羧基取代酞菁键合MCM-41的合成及其去除乙硫醇的催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境问题的加剧,除去大气中SOx迫在眉睫。这些SOx主要来自于油品中含硫化合物(硫醇、硫醚、噻吩、苯并噻吩以及二甲基苯并噻吩等)的燃烧。因此,除去油品中的含硫化合物成为首要任务。
     本文选用航空煤油做溶剂,以邻苯二甲酸和邻苯二甲酸酐的衍生物为前驱体,采用溶剂法合成了四羧基酞菁TCPcM (M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ)),2-羧基不对称酞菁CPcM(M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ))以及双核六羧基酞菁BNHCPcM(M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ))三大系列共24种化合物,通过元素分析、紫外可见光谱和红外光谱对其进行了表征。此外,还合成了一种全新的四(4-羧基)苯胺基酞菁钴,以相同的方法对其进行了表征。
     在水热条件下合成了全硅介孔分子筛MCM-41,测得其比表面积可以达到953.81 m2/g,孔径2.41 nm,孔容0.7242 ml/g。然后将合成的酞菁键合在介孔分子筛MCM-41上,红外光谱、X-ray粉末衍射以及X-ray光电子能谱都对键合结果进行了证实。
     以乙硫醇的石油醚溶液为模拟对象,通过非均相滴定法测定了乙硫醇的去除率,从实验结果可以看出:
     (1)MCM-41-NH-BNHCPcM的催化活性是最高的,MCM-41-NH-CPcM的催化活性是最低的。MCM-41-NH-TCPcM的催化活性介于MCM-41-NH-BNHCPcM和MCM-41-NH-CPcM之间。
     (2)MCM-41-NH-BNHCPcCo的催化性能是最好的,其去除率可以达到92.74%。
Because the environmental problem becomes more severe, removing the SOx in the air is a necessitous assignment. These sulfur compounds (SOx) are generated from the combustion of sulphur-containing compounds in crude oil, such as mercaptans, sulphides, thiophenes, benzothiophenes and their alkyl-substituted phthalic anhydride. Removing these sulphur compounds becomes a chief mission.
     Firstly, in this paper, aviation kerosene using as a solvent and the phthalic anhydride of o-phthalic acid and phthalic anhydride as precursors, tetracarboxyl-phthalocyanines (TCPcM) (M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ)),2-carboxylphthalocyanines (CPcM) (M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ)) and binuclear hexacarboxylphthalocyanines (BNHCPcM) (M=2H, Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), Fe(Ⅱ), Mn(Ⅱ), Cr(Ⅲ)) were synthesed, and their structures were determined by element analysis, UV-Vis and FT-IR. A new phthalocyanine was synthesed and its structure was characterized by element analysis, UV-Vis and FT-IR.
     Secondly, mesoporous molecular sieve (MCM-41) of pure silicon was synthesed by hydrothermal method, and its BET surface area, the pore size and pore volume is 953.81 m2/g,2.41 nm and 0.7242 ml/g, respectively. Then, the phthalocyanines were anchored onto MCM-41 and were confirmed by FT-IR, XRD and X-ray photoelectron spectroscopy.
     Finally, using the petroleum ether solution dissolving ethanethiol as a simulative object, the catalytic activity of removing ethanethiol was tested, showing that:
     (1) The catalytic activity of MCM-41-NH-BNHCPcM is higheset, and MCM-41-NH-CPcM is lowest. The catalytic activity of MCM-41-NH-TCPcM is between MCM-41-NH-BNHCPcM and MCM-41-NH-CPcM.
     (2) The catalytic activity of MCM-41-NH-BNHCPcCo for removing ethanethiol is the best, reaching 92.74%.
引文
[1]刘海燕,王国强,李卫宏.脱硫技术进展[J].辽宁化工,2008,37(1):44-46
    [2]Hakka, Leo E., Forte, et al. Process for removing sulfur compounds from gas and liquid hydrocarbon streams [P]. US:6531103,2003
    [3]Babich I. V., Moulijn J. A.. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review [J]. Fuel,2003,82,607-631
    [4]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86,211-263
    [5]Shafi R., Hutchings G. J.. Hydrodesulfurization of hindered dibenzothiophenes:an overview [J]. Catalysis Today,2000,59,423-442
    [6]Iliuta M. C., Larachi F.. Gas-liquid partition coefficients and Henry's law constants of methyl mercaptan in aqueous solutions of Fe(Ⅱ)-CDTA chelate complex [J]. Fluid Phase Equilibria,2007.253,124-129
    [7]Basu B., Satapathy S., Bhatnagar A. K.. Merox and related metal phthalocyanine catalyzed oxidation processes [J]. Catalysis Rev.,1993,35,571-609
    [8]Joseph J. K., Jain S. L., Sain B.. Covalently anchored polymer immobilized Co (11) phthalocyanine as efficient catalyst for oxidation of mercaptans using molecular oxygen as oxidant [J]. Ind. Eng. Chem. Res.,2010,49,6674-6677
    [9]Usuib Y.,Tanaka M., Kimura O., et al. Direct alcohol-type fuel cell, anode catalyst containing metal phthalocyanine, its manufacture, and electronic apparatus [P]. JP 2008243697 A 20081009,2008
    [10]Gurusamy R., Soo K. S., Soney G. C.,Aluminum phthalocyanine:an active and simple catalyst for cyanosilylation of aldehydes [J]. Appl. Organomet. Chem., 2007,21(3):198-202
    [11]许占位,赵建社,冯虹,等.酞菁铜衍生物对Li/SOCl2电池性能的影响[J].电池,2008,38(5):275-277
    [12]许占位,孙庆津,苏碧云,等.酞菁配合物对锂-亚硫酰氯电池正极的催化作用[J].电化学,2007,13(3):293-296
    [13]汪晓梅.一种湿式氧化法脱硫催化剂及其应用[P].CN:1704146A,2005.
    [14]王辉国,范志明,柯明,等.Na+/MgO固体碱催化硫醇氧化反应[J].石油化工,1999,28(3):149-152
    [15]Xinrui Z., Juan L., Xiuna W., et al. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and ironphthalocyanine [J]. Fuel Processing Technology,2009,90(2):317-323
    [16]Bahadur A. B., Nath P. S., Gautam D., et al. Halogenated metal phthalocyanine catalysts for sweetening and desulfurization of light and middle petroleum fractions [P]. FR:2816853 Al 20020524,2002
    [17]Borisenkova S.. A. New aspects of heterogeneous catalysis of thiol oxidation with phthalocyanines [J]. Neftekhimiya,1991,31(3),391-408
    [18]Faizrakhmanov I. S., Zainullina L. F., Talipov R. F., et al. Oxidation of organic sulfides with atmospheric oxygen in the presence of phthalocyanine complexes as catalysts [J]. Russ. J. Appl. Chem.,2007,80(2):273-275
    [19]汪晓梅.一种酞菁铁钴磺酸盐脱硫催化剂及其制备方法[P].CN:101049576A,2007
    [20]Leznoff C. C., Lever A. B P.. Phthalocyanincs, properties and applications [M]. New York:VCH, Vol. Ⅰ 1989; Vol.Ⅱ 1992;Vol.Ⅲ 1993;Vol.Ⅳ 1996
    [21]沈永嘉.酞菁的合成与应用[M],北京:化学工业出版社,2001.
    [22]Thomas A. L.. Phthalocyanines:research and applications [M]. Boston:CRC Press,1900
    [23]Gergeoy P.. Industrial applications of phthalocyanines [J]. J. Porphyrins Phalocyanines,2000,4:432-437
    [24]Hairong L., Ngan N., Frank R. R.; et al. Syntheses and properties of octa-, tetra-, and di-hydroxy-substituted phthalocyanines [J]. Tetrahedron,2009,65, 3357-3363
    [25]Guy J. C., Neil B. M., Kevin E. T., et al. Synthesis and characterisation of some novel phthalocyanines containing both oligo(ethyleneoxy) and alkyl or alkoxy side-chains:novel unsymmetrical discotic mesogens. J. Chem. Soc., Perkin Trans.1 [J].1995,14:1817-1823
    [26]Christian G. C., Werner J. B., Michael C., et al. Phthalocyanines and Phthalocyanine Analogues:The Quest for Applicable Optical Properties [J]. Monatshefte fur Chemie/Chemical Monthly,2001,132,3-11
    [27]Germa de la T., Tomas T., Fernando A. L.. The phthalocyanine approach to second harmonic generation [J]. Adv. Matter,1997, (9) 3:265-269
    [28]Germa de la T., Vazquez P., Fernando A. L., et al. Phthalocyanines and related compounds:organic targets for nonlinear optical applications [J]. J. Mater. Chem.,1998,8 (8):1671-1683
    [29]Braun A., Tcherniac T. C.. Uber die Produckte der Einwirkung von Acetanhydridauf Phthalaid [J]. Ber.,1907,40:2709-2714
    [30]Henri de D., Edmond von der W.. Quelques sels complexes des o-dinitriles avec le cuivre et la pyridine [J]. Helvetica Chimica Acta 1927,10:886-888
    [31]Arthur. G. D., Hugh A. E. D., John T. Improvements in and relating to the manufacture and use of coluring matters [P]. GB322169,1929
    [32]Linstead R. P.. Phthalocyanines part I:A new type of synthetic colouring matter [J]. J. Chem. Soc.1934,1016-1017
    [33]Linstead R. P., Lowe A. R.. Phthalocyanines, part Ⅲ:preliminary experiments on the preparation of phthalocyanines from phthalonitrile [J]. J. Chem. Soc., 1934.1022-1027
    [34]Robertson J. M.. An X-ray study of the structure of the phthalocyanines Part I: The metal-free, nickel, copper, and platinum compounds [J]. J. Chem. Soc.,1935, 615-621
    [35]Robertson J. M.. An X-ray study of the phthalocyanines, part Ⅱ:Quantitative structure determination of the metal-free compound [J]. J. Chem. Soc.,1936, 195-1209
    [36]Robertson J. M., Woodward I.. An X-ray study of the phthalocyanines, part Ⅲ: Quantitative structure determination of nickel phthalocyanine [J]. J. Chem. Soc., 1937,219-230
    [37]魏少华.可溶性酞菁的合成、性质与光动力活性研究[D].上海交通大学硕士论文,2006
    [38]许占位.酞菁配合物的合成及对锂/亚硫酰氯电池催化性能的研究[D].西北大学硕士论文,2007.5
    [39]Ayfer K., Zehra A. B.. Phthalocyanines with rigid carboxylic acid containing pendantarms [J]. Polyhedron,2006,25:39-42
    [40]Arslanov V. V., Gorbunova Y. G., Selektor S. L., et al. Monolayers and Langmuir—Blodgett films of crownsubstituted phthalocyanines [J]. Russian Chemical Bulletin, International Edition,2004,53 (11):2532-2541
    [41]Kirill P. B., Yuliya G. G.. The features of cerium coordination chemistry in the complexes with tetra-15-crown-5-phthalocyanine [J]. J. Porphyrins Phthalocyanines,2006,10:931-936
    [42]吴成泰.不对称酞菁的合成与表征[D].武汉大学博士论文,2001
    [43]Nagao K., Toshie O., Mitsuo S., et al. Synthesis and spectroscopic properties of symmetrically tetrasubstituted phthalocyanines with four alkyl or aryl chains or porphyrin. adamantane, crown, or quinone units attached [J]. Inorg. Chem.,1993, 32(9):1803-1808
    [44]Esin H.. Synthesis and solution properties of phthalocyanines substituted with four crown ethers [J]. Dyes and Pigments,2006,68:151-157
    [45]刘丰冉.功能取代酞菁配合物的合成、表征[D].福州大学硕士论文,2005.6
    [46]李芳.金属酞菁的光学特性研究[D].华中科技大学硕士论文,2008.10
    [47]Rajesh K. R., Menon C. S.. Optical studies of manganese phthalocyanine thin films [J]. Materials Letters,2001,51:266-269
    [48]Meryem C., Ali R. O., Mustafa B.. Novel phthalocyanines bearing four 4-phenyloxyacetic acid functionalities [J]. Polyhedron.2007.26:2638-2646
    [49]Ahmet B., Beytullah E., Yasar G.. Synthesis and characterization of new metal-free and metallophthalocyanines containing spherical or cylindrical macrotricyclic moieties [J]. Polyhedron,2005,24:1117-1124
    [50]Yoshiaki A., Nagao K.. The first synthesis of a gable bis-phthalocyanine [J]. Tetrahedron Letters,2004,45:9577-9580.
    [51]Esin H., Sebnur M., Zehra A. B.. Synthesis of phthalocyanines with tridentate branched bulky and alkylthio groups [J]. Dyes and Pigments,2003,59:263-268
    [52]Chen P., Wang X., Tang D., et al. Synthesis and spectral properties of new soluble naphthalocyaninatometal derivatives [J]. Dyes and Pigments,2001,48: 85-92
    [53]Liu H. W., Chen C. F., Ai M., et al. Synthesis of optically active 1,1'-binaphthyl-phthalocyanines linked via a crown ether unit [J]. Tetrahedron: Asymmetry,2000,11:4915-4922
    [54]Chio C. F., Tsang P. T., Huang J. D., et al. Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines [J]. Chem. Commun.,2004, 19:2236-2237
    [55]Kudrevich S., Brasseur N., Madeleine C., et al. Synthese and photodynamic active of novel trisulfonated zinc phthalocyanine derivatives [J]. J. Med. Chem., 1997,40 (24):3897-3904
    [56]David M. D.,Clifford C. L.. The Synthesis of 1,11.15.25-tetrasubstitute-dphthalocyanines as single isomers using bisphthalonitriles [J]. Synlett,1994, 623-624
    [57]Svetlana V. K., Sandra G.. van Lier J. E.. Synthesis of trisulfonated phthalocyanines and their derivatives using boron(III) subphthalocyanines as intermediates [J]. J. Org. Chem.,1996.61 (17):5706-5707
    [58]Jawad A., Phillipe J. C. Roth Nathan W. Luedtke. An efficient two-step synthesis of metal-free phthalocyanines using a Zn(II) template [J]. Chem. Commun. 2009.1970-1971
    [59]Clifford C. L., Polina I. S., Ben K., et al. Syntheses of Monometalated and unsymmetrically substituted binuclear phthalocyanines and a pentanuclear phthalocyanine by solution and polymer support methods [J]. J. Org. Chem., 1991,56(1):82-90
    [60]Martin O., Toshiki I., Subramanian L. R., et al.2,3-Tetrakis-[4-(N-2-naphthyl-N-phenylamino)phenoxy]-substituted metal-free and metal phthalocyanines as a novel class of amorphous molecular materials [J]. Chemistry Letters,2001, 788-789
    [61]Yunqi L., Daoben Z.. Synthesis and characterization of a novel unsymmetrical metal-free phthalocyanine with donor-acceptor substituents [J]. J. Heterocyclic Chem.,1994,31:1017-1020
    [62]Nagao K., Ryuji H., Tatsuya T.. Phthalocyanines containing silicons in their peripheral substituent groups [J]. Bull. Chem. Soc. Jpn.,1997,70:2693-2698
    [63]Joe O., Nazare, Pereira R., et al. Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickeland zinc phthalocyanine complexes [J]. J. Porphyrins Phthalocyanines, 2003,7:508-520
    [64]Pekbelgin K. H. R., AhmetGul, Makbule B. K.. Synthesis and characterization of a new tetracationic phthalocyanine [J]. Dyes and Pigments,2008,76:231-235
    [65]Cihan K., Nesuhi A., Erbil A., et al. Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties [J]. Dyes and Pigments,2008,76: 7-12
    [66]Wesley M. S., Johan E. van L.. A new procedure for the synthesis of water-soluble tri-cationic and-anionic phthalocyanines [J]. J. Porphyrins Phthalocyanines,2005,9:508-520
    [67]Chen P., Wang X., Tang D., et al. Synthesis and spectral properties of new soluble Naphthalocyaninatometal derivatives [J]. Dyes and Pigments,2001,48: 8-92
    [68]Wesley M. S., Johan E. van L.. Synthesis and photodynamic activity of novel asymmetrically substituted fluorinated phthalocyanines [J]. Bioconjugate Chem., 2005,16:1166-1175
    [69]Jiang X. J., Lo P. C., Tsang Y. M., et al. Phthalocyanine-polyamine conjugates as pH-controlled photosensitizers for photodynamic therapy [J]. Chem. Eur, J., 2010,00:0-0, doi:10.1002/chem.200903580
    [70]Natalia B. R. V., Josefina A., Kashif A., et al. Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following photodynamic therapy, with a novel water-soluble phthalocyanine [J]. Int. J. Biochem. Cell Biol.,2010,42: 1123-1131
    [71]Mehdi A. K., Feryal S.. Theoretical studies on metal porphyrin halides: geometrical parameters and nonlinear optical responses [J]. J. Mol. Model.,2010, 16:499-503
    [72]Wu F. C., Cheng H. L., Yen C. H., et al. Electron transport properties in fluorinated copper-phthalocyanine films:importance of vibrational reorganization energy and molecular microstructure [J]. Phys. Chem. Chem. Phys.,2010,12:2098-2106
    [73]Pascual O., Maria C., Ignacio F., et al. Octahedral iron(Ⅱ) phthalocyanine complexes:multinuclear NMR and relevance as NO2 chemical sensors [J]. Dalton Trans.,2010, doi:10.1039/b924429h
    [74]Wei L., Biyun L. J., Jing Z., et al. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors [J]. Nano, 2010, doi:10.1021/nn100728p
    [75]Hai W., Soumaya M., Salahud D., et al. Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption [J]. Nano, 2010, doi:10.1021/nn100782w
    [76]焦风华,张建成,沈悦.有机非线性光学村料及其进展概述—论酞菁类化合物的三阶非线性光学及特性,上海大学学报(自然科学版),2002,(8)5:441-446
    [77]Eric S. M., Frank C. S., Lin X. C.,Nonlinear optical response of cofacial phthalocyanine dimers and trimers [J]. J. Chem. Phys.,1997,107(3):707-719
    [78]Henari F., Davey A., Blau W., et al. The electronic and non-linear optical properties of oxo-titanium phthalocyanines [J]. J. Porphyrins Phthalocyanines, 1999,3 (5):331-338
    [79]Sorokin A. B., Mangematin S., Pergrale C.. Selective oxidation of aromatic compounds with dioxygen and peroxides catalyzed by phthalocyanine supported catalysts [J]. J. Mol. Catal. A:Chem.,2002,186(182-183):267-281
    [80]Lu X. B., Wang H., He R.. Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates [J]. J. Mol. Catal. A:Chem.,2002,186:33-42
    [81]Saeed S., Javad Y.. Electrocatalytic oxidation of thioglycolic acid at carbon paste electrode modified with cobalt phthalocyanine:application as a potentiometric sensor [J]. Electrochimica Acta,2003,48:4143-4148
    [82]周毅,张智慧,朱志昂,等.氢氧化2,9,16,23-四羧基酞菁合铁(Ⅲ)与硫醇轴配反应[J].无机化学学报,1998,(14)4:388-392
    [83]Rudolf S., Gabriela D., Krzysztof S. et al. Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers [J]. Photochem. Photobiol. Sci.,2010, doi:10.1039/c0pp00160k
    [85]Tawanda M., Tebello N.. Facile electrocatalytic oxidation of diuron on polymerized nickel hydroxo tetraamino-phthalocyanine modified glassy carbon electrodes [J]. Talanta,2010, doi:10.1016/j.talanta.2010.02.037
    [85]Mahmut D., Vefa A.. Water-soluble cationic gallium(Ⅲ) and indium(Ⅲ) phthalocyanines for photodynamic therapy [J]. J. Inorg. Biochem.,2010,104: 297-309
    [86]Aline H. A. M., Karen C. M. M., Cristina P. S., et al. Cellular changes after photodynamic therapy on HEp-2 cells using the new ZnPcBr8 phthalocyanine [J]. 2010. doi:10.1089/pho.2009.2561
    [87]Gurol I., Ahsen V.. Synthesis and aggregation behavior of phthalocyanines substituted with flexible crown ether [J]. J. Porphyrins Phthalocyanines 2000,4: 621-626
    [88]Takamitsu F., Tsuneaki B., Nagao K.. A discrete quadruple-decker phthalocyanine [J]. J. Am. Chem. Soc., doi:10.1021/jal 00125e
    [89]Helge L., Tatu K., Marja N., et al. Independence and inverted dependence on temperature of rates of photoinduced electron transfer in double-linked phthalocyanine-fullerene dyads [J]. Photochem. Photobiol. Sci.,2010, doi: 10.1039/c0pp00059k
    [90]Liang W., Yuexing Z., Dongdong Q., et al. Structures and properties of 1,8,15,22-tetrasubstituted phthalocyaninato zinc and nickel complexes: Substitution and axially coordination effects study based on density functional theory calculations [J]. Journal of Molecular Graphics and Modelling,2010, doi: 10.1016/j.jmgm.2010.03.004
    [91]Stephen M. C., Susan T. B., Karen K. D., et al.π-Complexes of Phthalocyaninesand Metallophthalocyanines [J]. Organometallics,2000,19: 4767-4774
    [92]Zehra A. B.. Synthesis and characterizationof novel soluble octa-cationic phthalocyanines [J]. Dyes and Pigments,2005,65:235-242
    [93]Medhat A. S., Leah B. C., Diana Y. S., et al. Distinguishing polymorphs of the semiconducting pigment copper phthalocyanine by solid-state NMR and raman spectroscopy [J]. J. Phys. Chem. B,2010, doi:10.1021/jp9061412
    [94]Lizhen W., Quanbo W., Jitao L., et al. Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties:effect of metal-ligand coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nanostructures [J]. Langmuir, 2010, doi:10.1021/1a100061e
    [95]汪杰,涂永善,杨朝合,等.MCM-41中孔分子筛研究进展[J].石油大学学报(自然科学版),2003,27(1):126-133
    [96]Avclino C. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev.,1997,97:2373-2419
    [97]IUPAC Manual of Symbols and Terminology. Appendix 2, part I, colloid and surface chemistry [J]. Pure Appl. Chem.,1972,31:578
    [98]Ralph M. D., John L. S., John B. H.,Framework topology of AIPO4-8:the first 14-ring molecular sieve [J]. Zeolites 1990,10 (6):522-524
    [99]Mark K. D., Carlos S.. Consuelo M., et al. A molecular sieve with eighteen-membered rings [J]. Nature,1988,331:698-699
    [100]Estermann M., McCusker L. B., Baerlocher C., et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature,1991,352:320-323
    [101]Paul B. M., Jinchuan S., An X-ray structural study of cacoxenite, a mineral phosphate [J]. Nature,1983,306:356-358
    [102]Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992,359:710-712
    [103]Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992,114(27):10834-10843
    [104]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44(18):1905-1920
    [105]Monnier A., Schuth F., Huo Q., et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261:1299-1301
    [106]Schacht P., Norena-Francob L., Ancheyta J., et al. Characterization of hydrothermally treated MCM-41 and Ti-MCM-41 molecular sieves [J]. Catalysis Today,2004,98 (1-2):115-121
    [107]Yanhui Y., Sangyun L., Chuan W., et al. Multivariate correlation and prediction of the synthesis of vanadium substituted mesoporous molecular sieves [J]. Microporous and Mesoporous Materials,2004,67 (2-3):245-257
    [108]Qisheng H., David I. M., Ulrike C., et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chemistry of Materials,1994,6:1176-1191
    [109]Qisheng H., David I. M., Ulrike C., et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature,1994,368:317-321
    [110]Ulrike C., Dirk D., Rosa L., et al. Surfactant controlled preparation of mesostructured transition-metal oxide compounds [J]. J. Chem. Soc., Chem. Commun.,1994,1387-1388
    [111]Stephen A. B., Eric P., Thomas J. P.,Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science,1995,269: 1242-1244
    [112]Qisheng H., Rosa L., Pierre M. P., et al. Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array [J]. Science,1995,268:1324-1327
    [113]Monnier A., Schuth F., Huo Q., et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261:1299-1003
    [114]Jose M. H, Maria J. J, Juan M. C, et al. Preparation of mesoporous organically modified titanium materials and their activity in the oxidation of cyclohexene [J]. Catalysis Letters,2008,126:179-187
    [115]Hong Z, