN 24771. International journal of radiation oncology, biology, physics. 1994; 29(2):323-7.
    53. Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nature reviews Cancer.2008; 8(3):193-204.
    54. Parveen I, Naughton DP, Whish WJ, et al.2-nitroimidazol-5-ylmethyl as a potential bioreductively activated prodrug system:reductively triggered release of the PARP inhibitor 5-bromoisoquinolinone. Bioorganic & medicinal chemistry letters.1999; 9(14):2031-6.
    55. Everett SA, Naylor MA, Patel KB, et al. Bioreductively-activated prodrugs for targeting hypoxic tissues:elimination of aspirin from 2-nitroimidazole derivatives. Bioorganic & medicinal chemistry letters.1999; 9(9):1267-72.
    56. Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America.1998;95(14):7987-92.
    57. Ratcliffe PJ. HIF-1 and HIF-2:working alone or together in hypoxia? The Journal of clinical investigation.2007; 117(4):862-5.
    58. Warnecke C, Weidemann A, Volke M, et al. The specific contribution of hypoxia-inducible factor-2alpha to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Experimental cell research. 2008; 314(10):2016-27.
    59. Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert reviews in molecular medicine.2009; 11:e26.
    60. Semenza GL. Targeting HIF-1 for cancer therapy. Nature reviews Cancer.2003; 3(10):721-32.
    61. Semenza GL. Evaluation of HIF-l inhibitors as anticancer agents. Drug discovery today.2007; 12(19-20):853-9.
    62. Melillo G. Targeting hypoxia cell signaling for cancer therapy. Cancer metastasis reviews.2007; 26(2):341-52.
    63. Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. Journal of cellular and molecular medicine.2009; 13(9A):2780-6.
    64. Nagasawa H. Pathophysiological response to hypoxia-from the molecular mechanisms of malady to drug discovery:drug discovery for targeting the tumor microenvironment. J Pharmacol Sci.2011; 115(4):446-52.
    65. Isaacs JS, Jung YJ, Mimnaugh EG, et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. The Journal of biological chemistry.2002; 277(33):29936-44.
    66. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature reviews Cancer.2008; 8(11):851-64.
    67. Liu L, Cash TP, Jones RG, et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Molecular cell.2006; 21(4):521-31.
    68. Koumenis C, Wouters BG. "Translating" tumor hypoxia:unfolded protein response (UPR)-dependent and UPR-independent pathways. Molecular cancer research:MCR.2006; 4(7):423-36.
    69. Pencreach E, Guerin E, Nicolet C, et al. Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-lalpha axis. Clinical cancer research:an official journal of the American Association for Cancer Research.2009; 15(4): 1297-307.
    70. Yu K, Shi C, Toral-Barza L, et al. Beyond rapalog therapy:preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer research.2010; 70(2): 621-31.
    71.Rouschop KM, Wouters BG. Regulation of autophagy through multiple independent hypoxic signaling pathways. Current molecular medicine.2009; 9(4): 417-24.
    72. Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annual review of cell and developmental biology.2003; 19:649-76.
    73. Koditz J, Nesper J, Wottawa M, et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood.2007; 110(10):3610-7.
    74. Bi M, Naczki C, Koritzinsky M, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. The EMBO journal. 2005; 24(19):3470-81.
    75. Garber K. Researchers target unfolded protein response in cancerous tumor growth. Journal of the National Cancer Institute.2006; 98(8):512-4.
    76. Papandreou I, Denko NC, Olson M, et al. Identification of an Irelalpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood.2011; 117(4):1311-4.
    77. Fels DR, Ye J, Segan AT, et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer research.2008; 68(22):9323-30.
    78. Greco O, Marples B, Joiner MC, et al. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. Journal of cellular physiology.2003; 197(3): 312-25.
    79. Ozawa T, Hu JL, Hu LJ, et al. Functionality of hypoxia-induced BAX expression in a human glioblastoma xenograft model. Cancer gene therapy.2005; 12(5): 449-55.
    80. Yang L, Cao Z, Li F, et al. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene therapy.2004; 11(15):1215-23.
    81. Ingram N, Porter CD. Transcriptional targeting of acute hypoxia in the tumour stroma is a novel and viable strategy for cancer gene therapy. Gene therapy.2005; 12(13):1058-69.
    82. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature medicine.2003; 9(6):669-76.
    83. Ogawa T, Takayama K, Takakura N, et al. Anti-tumor angiogenesis therapy using soluble receptors:enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer gene therapy.2002; 9(8):633-40.
    84. Freytag SO, Stricker H, Pegg J, et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate-to high-risk prostate cancer. Cancer research.2003; 63(21):7497-506.
    85. Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene.2003; 22(14):2065-72.
    86. Post DE, Devi NS, Li Z, et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clinical cancer research:an official journal of the American Association for Cancer Research. 2004; 10(24):8603-12.
    87. Cho WK, Seong YR, Lee YH, et al. Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumor. Molecular therapy:the journal of the American Society of Gene Therapy.2004; 10(5): 938-49.
    88. Cuevas Y, Hernandez-Alcoceba R, Aragones J, et al. Specific oncolytic effect of a new hypoxia-inducible factor-dependent replicative adenovirus on von Hippel-Lindau-defective renal cell carcinomas. Cancer research.2003; 63(20): 6877-84.
    89. Hernandez-Alcoceba R, Pihalja M, Nunez G, et al. Evaluation of a new dual-specificity promoter for selective induction of apoptosis in breast cancer cells. Cancer gene therapy.2001; 8(4):298-307.
    90. Modlich U, Pugh CW, Bicknell R. Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene therapy.2000; 7(10):896-902.
    91.Ido A, Uto H, Moriuchi A, et al. Gene therapy targeting for hepatocellular carcinoma:selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer research.2001;61(7):3016-21.
    92. Burke B, Tang N, Corke KP, et al. Expression of HIF-lalpha by human macrophages:implications for the use of macrophages in hypoxia-regulated cancer gene therapy. The Journal of pathology.2002; 196(2):204-12.
    93. Griffiths L, Binley K, Iqball S, et al. The macrophage-a novel system to deliver gene therapy to pathological hypoxia. Gene therapy.2000; 7(3):255-62.
    94. Theys J, Landuyt W, Nuyts S, et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer gene therapy. 2001; 8(4):294-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700