不同形貌二氧化锰纳米材料的制备及其电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的飞速发展,环境和能源问题越来越突出。锰的价格低廉、无毒、对环境友好、结构多样化且其自然资源丰富,这使得氧化锰材料在能源、环境、催化、吸附、离子交换和通讯等诸多领域都有广泛的应用。因此,本论文以二氧化锰材料为对象,研究了具有特殊形貌二氧化锰材料的制备及其电容性能,利用XRD、SEM、TEM、CV等手段,表征了所制备材料的结构、形貌和电化学性质。
     全文包括综述和实验二大部分。第一章综述部分主要论述了二氧化锰的结构特征、合成方法、性质及其应用。实验部分以高锰酸钾和硫酸锰为反应体系,制备了空心微球型二氧化锰(第二章)和星型纳米簇状二氧化锰(第三章);以SBA-15为模板制备了二氧化锰介孔材料(第四章)。在探讨了制备材料生长机理的基础上,研究了制备材料的电化学性质。第五章为全文的结论。
     主要研究内容、研究成果及创新点如下:
     1.在无模板剂或表面活性剂辅助条件下,以高锰酸钾和硫酸锰的氧化还原反应体系为研究对象,采用水热反应制备了三维海胆型和空心微球二氧化锰纳米材料。高锰酸钾和硫酸锰摩尔比为6:1时,酸性体系中直接水热反应20 min得到了海胆型二氧化锰;高锰酸钾和硫酸锰摩尔比为6:1的反应体系中加入适当量的三价铁离子,得到了空心微球型二氧化锰。应用XRD、SEM、TEM、N2吸附和元素分析,对所制备材料进行了表征。结果表明海胆型和空心微球型二氧化锰纳米材料都是由纳米棒组装而成,铁离子对合成空心微球型二氧化锰纳米材料具有关键作用,空心微球型二氧化锰的生长机理遵循奥斯特瓦尔德熟化机制。空心微球型二氧化锰纳米材料在1 mol/L的Na2SO4溶液中,扫描速度为5 mV/s时显示了较高的比电容,其比电容量达到106 F/g。同时,该材料具有好的电化学可逆性及循环稳定性,是较理想的超级电容器电极材料。
     2.在无模板剂或表面活性剂辅助条件下,以摩尔比为5:3的高锰酸钾和氯化锰为研究体系,向体系中添加不同价态金属离子,如钠离子,镁离子,铁离子,研究结果发现,反应体系中存在的不同金属离子能显著影响制备产物的形貌。不加金属离子时,产物为不均匀纳米棒,当加入上述离子时,其形貌分别变为花瓣状,均匀棒状和星型二氧化锰纳米簇。星型纳米簇状二氧化锰材料在1 mol/L的Na2SO4溶液中,扫描速度为5 mV/s时所得循环伏安曲线对称性良好,测试电势范围内无氧化还原峰出现,可以满足超级电容器快速充放电的需求。
     3.采用模板辅助法合成介孔二氧化锰材料。以介孔分子筛SBA-15为模板,高锰酸钾和硝酸锰为锰源,采用水热反应制备了二氧化锰负载的SBA-15中间体。该中间体用氢氧化钠溶掉模板,形成了具有介孔结构的二氧化锰材料。研究结果表明,用SBA-15模板制备的二氧化锰具有介孔孔道和大的比表面积,但该材料比电容较小。
With the rapid development of modern society, environmental and energy issues are becoming increasingly prominent. Manganese oxides are cheap, non-toxic, environmentally friendly, structural diversification and rich in natural resources, these excellent properties result in manganese oxides having a wide range of applications in many fields, such as energy, environment, catalysis, adsorption, ion exchange, and communication and so on. In this thesis, manganese dioxides with different morphologies are prepared and the electrical properties are discussed. Meanwhile, the structure, morphology and the chemical composition of the obtained materials were characterized by XRD, SEM, BET and AAS.
