几种金属有机骨架材料的合成及甲烷吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气(甲烷)绿色环保,经济安全,被认为是一种较理想的汽车燃料。然而车载存储问题限制了天然气的应用。在当前技术中,吸附技术是最为经济有效和最具发展前景的存储方式之一。吸附剂是吸附技术的核心和关键。金属-有机骨架材料(MOFs)由于具有巨大比表面积,孔径可调、表面化学性质可修饰,是近年来发展迅速的一类多孔材料,在能源环境领域具有广阔的应用前景。
     本文针对能源气体中天然气的存储,选择合成具有高比表面积的MOF-5和MIL-101材料,主要考察了MOF-5、ZIF-8、MIL-101和HKUST-1等几种MOFs材料对甲烷的吸附性能,具有研究意义和应用前景。
     本文研究了MOF-5晶体合成的反应条件对MOF-5晶体的表面形貌、晶体结构和孔隙结构等物理化学性能的影响。利用SEM、XRD和快速比表面积和孔径分布分析仪对所制备的MOF-5晶体进行表征分析。研究结果表明:以二乙基甲酰胺为溶剂,将Zn2+/对苯二酸摩尔配比为2.64的合成液中置于130°C下反应4小时可得到小颗粒(40-70μm)和高比表面积( S Langmuir=2595m2/g)的MOF-5晶体。
     本文研究了CH4在MOF-5、ZIF-8、ZIF-62、MIL-101、HKUST-1晶体颗粒上的吸附相平衡。采用重量法测定了CH4吸附等温线,估算出CH4气体在MOF-5、MIL-101、HKUST-1上的等量吸附热。结果表明:Langmuir等温线方程可以准确地描述CH4在MOF-5、MIL-101、HKUST-1上的吸附数据;在299.15K和40bar条件下,CH4在HKUST-1上的吸附量最大(93.8mg/g);CH4在MOF-5、MIL-101、HKUST-1上等量吸附热分别为10.85~8.14kJ / mol,15.75~13.23kJ/mol,18.02~9.03kJ / mol。
     本文研究了ZIF-62和SBA-15吸附苯的性能。结果发现:在p / po≤0.4时,ZIF-62多孔材料相对于介孔分子筛SBA-15对苯具有更大的吸附能力。苯在ZIF-62上的吸附等温线为典型的Ⅰ型吸附等温线,298K时,ZIF-62对苯的平衡吸附量达到185mg/g,苯在ZIF-62上的吸附遵循拟一级动力学方程。
Natural gas (methane) is considered as an ideal vehicle fuel due to its environmental protective, economy and safe. However, the application of natural gas in Vehicle has been limited by the difficulties in on-board storage. Adsorption nature gas is considered a most prospective storage method. And the key of adsorption nature gas is to develop efficient adsorbents. A new type of porous materials, metal-organic frameworks, is believed to be a kind of very potential nature gas adsorbent, which has large surface area, designable pore texture and several advantages. This dissertation is mainly concerned with study on methane adsorption onto several novel metal-organic frameworks, MOF-5, ZIF-8, ZIF-62, MIL-101and HKUST-1. This research mainly involves synthesis and characterization of the MOF-5 crystals, determination of CH4 adsorption thermodynamics on the MOF-5, ZIF-8, ZIF-62, MIL-101and HKUST-1 particles. This study tries to answer the questions of engineering application and adsorpion science, like the uptake of CH4 at different temperature or under different pressure and so on, which has scientific research value and practical significance.
     The effects of synthesis condition on physical properties of MOF-5 crystals, including the morphology, crystal structure and porous texture were investigated. SEM, XRD and N2 adsorption/desorption were used to characterize the morphology, crystal structure and porous texture properties of MOF-5 crystals. Results showed that MOF-5 crystals whose partical sizes ranged from 40 to 70μm and surface area was up to 2595m2/g were obtained under the following conditions: synthesis temperature of 130°C, reaction time of 4 hours, the Zn2+/BDC molar ratio of 2.64 and N, N-diethylformamide as the solvent.
