天然纳米矿物坡缕石在不同条件下的活化与相变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡缕石又称为凹凸棒石,是一种具有链层状结构的镁铝硅酸盐矿物,早在19世纪就已被发现。由于坡缕石粘土矿物具有特殊的晶体结构(一维孔道结构)、特殊的物理化学性质(吸附性质、胶体性质、橡塑材料增强性质)、特殊的晶体形态(天然纳米纤维材料)、特殊的成因(与中国东部第三纪玄武岩喷发活动有关的干旱半干旱湖沉积),因此对此种矿物的研究不仅具有理论意义,还具有应用价值。
     本论文的研究目的是说明坡缕石在各种条件活化过程中结构和成分的变化;研究不同酸处理条件对坡缕石晶格重建的影响,以及不同金属离子对坡缕石晶格重建的效果;通过三种不同粘土矿物对阳离子吸附、脱吸附性质的比较,以及以坡缕石为原料制备沸石分子筛的研究,扩展坡缕石在纳米材料科学的应用领域并提高其经济价值。
     本文以江苏盱眙含白云质坡缕石为原料,经提纯后,分别于不同的条件下进行不同方式的活化,酸活化后的样品进一步进行阳离子吸附和脱吸附实验。利用XRD,SEM和TGA分析研究不同活化条件下坡缕石的结构变化,AAS分析研究反应溶液中离子成分的变化。通过研究,取得以下认识:
     1)在较低温度下(一般小于60℃),3mol/L浓度以内的盐酸对坡缕石结构破坏不明显;当温度较高时(一般高于70℃)盐酸对坡缕石结构的破坏程度明显加强、加快。
     2)当坡缕石结构完全被破坏后,即八面体阳离子完全溶出、硅氧四面体的支撑结构完全坍塌,坡缕石结构无法重建;当坡缕石结构被部分破坏后,即部分八面体阳离子被氢离子替代、硅氧四面体还未遭到破坏,坡缕石在水热条件下有晶格发生重建的趋势。
     3)不同的金属阳离子对坡缕石晶格重建的效果不同,这与阳离子的水化热等有关。
     4)由于蒙脱石、沸石与坡缕石吸附阳离子的原理不同,吸附金属离子后的不同粘土在一定盐度溶液中的脱吸附率也不同。坡缕石在0.3%浓度的NaCl溶液中脱吸附率要较蒙脱石和沸石低得多。
     5)碱溶液对坡缕石的作用主要表现在两个方面:a)OH~-对Si—O—Si键的剪切,b)Na~+对八面体阳离子的交代,其中这种交代具有选择性,置换顺序为:Al~(3+)>Fe~(3+)(Fe~(2+))>Mg~(2+)。坡缕石经碱溶处理后可以转变成蒙脱石和方沸石。其中碱浓度的增加有利于蒙脱石的生成,温度的升高则有利于方沸石的生成。
Palygorskite is a chain-layer magnesium-aluminum silicate.Since it was discovered in the 19~(th) century.It's particles possesses special crystal structure such as one dimension pore structure,special physical-chemical properties such as strong absorbability,colloidal properties,reinforcement in rubber and plastics materials etc.,special crystal morphology such as natural nano-fibre material and special cause of formation,e.g.precipitation in droughty and semi-droughty lake which was related to eruption of tertiary basalts in east China.The study on properties and modification mechanism of palygorskite is important for its performance and prospect in industry.
     The objectives of the thesis are that explain the transformation of structure and component in different active conditions,investigate the influence of different acid treatment methods on crystal lattice's reconstruction and effect of various metal cations on crystal lattice's reconstruction,compare properties of cation adsorption and removal by three different clay minerals and prepare zeolite using palygorskite as raw material.These study would extend the applied field in nano-material science and increase the economic values of palygorskite.