     This paper mainly consists of two sections, the review section and the experimental part. The crystal structure, synthesis methods, properties and applications of manganese dioxide are reviewed in Chapter 1. Manganese oxides with hollow microsphere and star-like nanocluster morphologies are prepared in Chapter 2 and Chapter 3 on the basis of the reaction system of KMnO4 and MnSO4, respectively. The prepared manganese oxides with different morphologies have been characterized and a possible growth mechanism of hollow MnO2 microspheres is studied on the basis of the experimental results. In addition, the mesoporous manganese oxide has been prepared by using SBA-15 as a sacrifice template in Chapter 4. Finally, the research conclusion is presented in Chapter 5.
     The contents, experimental results and originalities of this research are as follows:
     1. Without the assistance of any templates or surfactants, manganese oxides with hollow microsphere morphology and urchin morphology are successfully prepared via a simple hydrothermal method at 150℃within 20 minutes on the basis of the reaction system of KMnO4 and MnSO4, respectively. Manganese oxides with urchin morphology is obtained with a molar ratio of KMnO4/MnSO4=6:1 in a acid solution while hollow structured MnO2 microspheres can be obtained only when Fe3+ions are added in the same reaction system. The prepared materials are systemically characterized by XRD, SEM, TEM, N2 adsorption-desorption and element analyses. The research results show that Fe3+ions are crucial in controlling the growth of hollow structured MnO2 microspheres, and the obtained manganese oxides with different morphologies are consisted of nanorods. Hollow MnO2 microspheres are formed according to the Ostwald ripening process. The electrochemical performance of the obtained samples with different morphologies indicates that the hollow structured MnO2 microspheres show an ideal capacitive behavior and good cycling stability. In compare with manganese oxide with urchin morphology, the specific capacitance of hollow structured MnO2 microspheres is 106 F/g at a sweep rate of 5 mV/s in 1 mol/L Na2SO4 solution, and the t Fe3+ions enhance markedly the specific capacitance of the obtained material.
     2. Without assistance of any templates or surfactants, by adding different mental ions, such as Na+, Mg+, Fe3+to a system of KMnO4/MnCl2 with a molar ratio of 5:3, manganese oxide with petal-like, nanorods, star-like nanocluster morphology is obtained. The experimental results show that the metal ions existed in the reaction system affluence the morphology of the obtained materials, manganese oxide with star-like nanocluster morphology is obtained by adding Fe3+ions into the reaction system. The experimental results show that the cyclic voltammetry curve of the synthesized material has good symmetric characteristic and non-redox peaks are observed at a sweep rate of 5 mV/s in 1 mol/L Na2SO4 solution.
     3. Mesoporous manganese oxide is synthesized by using SBA-15 as sacrifice template, KMnO4 and Mn(NO3)2 as manganese source by a hydrothermal treatment. The experimental results show that the prepared mesoporous manganese dioxide material has a large surface area and good mesoporous characteristic, but its electrochemical performance is not good due to the existence of SiO2 as an impurity.
引文
[1]S. Jana, S. Basu, S. Pande, S. K. Ghosh, T. Pal. Shape-selective synthesis, magnetic properties and catalytic activity of single crystalline β-MnO2 nanoparticles[J]. The Journal of Physical Chemistry C,2007,111:16272-16277.
    [2]G. H. Lee, S. H. Huh, J. W. Jeong, B. J. Choi, S. H. Kim, H-C. Ri. Anomalous magnetic properties of MnO nanoclusters[J]. Journal of the American Chemical Society,2002,124:12094-12095.
    [3]H. T. Zhu, J. Luo, H. X. Yang, J. K. Liang, G H. Rao, J. B. Li, Z. M. Du. Birnessite-type MnO2 nanowalls and their magnetic properties[J]. The Journal of Physical Chemistry C,2008,112:17089-17094.
    [4]R. Patrice, L. Dupont, L. Aldon, J.-C. Jumas, E. Wang, J. M. Tarascon. Structural and electrochemical properties of newly synthesized Fe-substituted MnO2 samples[J]. Chemistry of Materials,2004,16:2772-2782.
    [5]F. Y. Cheng, Y. Su, J. Liang, Z.1. Tao, J. Chen. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media[J]. Chemistry of Materials,2010,22:898-905.