     Adsorption equilibriums of CH4 on the MOF-5, ZIF-62, MIL-101 and HKUST-1 particles were studied by using gravimetric method. The isosteric adsorption heat of CH4 on the MOF-5, MIL-101 and HKUST-1 were estimated. Results showed that CH4 adsorption behavior can be accurately described by Langmuir isotherm equation; HKUST-1 had the largest amount of CH4 adsorbed compared to the other MOFs crystals investigated in this work. The amount adsorbed of CH4 on the HKUST-1 was up to 93.8mg/g at 299.15K and 40bar. The isosteric adsorption heats of CH4 on the MOF-5, MIL-101 and HKUST-1 particles were in the range of 10.85-8.14kJ/mol, 15.75-13.23kJ/mol and 18.02-9.03kJ/mol, respectively.
     Methane adsorption properties onto ZIF-62 and SBA-15 were studied in this research. Results showed that the amount adsorbed of benzene on the ZIF-62 was more than that on the SBA-15 if p / po≤0.4. Asorption isotherm of benzene on ZIF-62 was typical type-I adsorption isotherm. The equilibrium amount adsorbed of benzene on the ZIF-62 was up to 185mg/g. And sorption of benzene on ZIF-62 conforms to pseudo-first-order equation.
引文
[1]王秉刚.对我国燃油汽车问题的认识和建议[J].世界汽车,1999 (8):1-51
    [2]邹祖烨.国外代用燃料汽车发展概览[M].中国铁道出版社, 1998, 123-124
    [3]刘保华,李家俊,赵乃勤.天然气用做汽车替代性燃料的储气方式研究[J].炭素, 2002, 112 (4) : 39- 42
    [4]苗望春.世界天然气工业的发展趋势[J].石油与天然气, 1999, (2): 15-18
    [5] Vasiliev L.L., Kanonchik D.A. Adsorbed Natural Gas Storage and Transportation Vessels[J]. International Journal of Thermal Sciences, 2000, 39 (9-11): 1047-1055
    [6]梅塞尔公司.液化天然气汽车[J].北京汽车, 2000, 1: 30-31
    [7] Big Future Tipped for Natural Gas Vehicles [J]. Petroleum Economist, 1992, 59(7):
    [8]孙济美.代用燃料汽车(一) [J].汽车工艺与材料, 2000, (11): 1-5
    [9]罗格梅.国内汽车代用燃料资源及应用情况[J].汽车工艺与材料, 2000, (10): 13-16.
    [10]杨效东,顾安忠.天然气汽车储气方式的技术经济性分析[J].油气储运, 2000, 19 (11) : 29-33
    [11] Matranga K.R., Myers A.L., Glandt E.D. Storage of Natural Gas by Adsorption on Activated Carbon [J]. Chemical Engineering Science, 1992, 47(7): 1569-1579
    [12]孙乃有.天然气及其吸附剂的研究——车用燃料[J].中国能源, 1995(6): 17-20
    [13] David Coyle, et al. A Proven Stranded Gas Monetization Option, PE Annual Technical Conference and Exhibition held in Denver, Colorado, USA, 2003, 10: 5-8
    [14]辛中仁.压缩天然气钢瓶爆炸事故分析[J].天然气工业, 1998, 18 (2): 75- 78
    [15] Juntegen H. New Applications for Carbonaceous Adsorbents [J].Carbon, 1977, 15 (5): 273-283
    [16] Feaver A., Cao G.Z.. Activated Carbon Cryogels for Low Pressure Methane Storage[J]. Carbon, 2006, 44(3): 587–610
    [17] Parkyns N. D., Quinn D.F.. Natural Gas Adsorbed on Carbon[J]. Porosity in Carbons, 1992, 11: 291- 325
    [18] Kasyh T., Okava K., Maeda T., et al. International Gas Research Conference[D]. US, Orando, 1992
    [19]廖志敏,蒋洪.吸附天然气技术及其应用[J].油气储运, 2005, 24(4): 19-22
    [20] Kasuh T. Okawa K, Maeda T, et al. International Gas Research Conference [D]. US, Orando, 1992
    [21] Ockwig, N.W., et al.. Reticular chemistry: Occurrence and taxonomy of nets andgrammar for the design of frameworks. Accounts of Chemical Research, 2005. 38(3): 176-182
    [22] Omar M.Y., Tina Du¨ren, et, al. Design of New Materials for Methane Storage [J]. Langmuir, 2004, 20 (7): 2683-2689
    [23] James S.L. Metal-Organic Frameworks [J]. Chem. Soc. Rev., 2003, 32: 276-288
    [24] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed., 2004, 43: 2334-2375
    [25]魏文英,方键,孔海宁,等.金属有机骨架材料的合成及应用[J].化学进展, 2005, 17: 1110-1115
    [26] Kim J., Chen B.L., Reineke T.M., et al, Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units[J], J.Am. Chem. Soc., 2001, 123:8239~8247
    [27] Chandler B.D., Cramb D.T., Shimizu G.K.H.. Microporous Metal-Organic Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks [J]. J. Am..Soc., 2006,128: 10403-10412
    [28] Kitagawa S., Kitaura R., Noro Shin-ichiro, Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed., 2004, 43: 2334-2375
    [29] Ferey G. Hybrid porous solids: past , present , future[J]. Chem Soc Rev, 2008, 37: 191-214
    [30] Hoskins B.F., Robson R. Design and Construction of a New Class of Scffolding-like Materiald Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods[J]. J. Am .Chem. Soc., 1990, 112: 1546-1554
    [31] Wu Z.Y., Lee S., Moore J.S. Synthesis of Tree-Dimensional Nanoscaffolding [J]. J.Am.Chem.Soc.,1992, 114: 8730-8732
    [32] Li H, Eddaoudi M, O'Keeffe M, Yaghi O.M. Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature, 1999, 402: 276-279.
