复合型TS-1催化剂的制备及催化氯丙烯环氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧氯丙烷是医药和化工领域中一种重要的中间体,其传统工业化生产方法存在着能耗大、污染环境或原料价格波动等缺点。以过氧化氢为氧化剂,采用多相催化剂直接催化氯丙烯环氧化制备环氧氯丙烷是一条环境友好型合成路线。报道的各种多相催化剂中,微孔钛硅分子筛(TS-1)最具有应用前景。但是由于TS-1催化剂粒径小,难于分离和回收利用,影响了其潜在商业价值。针对上述不足,本论文探索了两种方法制备复合型TS-1催化剂:1)固载TS-1在粘土材料上,2)在TS-1晶体结构中引入磁性。
     利用X射线衍射(XRD)、傅立叶变换红外(FT-IR)、紫外-可见光谱(UV-Vis)、N2等温吸附-脱附分析和扫描电境分析(SEM)等现代测试手段对合成复合材料的结构和性质进行表征分析。以H_2O_2为氧化剂,氯丙烯为底物,对这些材料的催化环氧化性能进行了考察。
     以二氧化硅包覆三氧化二铁(SHFe)、TS-1前驱体和添加碳酸铵为原料,经过一系列过程制备了磁性内核/TS-1外壳复合材料(MFeCTS)。添加SHFe并未影响MFeCTS中TS-1的结晶性及其钛配位状态。添加碳酸铵能促进大晶粒“砖块状”TS-1的形成(约400 nm×200 nm×200 nm),该几何尺寸足够容纳SHFe微球,以形成核壳结构。另外,碳酸铵还能促进钛进入TS-1分子筛骨架,从而提高催化活性。MFeCTS有较高的催化活性,反应物氯丙烯的转化率为68.9%,对环氧氯丙烷的选择性为91.9% ,同时表现出优良的磁性回收和可重复利用性。
     水热处理可以使TS-1晶粒在粘土载体上生长。分别利用膨润土、锂皂石、氟锂皂石作为载体,制备了三种粘土基TS-1复合材料。但是,这三种复合材料的催化活性比单纯TS-1低,说明添加粘土矿物(尤其是氟锂皂石)对催化剂活性不利。造成该结果的原因是这些粘土矿物含有碱金属杂质Na+或Li+,阻碍催化剂中四配位钛活性位的形成。针对氟锂皂石和其对应复合材料进行研究,发现纯化氟锂皂石基TS-1复合材料有很好的催化性能,氯丙烯转化率为68.4%,对环氧氯丙烷选择性为97.3%,双氧水有效利用率为95.2%。除高催化活性外,该复合材料还具有很好的沉降性能,是一种可回收利用催化剂。
Epichlorohydrin (ECH) is an important intermediate in medicine and chemical industry fields. Traditional industrial methods have some defects such as serious environmental pollution, high energy consumption or price fluctuations of raw materials. Direct epoxidation of allyl chloride with hydrogen peroxide as oxidant, heterogeneous catalysts is an environmental-friendly process. Among various catalysts, microporous zeolitic titanium silicalite (TS-1) is the most promising. However, the commercial value of TS-1 catalyst is still under question because of its difficult separation and recovery in pilot-scaled practice. To solve this problem head-on, we developed two types of recycable TS-1 composites by
     1) immobilization of TS-1 on clay support and 2) introduction magnetic properties into TS-1 crystallites.
     The structure and properties of synthetic composites were characterized by using modern physical and chemical techniques, such as X-ray diffraction (XRD), Fourier transformation infra-red spectra (FT-IR), ultraviolet-visible spectra (UV-Vis), nitrogen adsorption-desorption isotherms, scanning electron micrograph (SEM). Their catalytic properties in the epoxidation of allyl chloride with H2O2 were investigated.
     A magnetic core/ TS-1 zeolite shell structure (MFeCTS) was successfully synthesized by using TS-1 precursor, silica-coated hematite and (NH4)2CO3. The presence of silica-coated hematite in synthesis gel of MFeCTS didn’t influence the formation of TS-1 crystals as well as the degree and state of Ti incorporation. The addition of (NH4)2CO3 to the synthesis gel resulted in the formation of larger crystals with a“brick-like”morphology of size ca. 400 nm×200 nm×200 nm, thus making the size of TS-1 zeolites and silica-coated hematite match well. Moreover, the presence of (NH4)2CO3 in the synthesis system prompted the incorporation of Ti into the framework of TS-1 zeolite shell in the MFeCTS, leading to a drastic improvement in activity. Consequently, MFeCTS composite achieved 68.9% conversion of allyl chloride with very high epichlorohydrin selectivity (91.9%) and showed high catalytic activity while the maganetic properties were added to such catalysts. It has showed an excellent magnetic separation and reusability.