    [6]A. Dyer, M. Pillinger, J. Newton, R. Harjula, T. Moller, S. Amin. Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides[J]. Chemistry of Materials,2000,12:3798-3804.
    [7]S. H. Reaney, C. L. Kwik-Uribe, D. R. Smith. Manganese oxidation state and its implications for toxicity[J]. Chemical Research in Toxicology,2002,15: 1119-1126.
    [8]A. J. Wu, J. E. Penner-Hahn, V. L. Pecoraro. Structural, spectroscopic, and reactivity models for the manganese catalases[J]. Chemical reviews,2004,104: 903-938.
    [9]T. X. T. Sayle, R. R. Maphanga, P. E. Ngoepe, D. C. Sayle. Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable Li batteries: simulating nanostructure at the atomistic level [J]. Journal of the American Chemical Society,2009,131:6161-6173.
    [10]Y-H. Bai, H. Zhang, J-J Xu, H-Y. Chen, Relationship between nanostructure and electrochemical/biosensing properties of MnO2 nanomaterials for H2O2/choline[J]. The Journal of Physical Chemistry C,2008,112:18984-18990.
    [11]J. C. Villegas, L. J. Garces, S. Gomez, J. P. Durand, S. L. Suib. Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions [J]. Chemistry of Materials,2005,17:1910-1918.
    [12]宋文顺.化学电源工艺学.北京:中国轻工业出版社,1998:49.
    [13]M. M. Thackeray. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry,1997,25:1-71.
    [14]Y. Chabre, J. Pannetier. Structural and electrochemical properties of the proton/γ-MnO2[J]. Progress in Solid State Chemistry,1995,23:1-130.
    [15]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J].电池.2004,34:411-414.
    [16]S. Turner, P. R. B. Todorokies. A new family of naturally occurring manganese oxides[J]. Science,1981,212:1024-1027.
    [17]Q. Feng, H. Kanoh, K. Ooi. Manganese oxide porous crystals[J]. Journal of Materials Chemistry,1999,9:319-333.
    [18]W. I. F. David, M. M. Thackeray, P. G Bruce, J. B. Goodenough. Lithium insertion into β-MnO2 and the rutile-spinel transformation [J]. Materials Research Bulletin, 1984,19:99-106.
    [19]S. R. Segal, S. L. Suib, L. Foland. Decomposition of pinacyanol chloride dye using several manganese oxide catalysts[J]. Chemistry of Materials,1997,9:2526-2532.
    [20]O. Prieto, M. D. Arco, V. Rives. Structural evolution upon heating of sol-gel prepared birnessites[J]. Thermochimica Acta,2003,401:95-109.
    [21]S. L. Suib. Porous manganese oxide octahedral molecular sieves and octahedral layered materials[J]. Accounts of Chemical Research,2007:479-487.
    [22]X. F. Shen, Y. S. Ding, J. Liu, J. Cai, K. Laubernds, R. P. Zerger, A. Vasiliev, M. Aindow, S. L. Suib. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials[J]. Advanced Materials,2005,17: 805-809.
    [23]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(6)[J].电池.2007,37:25-28.
    [24]D. Portehault, S. Cassaignon, E. Baudrin, J. P. Jolivet. Design of hierarchical core-corona architectures of layered manganese oxides by aqueous precipitation[J]. Chemistry of Materials,2008,20:6140-6147.
    [25]D. Portehault, S. Cassaignon, N. Nassif, E. Baudrin, J. P. Jolivet. A core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism[J]. Angewandte Chemie International Edition,2008,47:6441-6444.
    [26]R. Patrice, L. Dupont, L. Aldon, J-C. Jumas, E. Wang, J-M. Tarascon. Structural and electrochemical properties of newly synthesized Fe-substituted MnO2 samples[J]. Chemistry of Materials,2004,16:2772-2782.
    [27]S. Chen, J. Zhu, Q. F. Han, Z. J. Zheng, Y. Yang, X. Wang. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick precipitation procedure and its electrochemical properties [J]. Crystal Growth & Design,2009,9:4356-4361.