     Using palygorskite with dolomite from Xuyi,Jiangsu Province as raw material,after purified,treated in different conditions separately.Then do cation adsorption and removal experiment using acid-activated product.The variation of structure with different activated condition was characterized using X-ray diffraction(XRD),scanning electron microscope(SEM) and thermo gravimetric analysis(TGA),and the componential variation of ions in solution was obtained by atomic absorption spectrometry(AAS) measurement.Main achievements of the thesis is as follows:
     1) In lower temperature(commonly less than 60℃),the structure of palygorskite is destroyed faintly by hydrochloric acid within 3mol/L concentration.When the temperature increase(commonly more than 70℃),the breakage of structure would strengthen and accelerate distinctly.
     2) Palygorskite's structure can't be restored when the structure was destroyed completely.This time,most of octahedral cations leached and configuration supported by SiO_4 tetrahedron collapsed.When palygorskite's structure was destroyed partly,that was H~+ partly substituted for octahedral cations and SiO_4 tetrahedron still retained special construction,the crystal lattice of palygorskite had tendency to be reconstructed.
     3) The effect of crystal lattice's reconstruction is related to hydrothermal heat of metal cations.The higher hydrothermal heat's value is,the better the effect of crystal lattice's reconstruction is.
     4) The mechanism of adsorption of cations by montmorillonite,zeolite and palygorskite is various,so there removal ratios vary in certainty salinity solution. The removal ratio of palygorskite is lower than montmorillonite and zeolite's.
     5) There are two kinds of processes in the reaction between alkali solution and palygorskite.One is shear stress of OH~- on Si-O-Si bond,another is substitution of Na~+ for octahedral cations and substitution sequence is Al~(3+)>Fe~(3+) (Fe~(2+))>Mg~(2+).Palygorskite would transform into montmorillonite and analcime.The higher alkali concentration is favorable for emergence of montmorillonite,while the higher temperature is favorable for emergence of analcime.
引文
宾晓蓓,曹宏,孙新有等.活化处理中坡缕石结构变化与性能关系的研究[J].矿物岩石地球化学通报,2005,24(1):62-66
    蔡元峰,薛纪越.坡缕石在HCl溶液中的溶解行为及溶解机制[J].自然科学进展,2003,13(9):933-938
    曹吉林,王颖,谭朝阳等.高岭土碱熔活化法制备4A型沸石研究[J].非金属矿,2007,30(1):23-25
    陈淑英,叶建兰,吕礁等.凹凸棒石粉治疗小儿消化道粘膜病的疗效观察[J].第二军医大学学报,2001,22(4):398
    陈天虎,徐晓春,岳书仓等.凹凸棒石与玄武岩的成因关系[J].地质与勘探,2002,38(2):49-54
    陈天虎,冯有亮,史小莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报,2003,31(10):959-964