    [33] Barton T.J., Bull L.M., Klemperer W.G., et al. Tailored Porous Materials[J]. Chem. Mater., 1999, 11: 2633-2656
    [34] Chen B.L., Eddaoudi M., Hyde S.T. et al. Interwoven Metal-Organic Framework on A Periodic Minimal Surface with Extra-Large Pores [J]. Science, 2001, 291: 1021-1023
    [35] Lu J.Y. Crystal Engineering of Cu-Containing Metal Organic Coordination Polymers under Hydrothermal Conditions [J]. Coordin. Chem. Rev., 2003, 246: 327-347
    [36] Zheng X.J., Sun C.Y., Lu S.Z., et al. New Porous Lanthanide-Organic Frameworks [J]. Eu. J. Inorg. Chem., 2004, 3262-3268
    [37] Dimos A., Tsaousis D., Michaelides A., et al. Microporous Rare Earth Coordination Polymers:Effect of Lanthanide Contraction on Crystal Architecture and Porosity[J]. Chem.Mater., 2002, 14: 2616-2622
    [38] Serre C., Millange F., Marrot J., et al. Hydrothermal Synthesis, Structure Determination, and Thermal Behabior of New Three-Dimensional Europium Terephthalates [J]. Chem. Mater., 2002, 14: 2409-2415
    [39] Christian S., Franck M., Christelle T., et al. Very Large Breathing Effect in the First Nanoporous Chromium(Ш)-Based Solida[J]. J. Am. Chem. Soc.2002,124:13519-13526
    [40] O’Keeffe M., Eddaoudi M., Li H.L., et al. Frameworks for Extended Solids: Geometrical Design Principles [J]. J. Solid. State. Chem., 2000, 152: 3-20
    [41] Zhang H., Wang X., Zhang K., et al. Functional Crystals: Search Criteria and Design Principles [J]. J. Solid. State. Chem., 2000, 152: 191-198
    [42] Rosi N.L., Eckert J., Eddaoudi M., et al. Hydrogen Storage In Microporous Metal-Organic Frameworks [J]. Science, 2003, 300: 1127-1129
    [43] Morris R E, Wheatley P S. Gas storage in nanoporous materials[J]. Angew. Chem. Int. Ed.,2008, 47: 4966-4981
    [44]周子娥.金属-有机骨架材料中天然气存储的分子模拟研究及MOF-5的实验合成[D].北京:北京化工大学,2009
    [45]孙为银.配位化学[M].北京:化学工业出版社,2004
    [46] Yaghi M., Davis C.E., Li G..M., et al. J. Am. Chem. Soc., 1997, 119, 2861
    [47] Eddaoudi M., Kim J., Rosi N., et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469-472
    [48] Li H., Eddaoudi M., O′Keeffe M., et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal Organic Framework [J]. Nature, 1999, 402: 276-279
    [49] Millward A.R., Yaghi O.M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J]. J. Am. Chem. Soc., 2005, 127 (51): 17998-17999
    [50] Wang B., CotéA.P., Furukawa H., et al. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs [J]. Nature, 2008, 453: 207-211
    [51] Banerjee R., Phan A., Wang B., et al. High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 2008, 319 (5865): 939-943
    [52] Millange F., Serre C., Férey G.. Synthesis, Structure Determination and Properties ofMIL-53as and MIL-53ht: the Tirst Cr (III) Hybrid Inorganic-Organic Microporous Solids: Cr (III) (OH)·{O2C-C6H4-CO2}·{ HO2C-C6H4-CO2H} [J]. Chem. Commun., 2002 (8): 822-823
    [53] Millange F., Serre C., Guillou N., et al. Structural Effects of Solvents on the Breathing of Metal-Organic Frameworks: An In Situ Diffraction Study [J]. Angew. Chem. Int. Ed., 2008, 47 (22): 4100-4105