    [28]Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chemistry of Materials,2005,17:5382-5389.
    [29]Q. W. Li, G. A. Luo, J. Li, X. Xia. Preparation of ultrafine MnO2 powers by the solid state method reaction of KMnO4 with Mn(Ⅱ) salts at room temperature [J]. Journal of Materials Processing Technology,2003,137:25-29.
    [30]张宝宏,张娜.纳米MnO2超级电容器的研究[J].物理化学学报,2003,19:286~288.
    [31]龚良玉,夏熙.化学改性MnO2纳米粉体的固相合成及性能[J].电源技术,2002,26:263~266.
    [32]X. H. Tang, Z.H. Liu, C. X. Zhang, Z. P. Yang, Z. L. Wang. Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area[J] Journal of Power Sources,2009,193:939-943.
    [33]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. The Journal of Physical Chemistry C,2010,114:658-663.
    [34]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters 2009,9:1002-1006.
    [35]D. Yan, P. X. Yan, S. Cheng, J. T. Chen, R. F. Zhuo, J. J. Feng, G. A. Zhang. Fabrication, in-depth characterization and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method[J]. Crystal Growth & Design,2009,9:218-222.
    [36]K. Kuratani, K. Tatsumi, N. Kuriyama. Manganese oxide nanorod with 2x4 tunnel structure:Synthesis and electrochemical properties[J]. Crystal Growth & Design, 2007,7:1375-1377.
    [37]Z. P. Liu, R. Z. Ma, Y. Ebina, K. Takada, T. Sasaki. Synthesis and delamination of layered manganese oxide nanobelts[J]. Chemistry of Materials,2007,19: 6504-6512.
    [38]V. Subramanian, H. W. Zhu, R. Vajtai, P. M. Ajayan, B. Q. Wei. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. The Journal of Physical Chemistry B,2005,109:20207-20214.
    [39]D. S. Zheng, S. X. Sun, W. L. Fan, H. Y. Yu, C. H. Fan, G. X. Cao, Z. L. Yin, X. Y. Song. One-step preparation of single crystalline β-MnO2 nanotubes[J]. The Journal of Physical Chemistry B,2005,109:16439-16443.
    [40]W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey. Phase controlled synthesis of MnO2 nanocrystals by anodic electrodeposition:Implications for high-rate capability electrochemical supercapacitors[J]. The Journal of Physical Chemistry C,2008,112: 15075-15083.
    [41]M. Nakayama and H. Tagashira. Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes[J]. Langmuir, 2006,22:3864-3869.
    [42]D. W. Liu, Q. F. Zhang, P. Xiao, B. B. Garcia, Q. Guo, R. Champion, G. Z. Cao. Hydrous manganese dioxide nanowall arrays growth and their Li+ions intercalation electrochemical properties[J]. Chemistry of Materials,2008,20:1376-1380.
    [43]K.W. Nam, M. G. Kim, K.B. Kim. In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors[J]. The Journal of Physical Chemistry C,2007,111:749-758.
    [44]M. Sugantha, P. A. Ramakrishnan, A. M. Hermann, C. P Warmsingh, D. S. Ginley. Nanostructured MnO2 for Li batteries[J]. International Journal of Hydrogen Energy, 2003,28:597-600.
    [45]M. S. Wu, P. C. J. Chiang, J. T. Lee, J. C. Lin. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries[J]. The Journal of Physical Chemistry B,2005, 109:23279-23284.
    [46]M. S. Wu, J. T. Lee, Y. Y. Wang, C. C. Wan. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition[J]. The Journal of Physical Chemistry B,2004,108:16331-16333.
    [47]J. W. Long, L. R. Qadir, R. M. Stroud, D. R. Rolison. Spectro electrochemical investigations of cation-insertion reactions at sol-gel-derived nanostructured mesoporous thin films of manganese oxide[J]. The Journal of Physical Chemistry B, 2001,105:8712-8717.
    [48]P. L. Goff, N. Baffler, S. Bach, J. P. P. Ramos. Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis:Classical and sol-gel routes[J]. Journal of Materials Chemistry,1994,4:875-881.
    [49]S. Ching, D. J. Petrovay, M. L. Jorgensen, S. L. Suib. Sol-gel synthesis of layered birnessite-type manganese oxides[J]. Inorganic Chemistry,1997,36:883-890.
    [50]S. Bach, M. Henry, N. Baffier, J. Livage. Sol-gel synthesis of manganese oxides[J]. Journal of Solid State Chemistry,1990,88:325-333.
    [51]H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu. Cathode materials for lithium ion batteries prepared by sol-gel methods[J]. Journal of Solid State Electrochemistry, 2004,8:450-466.
    [52]J. C. Villegas, L. J. Garces, S. Gomez, J. P. Durand, S. L. Suib. Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions[J]. Chemistry of Materials,2005,17:1910-1918.
    [53]X. H. Feng, W. F. Tan, F. Liu, J. B. Wang, H. D. Ruan. Synthesis of todorokite at atmospheric pressure[J]. Chemistry of Materials,2004,16:4330-4336.
    [54]N. Kumagai, S. Komaba, K. Abe, H. Yashiro. Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries[J]. Journal of Power Sources,2005,146:310-314.
    [55]S. L. Brock, M. Sanabria, J. Nair, S. L. Suib, T. Ressler. Tetraalkylammonium manganese oxide gels:preparation, structure, and ion-exchange properties [J]. The Journal of Physical Chemistry B,2001,105:5404-5410.
    [56]L. X. Yang, Y. J. Zhu, H. Tong, W. W. Wang, G F. Cheng. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study [J]. Journal of Solid State Chemistry,2006,179:1225-1229.
    [57]A. S. K, S. D. Naik, R. S. Sonawane, B. B. Kale, N. Pavaskar, A. B. Mandale, B.K. Das. Nanosize Mn3O4 (hausmannite) by microwave irradiation method[J]. Materials Research Bulletin,2006,41:647-654.
    [58]L. Z. Wang, Y. Ebina, K. Takada, T. Sasaki. Ultrathin hollow nanoshells of manganese oxide[J]. Chemical Communications,2004,9:1074-1075.
    [59]X. Yang, Y. Makita, Z. H. Liu, K. Sakane, K. Ooi. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals[J]. Chemistry of Materials,2004,16:5581-5588.
    [60]S. F. Xie, X. Zhou, X. G. Han, Q. Kuang, M.S. Jin, Y. Q. Jiang, Z. X. Xie, L. S. Zheng. Supercrystals from crystallization of octahedral MnO nanocrystals[J]. The Journal of Physical Chemistry C,2009,113,19107-19111.
    [61]N. Wang, X. Cao, L. He, W. Zhang, L. Guo, C. Chen, R. Wang, S. Yang. One-pot synthesis of highly crystallined λ-MnO2 nanodisks assembled from nanoparticles: Morphology evolutions and phase transitions[J]. The Journal of Physical Chemistry C,2008,112:365-369.
    [62]W. Xiao, D. L. Wang, X. W. Lou. Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction[J]. The Journal of Physical Chemistry C,2010,114,1694-1700.
    [63]J. K. Yuan, W. N. Li, S. Gomez, S. L. Suib. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures [J]. Journal of the American Chemical Society,2005,127,14184-14185.
    [64]J. Park, E. Kang, C. J. Bae, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, H. M. Park, T. Hyeon. Synthesis, characterization and magnetic properties of uniform-sized MnO nanospheres and nanorods[J]. The Journal of Physical Chemistry B,2004, 108,13594-13598.
    [65]J. Z. Zhao, Z. L. Tao, J. Liang, J. Chen. Facile synthesis of nanoporous MnO2 structuresand their application in rechargeable Li-ion batteries [J]. Crystal Growth & Design,2008,8:2799-2805.
    [66]F. Chen, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries[J]. Inorganic Chemistry,2006,45:2038-2044.
    [67]F. Zhou, H. G. Zheng, X. M. Zhao, Q. X. Guo, X. M. Ni, T. Shen, C. M. Tang. Large-area synthesis of high-quality β-MnO2 nanowires and the mechanism of formation through a facile mineralization process[J]. Nanotechnology,2005,16: 2072-2076.
    [68]V. Subramanian, H. W. Zhu, R. Vajtai, P. M. Ajayan, B. Q. Wei. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. The Journal of Physical Chemistry B,2005,109:20207-20214.
    [69]W. N. Li, J. K. Yuan, S. G. Mower, S. Sithambaram, S. L. Suib. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes[J]. The Journal of Physical Chemistry B,2006,110: 3066-3070.
    [70]Z. Q. Li, Y. Ding, Y.J. Xiong, Y. Xie. Rational growth of various a-MnO2 hierarchical structures and β-MnO2 nanorods via a homogeneous catalytic route[J]. Crystal Growth & Design,2005,5:1953-1958.
    [71]Z. Q. Li, Y. Ding, Y. J. Xiong, Q. Yang, Y. Xie. One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale [J]. Chemical Communications,2005:918-920.
    [72]H. G. Zhu, E. W. Stein, Z. H. Lu, Y. M. Lvov, M. J. McShane. Synthesis of size-controlled monodisperse manganese carbonate microparticles as templates for uniform polyelectrolyte microcapsule formation[J]. Chemistry of Materials,2005, 17:2323-2328.
    [73]I. U. Haq, E. Matijevic. Preparation and properties of uniform coated inorganic colloidal particles:Nickel and its compounds on manganese compounds[J]. Chemistry of Materials,1997,9:2659-2665.
    [74]T. O. Ely, D. P. Centurion, A. Kumar, W. Guo, W. V. Knowles, S. A. M. S. Wong, I. Rusakova, A. Luttge, K. H. Whitmire. Manganese(Ⅱ) oxide nanohexapods: Insight into controlling the form of nanocrystals[J]. Chemistry of Materials,2006, 18:1821-1829.
    [75]Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, S. L. Suib. Three-dimensional hierarchical MnO2 nanoarchitectures[J]. Advanced Functional Materials,2006,16:549-555.
    [76]E. N. Tolentino, Z. R. Tian, H. Zhou, G. Xia, S. L. Suib. Effects of Cu2+ ions on the structure and reactivity of todorokite and cryptomelane type manganese oxide octahedral molecular sieves[J]. Chemistry of Materials,1999,11:1733-1741.
    [77]R. Ghosh, X. F. Shen, J. C. Villegas, Y. H. Ding, K. Malinger, S. L. Suib. Role of manganese oxide octahedral molecular sieves in styrene epoxidation[J]. The Journal of Physical Chemistry B,2006,110:7592-7599.
    [78]H. Cao, S. L. Suib. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts[J]. Journal of the American Chemical Society,1994,116:5334-5342.
    [79]Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chemistry of Materials,2005,17:5382-5389.
    [80]N. Sui, Y. Z. Duan, X. L. Jiao, D. R. Chen. Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures[J]. The Journal of Physical Chemistry C,2009,113:8560-8565.
    [81]Y.Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio. Studies on a Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4[J]. Journal of Power Sources,1995,56:61-67.
    [82]Y. Y Xia, M. Yoshio. Optimization of spinel Li+CMn2-UO4- as a 4V Li-Cell cathode in terms of a Li-Mn-O phase diagram, [J]. Journal of The Electrochemical Society,1997,144:4186-4195.
    [83]Y. Y Xia, Y. H. Zhou, M. Yoshia. Capacity fading a cycling of 4V Li/LiMn2O4 cell[J]. Journal of The Electrochemical Society,1997,144:2593-2600.
    [84]N. V. Kosova, N. F. Uvarov, E. T. Devyatkina. Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries[J]. Solid State Ionics 2000,135: 107-114.
    [85]宋桂明,周玉,周文元.锂离子电池正极材料LiMn2O4制备新工艺[J].无机材料学报,2001,19:11-14.
    [86]P. Strobel, F. Thiery, C. Darie, O. Proux, A. I. Palos, M. Bacia, J. B. Soupart. Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries[J]. Journal of Materials Chemistry,2005,15:4799-4808.
    [87]Y. Shin and A. Manthiram. Influence of the lattice parameter difference between the two cubic phases formed in the 4V region on the capacity fading of spinel manganese oxides[J]. Chemistry of Materials,2003,15:2954-2961.
    [88]M. Dolle, S. Patoux, M. M. Doeff. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries substitution with Co or Ni[J]. Chemistry of Materials,2005,17:1036-1043.
    [89]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y Yang, C. K. Chan, H. Peng, R. A. Huggins, Y.Cui. Spinel LiMn2O4 nanorods as lithium ion battery cathodes[J]. Nano Letter,2008,8:3948-3952.
    [90]E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitor[J]. Carbon,2001,39:937-950.
    [91]J. P. Zheng, P. J. Cygan, T. R. Jow. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. Journal of The Electrochemical Society, 1995,142:2699-2704.
    [92]邓梅根,杨邦朝,胡永达.纳米NiO的制备及其电容特性研究[J].材料工程,2005,5:19-21.
    [93]C. Lin, J. A. Ritter, B. N. Popov. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors [J]. Journal of The Electrochemical Society, 1998,145:4097-4101.
    [94]E. Machefaux, T. Brousse, D. Belanger. Supercapacitor behavior of new substituted manganese dioxides[J]. Journal of Power Sources,2007,165:651-655.
    [95]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte[J]. The Journal of Physical Chemistry C,2008,112:7270-7277.
    [96]Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P. Wu, R. Holze. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors[J]. The Journal of Physical Chemistry C, 2009,113:14020-14027.
    [97]I. Zhitomirsky, M. Cheong, J. Wei. The cathodic electrodeposition of manganese oxide films for electrochemical supercapacitors[J]. Journal of the Minerals, Metals and Materials Society,2007,59:66-69.
    [98]Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P. Wu, R. Holze. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors[J]. The Journal of Physical Chemistry C, 2009,113:14020-14027.
    [99]L. A. Attar, A. Dyer. Sorption behavior of uranium on birnessite, a layered manganese oxide[J]. The Journal of Materials Chemistry,2002,12:1381-1386.
    [100]茹天贵,王兰萍.天然二氧化锰催干剂的制备与应用[J].上海涂料.2009,47:14.
    [101]J. E. Greedan, N. P. Raju, A. S. Wills, C. Morin, S. M. Shaw, J. N. Reimers, Structure and magnetism in λ-MnO2 geometric frustration in a defect spinel [J]. Chemistry of Materials,1998,10:3058-3067.
    [102]Y. Tanaka, M. Tsuji. New synthetic method of producing a-manganese oxide for potassium selective adsorbent[J]. Materials Research Bulletin,1994,29: 1183-1191.
    [103]D. Y. Qu, K. H. J. Shi. Studies of activated carbons used in double-layer capacitors [J]. Journal of Power Sources,1998,74:99-107.
    [104]J. Ge, L. Zhuo, F. Yang, B. Tang, L. Wu, C. Tung. One-dimensional hierarchical layered KxMnO2 (x<0.3) nanoarchitectures:synthesis, characterization, and their magnetic properties [J]. The Journal of Physical Chemistry B,2006,110(36): 17854-17859.
    [105]D. Zheng, S. Sun, W. Fan, H. Yu, C. Fan, G. Cao, Z. Yin, X. Song. One-step preparation of single-crystalline β-MnO2 nanotubes[J]. The Journal of Physical Chemistry B,2005,109(34):16439-16443.
    [106]Japan Industrial Standard (JIS), M 8233,1969. Methods for determination of active oxygen in manganese ores. Japanese Standards Association, issued.
    [107]Q. Feng, H. Kanoh, Y. Miyai, K. Ooi. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase [J]. Chemistry of Materials, 1995,7:1722-1727.
    [108]G Bontempelli, R. Toniolo. Measurement methods electrochemical:Linear sweep and cyclic voltammetry encyclopedia of electrochemical [J] Journal of Power Sources,2009,643-654.
    [109]J. Millar, T.G. Barnett. Basic instrumentation for fast cyclic voltammetry[J]. Journal of Neuroscience Methods,1988,25:91-95.
    [110]C. Z. Yuan, B. Gao, X. G. Zhang. Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor[J]. Journal of Power Sources,2007,173:606-612.
    [111]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学[M].科学出版社.2005,145-148.
    [112]L. C. Zhang, Z. H. Liu, H. Lv, X. Tang, K. Ooi. Shape-controllable synthesis and electrochemical properties of various nano-structured manganese oxides[J]. The Journal of Physical Chemistry C,2007,111:8418-8423.
    [113]X. C. Song, Y. Zhao, Y. F. Zheng. Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydro thermal process[J]. Crystal Growth & Design,2007,7:159-162.
    [114]许乃才,马向荣,乔山峰,袁佳琦,刘宗怀.不同晶型和形貌Mn02纳米材料的制备[J].化学学报.2009,67:2566~2572.
    [115]X. Wang, Y. Li. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chemistry-A European Journal,2003,9:300-306.
    [116]R. L. Penn and J. F. Banfield. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals[J]. Science,1998,281:969-971.
    [117]T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Ching, A. M. Beatty. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors:elucidation of molecular and nonmolecular components of the pathway [J]. Journal of the American Chemical Society,1997,119:2172-2181.
    [118]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors:an analogy to vapor-liquid-solid growth[J]. Science,1995,270:1791-1794.
    [119]Q. T. Qu, Y. Shi, L. L. Li, W. L. Guo, Y. P. Wu, H. P. Zhang, S.Y. Guang, R. Holze. V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution[J]. Electrochemistry Communication,2009,11:1325-1328.
    [120]M. Toupin, T. Brousse, D. Blanger. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials,2004,16: 3184-3190.
    [121]F. Zhou, H. G. Zheng, X. M. Zhao, Q. X. Guo, X. M. Ni, T. Shen, C. M. Tang, Large-area synthesis of high-quality β-MnO2 nanowires and the mechanism of formation through a facile mineralization process[J]. Nanotechnology,2005,16: 2072-2076.
    [122]H. Gualous, D. Bouquain, A. Berthon, J. M. Kauffmann. Experimental study of supercapacitor serial resistance and capacitance variations with temperature[J]. Journal of Power Sources,2003,123:86-93.
    [123]D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. Journal of the American Chemical Society,1998,120:6024-6036.
    [124]L. H. Hu, S. F. Ji, Z. Jiang, H. L. Song, P. Y. Wu, Q. Q. Liu. Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides[J]. The Journal of Physical Chemistry C,2007,111: 15173-15184.
    [125]S. C. Chang, M. H. Huang. Formation of indium nitride nanorods within mesoporous silica SBA-15[J]. Inorganic Chemistry,2008,47:3135-3139.
    [126]Y. F. Han, F. X. Chen, Z. Y. Zhong, K. Ramesh, L. W. Chen, E. Widjaja. Controlled synthesis, characterization and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15[J]. The Journal of Physical Chemistry B,2006,110:24450-24456.
    [127]L. Frunza, H. Kosslick, I. Pitsch, S. Frunza, A. Schonhals. Rotational fluctuations of water inside the nanopores of SBA-type molecular sieves[J]. The Journal of Physical Chemistry B,2005,109:9154-9159.
    [128]X. J. Lan, W. P. Zhang, L. Yan, Y. J. Ding, X. W. Han, L. W. Lin, X. H. Bao. Structure, sctivity and stability of triphenyl phosphine-modified Rh/SBA-15 catalyst for hydroformylation of propene:A high-resolution solid-state NMR study[J]. The Journal of Physical Chemistry C,2009,113:6589-6595.
    [129]T. Asefa, R. B. Lennox. Synthesis of gold nanoparticles via electroless deposition in SBA-15[J]. Chemistry of Materials,2005,17:2481-2483.
    [130]F. B. Rub, B. Nohair, F. Kleitz, S. Kaliaguine. Controlled postgrafting of titanium chelates for improved synthesis of Ti-SBA-15 epoxidation catalysts[J]. Chemistry of Materials,2010,22:1988-2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700