    陈天虎,史晓莉,彭书传等.水悬浮体系中凹凸棒石与Cu~(2+)作用机理[J].高校地质学报,2004c,10(3):385-392
    陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社,2004a
    陈天虎,徐惠芳,彭书传等.凹凸棒石与酸反应纳米尺度研究—反应机理和表面积变化[J].高校地质学报,2004b,10(1):98-105
    陈天虎,王健,庆承松等.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报,2006,36(11):1406-1410
    冯启明.利用凹凸棒石粘土生产干燥剂的试验研究[J].矿产保护与利用,1995,3:27-29
    冯启明,易发成.青海湟中县白云质坡缕石粘土酸活化条件及其方法研究[J].非金属矿,1999,22(4):11-13
    高俊,乔淑萍,简丽等.高岭土合成4A沸石晶化历程[J].应用化学,1999,16(6):53-55
    韩成林.宠物垫土研制[J].非金属矿,2002,25(6):28-29
    何宏平,郭九皋,谢先德等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231-235
    何宏平.粘土矿物与金属离子作用研究[M].北京:石油工业出版社,2004:72
    胡发社,罗淑湘,杨飞华等.新型无机抗菌剂载体——天然纳米坡缕石显微表观结构研究[J].中国非金属矿工业导刊,2001,(5):12-15
    黄梓平,夏枚生,胡彩虹等.粘土矿物对饲料中有害物质的吸附性能的研究—铅离子的吸附研究[J].饲料研究,2002(9):4-6
    金光明,朱元召,闻爱友等.凹凸棒石粘土粉对生长期鹅省长性能的影响[J].养 殖技术顾问,2002,(9):18
    金永铎,董高翔.非金属矿石物化性能测试和成分分析手册[M].北京:科学出版社,2004
    李虎杰,郑自立.坡缕石粘土的吸附性能研究[J].矿产综合利用,2002,5:24-27
    李平,万朴,董发勤等.海泡石坡缕石吸附有机气体研究[J].西南工学院学报,1996,(4):44-50
    李天文,周国成,林朝阳等.模板剂在分子筛合成中的作用[J].化工中间体,2006(11):16-19
    刘云,董元华,马毅杰.坡缕石粘土的酸化机理及其影响因素[J].岩石矿物学杂志,2007,26(4):351-358
    马万山,李玉玲,杨莹琴.天然沸石颗粒吸附剂对Cr~(3+)的吸附性能及再生研究[J].IM&P化工矿物与加工,2006,3:13-15
    彭书传,刘建平,李辉夫等.蒙脱石对Cu~(2+)吸附性能及吸附工艺条件优化研究[J].合肥工业大学学报(自然科学版),2005,28(10):1238-1242
    钱运华,金叶玲,陈振国.凹凸棒石粘土填充聚丙烯的研究[J].非金属矿,1998,21(2):23-24
    秦非,许鸥泳,蒋挺大.AT-SS复合颗粒吸附剂的制备和除铅性能研究[J].环境科学,1996,17(4):47-50
    沈炜敏.凹凸棒石非金属矿土添加剂在鲟鱼养殖的应用[J].中国水产,2002,(4):68
    史晓莉.凹凸棒石表面特性及其与重金属离子的界面作用[D].合肥:合肥工业大学,2005
    宋宁宁,王丽萍,耿建新等.凹凸棒石粘土资源化现状研究[J].中国环保产业,2007(1):26-28.
    孙书红,王宁生,刘涛等.在高岭土微球中合成ZSM—5沸石的机理研究[J].石油学报(石油加工),2006,(10):292-295
    田明,曲成东,刘力等.凹凸棒石/茂金属聚烯烃复合材料的结构与性能[J].中国塑料,2002,16(3):26-29
    田煦,郑自立,易发成.中国坡缕石矿石特征及物化性能研究[J].矿产综合利用,1996,(6):1-4
    王连军,黄中华,孙秀云等.改性凹凸棒石处理染化废水研究[J].南京理工大学学报,1998,22(3):240-243
    王小明.江苏白土山坡缕石粘土矿性能及其应用研究[J].化工矿产地质,2000,22(4):235-243
    王宇菲,常燕,万翠凤等.海泡石制备MCM-41和A1MCM-41介孔分子筛研究[J].2007,31(1):37-39
    汪志国.利用膨润土合成4A沸石试验研究[J].化工矿物与加工,2002(6):11-13
    吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报,2002,20(1):81-85
    杨婕,陈敬中.江苏盱眙坡缕石的矿物学特征[J].资源调查与环境,2004,25(3):190-196
    易发成,刘谏.坡缕石粘土的酸活化研究[J].矿产综合利用,1996,(6):19-26
    易发成,冯启明,李朝毅等.坡缕石粘土对食用油脱色性能研究[J].矿产综合利用,1996,(6):32-33
    易发成,田煦,郑自立,等.坡缕石的热学性质研究[J].非金属矿,1997,20(5):29-31,41
    易发成,李玉香,钱光人等.凹凸棒石粘土对低放核素Sr、Cs的吸附研究[J].矿产综合利用,2002,(1):16-20
    叶瑛,张平萍,陈雪刚等.以坡缕石为原料制备沸石分子筛及其方法[P].中国专利,申请号:200710069110.3
    张国生,陈天虎,范文元.凹凸棒石复合分子筛净化气体的研究[J].环境工程,1994,2(4):24-28
    张国生.凹凸棒石净化饮用水的研究[J].水处理技术,1997,23(1):55-59.
    张国宇,王鹏.凹凸棒石粘土及在水处理中的应用[J].工业水处理,2003,23(4):1-5.