    [54] Llewellyn P.Ll, Bourrelly S., Serre C., et al. How Hydration Drastically Improves Adsorption Selectivity For CO2 over CH4 in the Flexible Chromium Terephthalate MIL-53 [J]. Angew. Chem. Int. Ed., 2006, 45 (46): 7751-7754
    [55] Férey G., Mellot-Draznieks C., Serre C., et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science, 2005, 309: 2040-2043
    [56] Kitagawa S., Kitaura R., Noro S..Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 2004, 43 (18): 2334-2375
    [57] Tanaka D., Nakagawa K., Higuchi M., et al Kinetic Gate Opening Process in A Flexible Porous Coordination Polymer. Angew. Chem. Int. Ed., 2008, 47 (21): 3914-3918
    [58] Ma S., Zhou H.C. A Metal-Organic Framework with Entatic Metal Centers Exhibiting High Gas-Adsorption Affinity [J]. J. Am. Chem. Soc., 2006, 128(36): 1734-1735
    [59] Ma S., Sun D., Simmons J.M., et al. Metal-Organic Framework from An Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. J. Am. Chem. Soc., 2008, 130(3): 1012-1016
    [60] Kondo M., Yoshitomi T., Seki K., et al. Angew. Chem. Int. Ed., 1997, 36 (20): 1725–1727
    [61] Kondo M., Okubo T., Asami A., et al, Angew. Chem. Int.Ed. 1999, 38 (1): 140–143
    [62] Kondo M., Shimamura M., Noro S.-I., et al, Chem. Mater. 2000, 12 (3): 1288–1299
    [63] NoroS I., Kitagawa S., Kondo M., et al. Angew. Chem. Int.Ed. 2000, 39: 2081–2084
    [64] Seki K.. Chem. Commun. 2001, 16: 1496–1497
    [65] Düren T., Snurr R.Q.. Assessment of Isoreticular Metal-Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-butane Mixtures [J]. J. Phys. Chem. B, 2004, 108(40): 15703-15708
    [66] Wang S. Comparative Molecular Simulation Study of Methane Adsorption in Metal-Organic Frameworks [J]. Energy Fuels, 2007, 21(2): 953-956
    [67]王静,曹立志,武永虹,等.感光化学中的近代研究方法[J].信息记录材料,2003,4(3): 39-44
    [68]薛用芳.固体催化剂的研究方法-第二章分析电子显微镜[J].石油化工,2001,30(3): 227-235
    [69]张婉静.固体催化剂的研究方法-第十章多晶X射线衍射[J].石油化工, 2001,30(7): 571-583
    [70] MANJARE S D, GHOSHAL A K. Studies on adsorption of ethyl acetate vapor on activated carbon[J]. Industrial and Engineering Chemistry Research, 2006, 45(19): 6563-6569
    [71] Tan Z M ,Gubbins K E. Adsorption in carbon micropores at supercritical temperature [ J ]. J Phys Chem ,1990 ,94 (15):6061 - 6069
    [72] Menon P G. Adsorption of carbon monoxide on alumina at high pressures [J ] . J Am Chem Soc, 1965, 87 : 3057 - 3060
    [73] Banerjee R., Phan A., Wang B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture [J]. Science, 2008, 319: 939-943
    [74] Chowdhury P., Bikkina C., Gumma S. Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101 [J]. J. Phys. Chem. C, 2009,113 (16): 6616–6621
    [75] Chowdhury P. et al. Comparison of Adsorption Isotherms on Cu-BTC Metal Organic Frameworks Synthesized from Different Routes [J]. Microporous and Mesoporous Materials, 2009, 117 (1-2): 406–413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700