     The clay-based TS-1 catalytic composite was synthesized using hydrothermal treatment to crystallize TS-1 on clay support. Bentonite, hectorite and flurohectorite were used as the support in this process and their corresponding composites were synthesized. However, the presence of these clay minerals, particular flurohectorite, deteriorates their composites’catalytic property compared with TS-1 synthesized without additive. The reasonable interpretation for this phenomenon is the existence of basic-metal impurities such as Na+ and Li+ in the used clay. Focusing on the investigation of flurohectorite and its corresponding composite, we found the synthesized TS-1 composite using purified flurohectorite as support show excellent catalytic property. The conversion of allyl chloride was 68.4%, selectivity of epichlorohydrin was 97.3%, and the utilization efficiency of H_2O_2 was 95.2%. In addition to the high catalytic activity, the excellent settling efficiency of this clay-based TS-1 composite allowed it to become a reusable catalyst.
引文
[1].张义华,王祥生,郭新闻.钛硅催化材料的研究进展Ⅰ.钛硅分子筛TS-1的制备及其物化性能的研究[J].化学进展, 2001, 13(1): 19-24
    [2].戴祖贵,张永强,刘易,杜泽学.环氧氯丙烷合成的研究进展[J].石油化工, 2006, 37(7): 738-743
    [3].江镇海.环氧氯丙烷生产与市场发展慨况[J].江苏氛碱, 2009, (1): 26-28
    [4].魏忠勋.丙烯高温氯化法生产环氧氯丙烷技术分析[J].齐鲁石油化工,2007, 35(4): 327-330
    [5].李玉芳,李明.国内外环氧氯丙烷的供需状况及发展前景[J].氯碱工业, 2009, 45(5): 27-32
    [6].吴广择,张建丽.甘油法环氧氯丙烷生产技术[J].氯碱工业,2008,44(2): 26-28
    [7]. Comprimo B V. Preparation of oxiranes by oxidation of unsaturated compounds with organic peracids or salts, anhydrides or esters thereof [P]. Neth. Appl., NL 7609148,1977
    [8]. Hoechst A. Process for improving the activity of used supported silver catalysts[P],US Pat. Appl., US 4177169,1979
    [9]. Walracevens R, Lerot L. Process for the manufacture of olefine oxides[P]. Eur. Pat. Appl., EP 19322,1980
    [10].王庆法.氯丙烯环氧化反应的集成过程研究[D].天津:天津大学, 2004
    [11]. Xie H L, Fan Y X, Zhou C H, Li J, Du Z, Min E, Ge Z H, Li X N. A review on heterogeneous solid catalysts and related catalytic mechanisms for epoxidation of olefins with H2O2[J]. Chem. Biochem. Eng. Q., 2008, 22(1): 25-39
    [12]. Li J, Zhou C H, Xie H L. Titanium-containing mesoporous materials: synthesis and application in selective catalytic oxidation[J]. J. Nat. Gas Chem., 2006, 15: 164-177
    [13]. Wang X S, Guo X W, Li G. Synthesis of titanium silicate (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene[J]. Catal. Today, 2002, 74: 65-75
    [14]. Cativiela C, Fraile J M, Garaia F I, et al. A new titanium-silica catalyst for the epoxidation of alkenes[J]. J. Mol.Catal. B., 1996, 112: 259-267
    [15]. Shulpin G B, Sooknoi T, Romakh V B, et al. Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicate TS-1[J]. Tetrahedron Lett., 2006, 47: 3071-3075
    [16]. Thomas M, Fernando R, Gopinathan S, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature, 1995, 9: 159-162
    [17]. Xu C H, Jin T H, Jhung S H, et al. Hydrophobic and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating[J]. Catal. Today, 2006, 111(3-4): 366-372
    [18]. Clerici M G, Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite[J]. J. Catal., 1991, 129(1): 159-167
    [19]. Wang Q, Wang L, Chen J, et al. Deactivation and regeneration of titanium silicate catalyst for epoxidation of propylene[J]. J. Mol. Catal. A: Chem., 2007, 273: 73-76 [ 20 ]. Rigutto M S, Van Bekkum H. Synthesis and characterization of a thermally stable vanadium-containing silicalite[J]. Appl. Catal., 1991, 68 (1): 11-17
    [21]. Moussa N, Ghorbel A. Vanadia-silica satalysts prepared by sol–gel method: application for epoxidation reaction[J]. J. Sol-Gel Sci. Tech., 2005, 33: 127-132
    [22]. Bhaumik A, Mal N K. A new microporous zinc silicate[J]. Surf. Sci. Catal., 2002, 145: 223-226
    [23]. Arends W, Sheldon R A, Wallau M, et al. Oxidative transformations of organic compounds mediated by redox molecular sieves[J]. Chem. Int. Eng., 1997, 36: 1144-1163
    [24]. Vander W, Rigutto M S, van Bekkum H. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes[J]. Appl. Catal. A: Gen., 1998, 167: 331-342
    [25]. Jappar N, Xia Q H, Tatsumi1 T. Oxidation activity of Ti-beta synthesized by a dry-gel conversion method[J]. J. Catal., 1998, 180: 132-141
    [26]. Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure:Ⅱ. Catalytic properties in the selective oxidation of alkenes[J]. J. Catal., 2001, 202: 245-255
    [27]. Kholdeeva O A, Derevyankin A Y, Shmakov A N, et al. Alkene and thioether oxidations with H2O2 over Ti-containing mesoporous mesophase catalysts[J]. J. Mol. Catal. A: Chem., 2000, 158: 417-421
    [28].范志勇. Ti-MWW分子筛研究进展[J].山东化工, 2007, 36(6): 16-21
    [29]. Wu P, Tatsumi T. A new generation of titanosilicate catalyst: preparation and application to liquid-phase epoxidation of alkenes[J]. Catal. Surv. From Asia, 2004, 2: 137-148
    [30]. Wang L, Liu Y, Zhang H, et al. Highly efficient synthesis of epichlorohydrin by epoxidation ofallyl chloride over titanosilicate Ti-MWW[J]. Chin. J. Catal., 2006, 27 (8): 656-658
    [31]. Wang L, Liu Y, Xie W, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts[J]. J. Catal., 2007, 246: 205-214
    [32]. Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc., 1982, 104: 1146-1147
    [33] Chandr D, Malb N K, Bhaumik A. Novel mesoporous silicotinphosphate molecular sieve with high anion exchange capacity[J]. J. Mol. Catal. A: Chem., 2006, 247: 216-221
    [34]. Raja R, Sankar G, Thomas J M. New catalysts for the aerobic selective oxidation of hydrocarbons: Mn(Ⅲ)- and Co(Ⅲ)-containing molecular sieves for the epoxidation of alkenes[J]. Chem. Commun., 1999, 829-830
    [35]. Zahedi-Niaki M H, Kapoor M P, Kaliaguine S. H2O2 oxidation and epoxidation of hydrocarbons and alcohols over titanium aluminophosphates TAPO-5, TAPO-11, and TAPO-36[J]. J. Catal., 1998, 177: 231-239
    [36]. Beck J S, Vartuli J C, Roth W J , et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J]. J. Am. Chem. Soc., 1992, 114: 10834-10843
    [37]. Corma A, Navarro M T, Pariente J P. Synthesis of an ultralarge pore titanim silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. Chem. Soc. Chem. Commun., 1994, 147-148
    [38]. Tuel A. Modification of mesoporous silicas by incorporation of heteroelements in the framework[J], Micro. Meso. Mater., 1999, 27: 151-169
    [39]. Bagshaw S A, DiRenzo F, Fajula F. Preparation of metal-incorporated MSU mesoporous silica molecular sieves Ti incorporation via a totally non-ionic route[J]. Chem. Commun., 1996, 2209-2210
    [40]. Morey M S, O'Brien S, Schwarz S, et al. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium[J]. Chem. Mater., 2000, 12(4): 898-911
    [41].徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 622
    [42]. Chaudhari K, Das T K, Rajmohanan P R, et al. Synthesis, characterization, and catalytic properties of mesoporous Tin-containing analogs of MCM-41[J]. J. Catal., 1999, 183: 281-291
    [43]. Masteri-Farahani M, Farzaneh F, Ghandi M. Synthesis and characterization of a new epoxidation catalyst by grafting cis-MoO2 complex to functionalized MCM-41[J]. J. Mol. Catal. A: Chem., 2006, 243: 170-175
    [44]. Ziolek M. Catalytic liquid-phase oxidation in heterogeneous system as green chemistry goal-advantages and disadvantages of MCM-41 used as catalyst[J]. Catal.Today, 2004, 90: 145-150
    [45]. Cagnoli M V, Casuscelli S G., Alvarez A M, et al. Ti-MCM-41 silylation: development of a simple methodology for its estimation silylation effect on the activity and selectivity in the limonene oxidation with H2O2[J]. Catal. Today, 2005, 107: 397-403
    [46]. Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement by trimethlsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves[J]. Chem. Commun., 1998, 325-326
    [47]. Zhang W H, Lu J P, Li M J, et al. Direct synthesis and characterization of Titanium-substituted mesoporous molecular sieve SBA-15[J]. Chem. Mater., 2002, 14: 3413-3421
    [48]. Chiker F, Launay F, Nogier J P, Bonardet J L. Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids[J]. Green Chem., 2003, 5: 318-322
    [49]. Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites[J]. J. Am. Chem. Soc., 2002, 124: 888-889
    [50]. Meng X, Li D, Yang X, Yu Y, Wu S, Han Y, Yang Q, Jiang D, Xiao F S. Synthesis, characterization and catalytic activity of mesostructured titanosilicalites assembled from polymer surfactants with preformed titanosilicate precursors in strongly acidic media[J]. J. Phys. Chem. B., 2003, 107(34): 8972-8980
    [51].罗淑文,陈彤,曾毅,王公应.钛硅介孔分子筛[J] ,化学进展, 2008, 20, 212-220
    [52]. Pereira C, Silva A R, Carvalho A P, Pires J, Freire C. Vanadyl acetylacetonate anchored onto amine-functionalised clays and catalytic activity in the epoxidation of geraniol[J]. J. Mol. Catal. A: Chem., 2008, 283(1-2): 5-14
    [53]. Gunter J, Turner P, Metalloporphyrins as models for the cytochromes-p-450[J]. Coord Chem. Rev., 1991, 108(2): 115-161
    [54]. Salavati-Niasari M. Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (montmorillonite-K10)/guest (nickel(II) complexes of 12- and13-membered diaza dioxa Schiff-base macrocyclic ligand) nanocatalyst (HGN)[J]. J. Mol. Catal. A: Chem., 2007, 263(1-2): 247-252
    [55]. Machado G S, Wypych F, et al. Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions[J]. J. Mol. Catal. A: Chem., 2008, 283(1-2): 99-107
    [56]. Yamaguchi K, Ebitani K, Kaneda K. Hydrotalcite-catalyzed epoxidation of olefins using hydrogen peroxide and amide compounds[J]. J. Org. Chem., 1999, 64: 2996-2998
    [57]. Pillai U R, Sahle-Demessie E, Varma R S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile[J]. Tetrahedron Lett., 2002, 43: 2909-2911
    [58]. Zhou C H, Ge Z H, Li X N, et al. Alkylation of catechol with tert-butyl alcohol catalyzed by mesoporous acidic montmorillonite heterostructure catalysts[J]. Chin. J. Chem. Eng., 2004, 12: 388-394 [ 59 ]. Cativiela C, Figueras F, Fraile J M, et al. Hydrotalcite-promoted epoxidation of electron-deficient alkenes with hydrogen peroxide[J]. Tetrahedron Lett., 1995, 36: 4125-4128
    [60]. Ueno S, Yamaguchi K, Yoshida K, et al. Hydrotalcite catalysis: heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles[J]. Chem. Commun., 1998, 295-296
    [61]. de Farias R F, Arnold U, Martínez L, et al. Synthesis, characterization and catalytic properties of sol–gel derived mixed oxides[J]. J. Phys. Chem. Solids, 2003, 64: 2385-2389
    [62]. Klein S, Thorimbert S, Mairer W F. Amorphous microporous titania-silica mixed oxides: preparation, characterization, and catalytic redox properties[J]. J. Catal., 1996, 163: 476-488
    [63] Camblor M A, Corma A, Pérez-Pariente J. Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts[J]. Zeolites, 1993, 13: 82-87
    [64]. Samantaray S K, Parida K. Amine-modified titania-silica mixed oxides: 1. effect of amine concentration and activation temperature towards epoxidation of cyclohexene[J]. Catal. Commun., 2005, 6: 578-581
    [65]. Müller C A, Schneider M, Mallat T, et al. Amine-modified titania–silica hybrid gels as epoxidation catalysts[J]. Appl. Catal. A: Gen., 2000, 201: 253-261
    [66]. Ng Y H, Izwan I, Nur H, et al. Biophasic epoxidation of 1-octene with H2O2 catalyzed by amphiphlic fluorinated Ti-loaded zirconia[J]. J. Fluorine. Chem., 2007, 128: 12-16
    [67]. Herrmann W A, Fischer R W, Rauch M U, et al. Alkylrhenium oxides as homogeneous epoxidation catalysts: Activity, selectivity, stability, deactivation[J]. J. Mol. Catal., 1994, 86(1-3): 243-266
    [68]. Saladino R, Andreoni A, Neri V, et al. A novel and efficient catalytic epoxidation of olefins and monoterpennes with microencapsulated Lewis base adducts of methyltrioxorhenium[J]. Tetrahedron., 2006, 61: 1069-1075
    [69]. Bouh A O, Espenson J H. Epoxidation reactions with urea–hydrogen peroxide catalyzed by methyltrioxorhenium(VII) on niobia[J]. J. Mol. Catal. A: Chem., 2003, 200: 43-47
    [70]. Li M, Espenson J H. Kinetic study of epoxidations by urea-hydrogen peroxide catalyzed by methltrioxorhenium(Ⅶ) on niobia[J]. J. Mol. Catal. A: Chem., 2004, 208: 123-128
    [71]. Neumann R, Wang T J. Methyltrioxorhenium supported on silica tethered with polyethers as catalyst for the epoxidation of alkenes with hydrogen peroxide[J]. Chem. Commun., 1997, 1915-1916
    [72]. Saladino R, Neri V Pelliccia A R, Mincione E. Selective epoxidation of monoterpenens with H2O2 and polymer-supported methylrheniumtrioxide systems[J]. Teterahedron, 2003, 59: 7403-7408
    [73]. Mandelli D, van Vliet M C A, Sheldon R A, et al. Alumina-catalyzed alkene epoxidation with hydrogen peroxide[J]. Appl. Catal. A: Gen., 2001, 219: 209-213
    [74]. Uguina M A, Delgado J A, Rodríguez A, Carretero J, Gómez-Díaz D. Alumina as heterogeneous catalyst for the regioselective epoxidation of terpenic diolefins with hydrogen peroxide[J]. J. Mol. Catal. A: Chem., 2006, 256: 208-215
    [75]. Cesquini R G, de S e Silva J M, Woitiski C B, et al. Alumina-catalyzed epoxidation with hydrogen peroxide: recycling experiments and activity of sol-gel alumina[J]. Adv. Syn. Catal., 2002, 344: 911-914
    [76]. Fraile J M, García J I, Mayoral J A, et al. Comparison of several heterogeneous catalysts in the epoxidation ofα-isophorone with hydroperoxides[J]. Tetrahedron Lett., 1996, 37(33): 5995-5596
    [77]. Van Vliet M C A, Mandelli D, Arends I W C E, et al. Alumina: a cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide[J]. Green Chem., 2001, 3(5): 243-246
    [78]. Xi Z W, Zhou N, Sun Y, et al. Reaction-controlled phase-transfer catalyis for propylene epoxidation to propylene oxide[J]. Science, 2001, 292: 1139-1141
    [79].周春晖,谢华丽,杜泽学,范永仙,葛忠华,李小年.钼、钨类水滑石材料的合成、结构及催化环氧化性能[J].高校化学工程学报, 2009, 23(3): 516-521
    [80]. Neumann R, Khenkin A M, Juwiler D, et al. Catalytic oxidation with hydrogen peroxide catalyzed by“sandwich type transition metal substituted polyoxomatalates[J]. J. Mol. Catal. A: Chem., 1997, 117(1-3): 169-183
    [81]. Cohen M, Neumann R J. Silica tethered with poly(ethylene and/propylene) oxide as supports for polyoxometalates in catalytic oxidation[J]. J. Mol. Catal. A: Chem., 1999, 146(1-2): 291-298
    [82]. Sakamoto T, Pac C. Selective epoxidation of olefins by hydrogen peroxide in water using a polyoxometalate catalysts supported on chemically modified hydrophobic mesoporous silica gel[J]. Tetrahedron Lett., 2000, 41: 10009-10012 [ 83 ]. Yamaguchi K, Yoshida C, Uchida S, et al. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide[J]. J. Am. Chem. Soc., 2005, 127: 530-531
    [84]. Clerici M, Ingallina P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite[J]. J. Catal., 1993, 140: 71-83
    [85]. Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides[P]. US: 4410501, 1983: 10-13
    [86]. Grigoropoulou G, Clark J H, Elings J A. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant[J]. Green Chem., 2003, 5: 1–7
    [87]. Sudhakar J R, Sivasanker S, Ratnasamy P. Hydroxylation of phenol over TS-2, a titanium silicate molecular sieve[J]. J. Mol. Catal., 1992, 71(3): 373-381
    [88]. Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide catalyzed by titanium silicalite[J]. Appl. Catal., 1991, 68: 249-261
    [89]. Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides[P]. US: 4410501,1983
    [90]. Thangaraj A, Eapen M J, Sivasanker S, et al. Studies on the synthesis of titanium silicaliteTS-1[J]. Zeolites, 1992, (12): 943-950
    [91]. Tuel A.Crystallization of titanium silicalite-1(TS-1) from gels containing hexanediamine and terapropylammonium brommide[J]. Zeolites, 1996, 16: 108-117
    [92]. Masashi S, Zelimir G. Synthesis of MFI titanosilicalites from methylamine-TPABr media, Zeolite, 1997, 19: 246-252
    [93]. Gao H X, Suo J S, Li S B. An easy way to prepare titanium silicalites-1(TS-1)[J]. J. Chem. Commun., 1995, 835-835
    [94].李钢,郭新闻,王丽琴等.钛硅分子筛催化丙烯环氧化反应条件的研究[J].分子催化, 1998, 12(6): 436-440
    [95].李钢,郭新闻,王祥生.水热法合成的钛硅分子筛催化性能研究[J].石油学报, 1999, 15(5): 73-76
    [96]. Kraushar B, Van Hooff H C. Synthesis of titanium silicalites[J]. Catal. Lett., 1988, 1: 88-94
    [97].徐成华,吕绍洁,邓桂英, Ti-ZSM-5分子筛催化氯丙烯环氧化制环氧氯丙烷[J].石油化工, 2002, 31(4): 245-249
    [98].许章林,张盈珍,郑禄彬,杂原子沸石的二次合成及其表征:Ⅱ.含Ti、Fe杂原子沸石[J].分子催化, 1992, 6(5): 365-370
    [99].高焕新,卢文奎,陈庆龄,钛硅分子筛TS催化氯丙烯环氧化反应动力学研究[J].催化学报, 2002, 23(1): 2-8
    [100].赵罗生,钛硅沸石分子筛成型方法研究[J].舰船防化, 2004, (3):12-15
    [101]. Strebelle M,Catinat J P.Epoxidation catalyst,its use and epoxidation method in the presence of said catalyst[P]. WO:1999/028030, 1999, 1006
    [102]. Catinat J P,Strebelle M.Catalyst based on zelolite, use and epoxidation method in the presence of said catalyst[P]. US: 6603027, 2002, 0805
    [103]. Kyeong T J, Yong G S. Preparation of transparent TS-1 zeolitefilm by using nanosized TS-1 particles[J]. Chem. Mater., 1997, 9(2) : 420-422
    [104]. Louisa T Y A, Joseph L H C, Carlos T A, et al. Preparation of supported Sil-1, TS-1 and VS-1 membranes effects of Ti and V metal ions on the membrane synthesis and permeation properties[J]. J. Memb. Sci., 2001, 183(2): 269-291
    [105]. Youngseok L, Wangsun R, Sang S K, et al. Oriented growth of TS-1 zeolite ultrathin films on poly ( ethylene oxide ) monolayer templates[J]. Langmuir., 2005, 21(13): 5651-5654 [ 106]. Wang X D, Zhang B Q, Liu X F, et al. Synthesis of b-oriented TS-1 films on chitosan-modifiedα-Al2O3 substrates[J]. Adv. Mater., 2006, 18(24): 3261-3265
    [107].王晓东,张宝泉,刘秀凤.不同载体上TS-1分子筛膜的制备与表征[J].中国科技论文在线, 2009, 4(3): 175-178
    [108].宗丽,刘莹,辛峰.整体式堇青石载体上TS-1的原位合成[J].无机材料学报, 2007, 22(6): 1227-1232
    [109].尚映虹. TS-1催化氧化氯丙烯制备环氧氯丙烷的研究[D].石油化工科学研究院, 2000
    [110]. Alex C K, Frank L Y, Hu X J, Li P, Yuan W K. Study on the synthesis of clay-based titanium silicalite-1 catalytic composite[J]. Ind. Eng. Chem. Res., 2009, 48, 5266-5275
    [1].高焕新,卢文魁,陈庆龄.钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究[J].催化学报, 2002, 23(1): 3-8
    [1]. Clerici M G., Ingallina P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite[J]. J. Catal, 1993, 140: 71-83
    [2]. Wang L, Liu Y, Xie W, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts[J]. J. Cata., 2007, 246, 205-214
    [3]. Li J, Zhao G D, Gao S, et al. Epoxidation of allyl chloride to epichlorohydrin by a reversible supported catalyst with H2O2 under solvent-free conditions[J]. Org. Pro. Res. Dev., 2006, 10: 876-880
    [4].易国斌,郭建维,王乐夫等.晶粒大小对钛硅分子筛TS-1催化氧化活性的影响[J].材料科学与工程学报, 2005, 23(3): 373-376
    [5].Tao J L, Tang D J, Li Q. Cyclohexane oxidation catalyzed by titanium silicalite (TS-1) with hydrogen peroxide[J]. J. Natural Gas Chem, 2001, 10(4): 295-308
    [6]. Yoon H, Ko S, Jang J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling[J]. Chem. Commun., 2007, 1468-1470
    [7]. Lu A H, W Schmidt, N Matoussevitch, Bnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angew. Chem. Int. Ed., 2004, 43(33): 4303-4306 [ 8 ]. Panella B, Vargas A, Baiker A. Magnetically separable Pt catalyst for asymmetric hydrogenation[J]. J. Catal., 2009, 261(1): 88-93
    [9].展宗城,任学昌,陈学民,苏立彬,胡普查. Mn-Fe氧体/SiO2/TiO2磁载光催化剂的制备及性能[J].环境科学与技术, 2009, 32(4): 62-66
    [10]. Froba M, Kohn R, Bouffaud G., Richard O, Tendeloo G. Fe2O3 nanoparticles within mesoporous MCM-48 silica: In situ formation and characterization[J]. Chem. Mater., 1999, 11(10): 2858-2865
    [11]. Zhao W R, Gu J L, Zhang L X, Chen H R, Shi J L, Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc.,2005, 127(25): 8916-8917
    [12] Shokouhimehr M, Piao Y Z, Kim J, Jang Y J, Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation[J]. Angw. Chem. Int. Ed., 2007, 46(37): 7039-7043
    [13]. Li D X, Gao G L, Meng F L, et al. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings[J]. J. Hazard. Mater., 2008, 155(1-2): 369-377
    [14] Serna C J, Ocana M, Iglesias J E. Optical properties ofα-Fe2O3 microcrystals in the infrared[J]. J. Phys. C: Solid State Phys., 1987, 20(3): 473-484
    [15]. Li L, Feng Y J, Li Y S, Zhao W R, Shi J L. Fe3O4 core/Layered Double Hydroxide shell nanocomposite: versatile magnetic matrix for anionic functional materials[J]. Angew. Chem. Int. Ed., 2009, 48, 5888-5892
    [16]. Lu H M, Zheng W T, Jiang Q. Saturation magnetization of ferromagnetic and ferromagnetic nanocrystals at room temperature[J]. J. Phys. D: Appl. Phys., 2007, 40: 320-325
    [17]. Masahiro O, Egon M. Preparation and properties of uniform coated inorganic colloidal particles: 8.Sillica on iron. J. Colloid Interface Sci., 1993, 160, 288-292
    [18]. Taramasso M, Perego G, Notari B. Porous zeolitic borosilicate contg. mixed quat. ammonium cations - useful as catalyst and adsorbent[P]. US Patent 4410501, 1983
    [19]. Lu H H, Wang Y Q. Influence of seeds on the synthesis of TS-1 with inorganic materials[J]. React. Kinet. Catal. Lett., 2006, 89(2): 219-227
    [20]. Qiu F R, Wang X B, Zhang X F, Liu H, Liu S Q, Yeung K L. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds[J]. Chem. Eng. J., 2009, 147(2-3): 316-322
    [21]. Zhang G Y, Sterte J, Schoeman B J. Preparation of Colloidal Suspensions of Discrete TS-1 Crystals[J]. Chem. Mater., 1997, 9, 210-217
    [22]. Ohmori M, Matijevic E. Preparation and properties of uniform coated inorganic colloidal particles[J]. J. Colloid Interface Sci., 1993, 160, 288-292
    [23]. Fan W B, Duan R G, Yokoi T, Wu P, Kubota Y, Tatsumi T. Synthesis, crystallization mechanism and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. J. Am. Chem. Soc., 2008, 130(31): 10150-10164
    [24]. Fan W B, Fan B B, Shen X H, Li J F, Wu P, Kubota Y, Tatsumi T. Effect of ammonium salts on the synthesis and catalytic properties of TS-1[J]. Microporous Mesoporous Mater., 2009, 122(1-3):301-308
    [25]. Gregg S J, Sing K S W. Adsorption surface area and porosity[M]. London, Academic Press, 1982, 3-12
    [26]. Richardson J T. Principles of catalyst development[M]. New York, Plenum Press, 1989, 152-155
    [1]. Vittorio L, Dugald J, Russell Howeb F and BramLey R. Synthesis and characterization of a (Zn,Ti)-substituted layered silicate[J]. J. Meter. Chem., 1995, 5(4), 557-564
    [2].戴劲草,萧子敬,叶玲等.多孔粘土材料研究与进展[J].硅酸盐通报,1999, 4: 64-70
    [3]. Carrado K A, THiyagarajan P, Song K. A study of organo-hectorite clay crystallization[J]. Clay Miner., 1997, 32: 28-30
    [4]. Barrer R M, Jones D L. Chemistry of soil minerals. Part VIII Synthesis and properties of fluorhectorites[J]. J. Chem. Soc. (A), Inorg. Phys. Theor., 1970, (11): 1531-1537
    [5]. Jimenez-Lopez A, Jimenez-Jimenez J, Castellon E R, et al. Synthesis and characterization of mixed silica/zirconia and silica/titania porous phospate heterostructures (PPH)[J]. J. Phys. Chem. Solids., 2006, 34: 1007–1010
    [6].周春晖,杜泽学,李小年,卢春山,葛忠华.水热体系合成锂皂石结构的演化和影响规律研究[J].无机化学学报,2005, 21(9: 1327-1332
    [7]. Taramasso M, Perego G, Notari B. Crystalline, porous material with silicalite structure - prepd. from silica and titanium oxide cpds and used e.g. for alkylation, cracking etc. of organic cpds[P]. US Patent 4410501, 1983
    [8]. Blasco T, Camblor M A, Corma A, et al. Direct synthesis and characterization of hydrophobic aluminum-free Ti-βZeolite[J]. J. Phys. Chem. B., 1998, 102: 75-88
    [9]. Jorda E, Tuel A, Teissier R, et al. TiF4: An original and very interesting precursor to the synthesis of titanium containing silicalites-1[J]. Zeolites, 1997, 19(4): 238-245
    [10]. Perego C, Carati A, Ingallina P, et al. Production of titanium containing molecular sieves and their application in catalysis[J]. Appl. Catal. A: Gene., 2001, 221(1): 63-72
    [11].夏清华,王公慰,应慕良.钛硅沸石的结构表征及其催化性能[J].催化学报, 94, (2): 109-114
    [12].吴平霄.矿物材料与环境修复,北京,工业出版社, 2004, 74-76
    [13]. Blasco T, Camblor M A, Corma A, et al. Direct synthesis and characterization of hydrophobic aluminum-free Ti-βZeolite[J]. J. Phys. Chem. B., 1998, 102: 75-88
    [14]. Jorda E, Tuel A, Teissier R, et al. TiF4: An original and very interesting precursor to the synthesis of titanium containing silicalites-1[J]. Zeolites, 1997, 19(4): 238-245
    [15]. Perego C, Carati A, Ingallina P, et al. Production of titanium containing molecular sieves and their application in catalysis[J]. Appl.Catal. A: Gene., 2001, 221(1): 63-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700