    张立德.纳米材料[M].北京:化学工业出版社,2000
    张志华,窦涛,张瑛.沸石的碱溶液处理改性[J].工业催化,2004,12(10):49-53
    郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究[M].北京:化学工业出版社,2007
    郑自立,鞠当辰,唐家中,等.坡缕石的脱水作用及其与八面体阳离子间相互关系研究[J].矿产综合利用,1996,(6):16-19
    郑自立,宋锦新,易发成等.中国坡缕石[M].北京:地质出版社,1997
    郑自立,田煦,易发成等.中国坡缕石粘土矿石类型及矿物共生组合[J].矿床综合利用,1996,(4):35-41
    郑自立,罗淑湘,李虎杰等.坡缕石的耐酸碱性研究[J].矿产综合利用,1996(6):33-37
    郑自立,鞠党辰,唐家中等.坡缕石的脱水作用及其与八面体阳离子间的相互关系研究[J].矿产中综合利用,1996,6:16-19
    周济元,顾金龙,周茂等.凹凸棒石粘土应用现状及高附加值产品开发[J].非金属矿,2002,25(2),5-7.
    周杰,刘宁,李云等.凹凸棒石粘土的显微结构特征[J].硅酸盐通报,1999,18(6): 50-55
    周玉航.蒙脱石的酸活化、插层改性及其应用研究[D].浙江大学,2005
    朱振海,郑茂松,孙新友等.凹凸棒石粘土净化含强致癌物质黄曲霉毒素_(B1)油脂工艺技术研究[J].非金属矿,1998,21(6):15-17
    中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978:314
    Al-Qunaibit M H,Mekhemer W K,Zaghloul A A.The adsorption of Cu(Ⅱ) ions on bentonite-a kinetic study[J].J.Colloid Interf.Sci,2005,283(2):316-321
    Aramendia M A,Borau V,Corredor J I,et al..Characterization of the Structure and Catalytic Activity of Pt/Sepiolite Catalysts[J].Journal of Colloid and Interface Science,2000,227,469-475
    Araujo Melo D M,Ruiz J A C,Melo M A F,et al..Preparation and characterization of terbium palygorskite clay as acid catalyst[J].Microporous and Mesoporous Materials,2000,38:345-349
    Augsburger M S,Strasser E,Perino E,et al..FTIR and m(o|¨)ssbauer investigation of a substituted palygorskite:Silicate with a channel structure[J].J Phys.Chem.Solids,1998,59(2):175-180
    Barrios M S,Buey C S,Romero E G,et al.Textural and structural modification of saponite from Cerro del Aguila,by acid treatment[J].Clay minerals,2001,36(4):483-488
    Barrios M S,Gonzalez L V F,Rodriguez M A V,et al..Acid activation of a palygorskite with HCI:Development of physico-chemical,textural and surface properties[J].Applied Clay Science,1995,10:247-258
    Barron P F.Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates,sepiolite and palygorskite[J].American Mineralogist,1985,70:758-766
    Blanco C,Herrero J,Mendioroz S,et al..Infrared studies of surface acidity and reversible folding in palygorskie[J].Clays and Clay Minerals,1988,36(40):364-368
    Bradley W F.The structural scheme of attapulgite[J].American Mineralogist,1940,25(6):405-410
    Cerezo P,Iborra C V,Lopez-Galindo A,et al..Use fo water uptake and capillary suction time measures for evaluation of the anti-diarrhoeic properties of fibrous clays[J].Applied Clay Science,2001,20(1-2):81-86
    Chishiolm J E.An X-ray powder-diffraction study of palygorskite[J].The Canadian Mineralogist,1990,28(2):329-339
    Chishiolm J E.Powder-diffraction patterns and structural models for palydorskite[J].The Canadian Mineralogist,1992,30(1):61-73
    Christ C L.Palygorskite:New X-ray data[J].American Mineralogist,1969,54(1-2):198-205
    Cizmek A,Subotic B,Aiello R,et al..Dissolution of high-silica zeolites in alkaline solutions: Dissolution of silicalite-1 and ZSM-5 with different aluminum content[J]. Microporous Materials, 1995, (4): 159-168
    Corma A, Garcia H, Leyva A, et al. Alkali-exchanged sepiolites containing palladium as ifunctional (basic sites and noble metal) catalysts or the Heck and Suzuki reactions[J]. Applied Catalysis A: General, 2004,257: 77-83
    Corma A, Mifsud A, Sanz E. Influence of the chemical-composition and textural-composition and textural characteristic of palygorskite on the acid leaching of octahedral cations [J]. Clay Minerals, 1987,22(2): 225-232
    Corma A, Mifsud A, Sanz E. Kinetics of the acid leaching of palygorskite: influence of the octahedral sheet composition [J]. Clay Minerals, 1990,25(2): 197-205
    Delabie A, Pierloot K, Groothaert M H, et al. Study of the coordination of Cu~(2+) in zeolite Y: Interaction with water and ammonia[J]. Mic roporous Mesoporous Mater, 2000,37:209-222
    Dove P M. The dissolution kinetics of quartz in aqueous mixed cation solution [J]. Geochimica et Cosmochimica Acta, 1999,63(22): 3715-3727
    Drist V A, Sokolova G V. Structure of palygorskite[J]. Soviet Physics Crystallography, 1971,16:183-185
    Falaras P, Kovanis I, Lezou F, et al..Cottonseed oil bleaching by acid-activated montmorillonite[J]. Clay Minerals, 1999, 34(2): 221-232
    Frost R L, Cash G A, Kloprogge J T. 'Rocky Mountain leather', sepiolite and attapulgite — an infrared emission spectroscopic study [J]. Vibrational Spectroscopy, 1998,16(2): 173-184
    Frost R L, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites[J]. Thermochimica Acta, 2003, 397:119-128
    Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals, 1996,31(4):443-453
    Gard J A, Follett E A X. A structural scheme for palygorskite[J]. Clay Mineralogy, 1968, 7:367-370
    Godelitsas A, Charistos D, Dwyer J, et al.. Copper( II )-loaded HFU-type zeolite crystals: characterization and evidence of surface complexation with N,N-diethyldithiocarbamate anions[J]. Microporous Mesoporous Mater, 1999, 33: 77-87
    Golden D C, Dixon J B, Shadfan H, et al.. Palygorskite and Sepiolite Alteration to Smectite under Alkaline Conditions [J]. Clays and Clay Minerals, 1985, 33(1):44-50
    Golden D C , Dixon J B . Low-temperature Alteration of Palygorskite to Smectite[J]. Clay and Clay Minerals, 1990, 38(4): 401-408
    Gonzalez F, Pesquera C, Benito I. Mechanism of acid activation of magnesic palygorskite[J]. Clays and Clay Minerals, 1989, 37(3):258-262
    Gonzalez F, Pesquera C, Benito I. Thermal investigation of acid-activated attapulgites: influence of isomorphic substitution in the octahedral sheet [J]. Thermochimica Acta, 1992,194(2): 239-246
    Gonzalez F, Pesquera C, Benito I. Mechanism of acid activation of magnesic palygorskite[J]. Clays and Clay Minerals, 1989,37(3):258-262
    Haydn H M. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Applied Clay Science,2000, 17(5-6): 207-221
    Heller-Kallai L, Mosser C. Migration of Cu ions in Cu montmorillonite heated without alkali halides[J]. Clay and Clay Minerals, 1995,43:738-743
    Heller-Kallai L, Rozenson I. Mossbauer studies of palygorskite and some aspects of palygorskite mineralogy [J]. Clay and Clay Minerals, 1981,29(3): 226-232
    Latif A N, Weaver E C. Kinetic of acid dissolution of palygorskite(attapulgite) and sepiolite[J]. Clays and Clay Minerals, 1969,17(1): 169-178
    Lazarevic, S, Jankovic-Castvan I, Jovanovic D, et al.. Adsorption of Pb~(2+), Cd~(2+) and Sr~(2+) ions onto natural and acid-activated sepiolites[J]. Applied Clay Science, 2007,37(1-2): 47-57
    Khademi H, Mermut A R. Source of palygorskite in gypsiferous arid soils and associated sediments from central Iran[J]. Clay Minerals, 1998, 33(4): 561-578
    Komarneni S. Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy[J]. Clay and Clay Minerals, 1989, 37(5): 469-473
    Krekeler M P S, Hammerly E, Rakovan J, et al.. Microscopy study of the palygorskite-to-smectite transformation[J]. Clay and Clay Minerals, 2005, 53(1):92-99
    Kuang W X, Facey G A, Detllier C. Dehydration and rehydration of palygorskite and the influence of water on the nanopores[J]. Clays and Clay Minerals, 2004, 52(5):635-642
    Latif A N, Weaver E C. Kinetics of acid dissolution of palygorskite(attapulgite) and sepiolite [J]. Clays and Clay Minerals, 1969, 17(1): 169-178
    Liu J. Studies on natural STI zeolite, modification, structure, adsorption and ctalysis[J]. Microporous Mesoporous Mater, 2000, 37(2): 365-378
    Mckay G, Ko D C K, Cheung C W, et al. Sorption equilibria of metal ions on bone char[J], Chemosphere, 2004(3): 273-281
    Melo D M A, Ruiz J A C, Melo M A F, Sobrinho E V. Preparation and characterization of terbium palygorskite clay as acid catalyst[J]. Microporous and Mesoporous Materials, 2000,38(2-3):345-349
    Melo D M A, Ruiz J A C, Melo M A F, et al.. Preparation and characterization of lanthanum palygorskite clays as acid catalysts[J]. Journal of Alloys and Compounds, 2002, 344(1-2):352-355
    Merkl R S. A sedimentological, mineralogical, and geochemical study of the fuller's earth deposits of the Miocene Hawthorne group of south Georgis-north Florida[D]. PhD dissertation, Indiana University, Bloomington, Indiana, 1989: 239
    Myriam M, Suarez M, Martin Pozas J M. Structural and textural modifications of palygorskite and sepiolite under acid treatment [J]. Clay and Clay Minerals, 1998, 46(3):225-231
    Ray L. Frost, Oliver B. Locos, Huada Ruan, et al. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vibrational Spectrospcopy, 2001,19(27): 1-13
    Rodriguez M A V, Suraez M, Munoz M A B, et al.. Comparative FT-IR study of the removal of octahedural cations and structural modifications during acid treatment of several silicates [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1996, 52(13):1685-1694
    Serna G J, Vamscoyoc G E. Infrared study of sepiolite and palygorskite surfaces[C]. Developments in Sedimentology 27, International Clay Conference, 1979: 197-206
    Serratosa J M. Surface properties of fibrous clay minerals(palygorskite and sepiolite)[C]. Development in Sedimentology 27, International Clay Conference, 1978:99-109
    Strawn D G, Palmer N E, Fumare L J, et al.. Copper sorption mechanisms on smectites[J]. Clay and Clay Minerals, 2004, 52(3): 321-333
    Sverjensky D A, Shai N. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water [J]. Geochimica et Cosmochimica Acta, 1996,60: 3773-3797
    Tateo F, Sabbadini R, Morandi N. Palygorskite and sepiolite occurrence in Pliocene lake deposits along the Rive Nile: evidence of an arid climate[J]. Journal of African Earth Science, 2000,31:633-645
    Uyanik A, Cay S, Ozasl K. Single and binary component adsorption of copper( II) and cadmium(II) from aqueous solutions using tea-industry waste [J]. Separation and Purification Technology, 2004: 1-8
    Viseras C, Meeten G. H., Lopex-Galindo A. Pharaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure[J]. International Journal of Pharmaceutics, 1999,182:7-20
    Viseras C, Ferrari F, Yebra A, et al.. Disintegrant efficiency of special phyllosilicates: smectite, palygorskite, sepiolite[J]. STP Pharma Sciences, 2001a, 11(2): 137-143
    Viseras C, Cerezo P, Meeten G H, et al.. One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions[J]. International Journal of Pharmaceutics, 2001b, 217(1-2): 201-213
    Wichterlova B, Sobalik Z, Dedecek J. Cu ion siting in high silica zeolite: spectroscopy and redox properties[J], Catalysis Today, 1997, 38: 199-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700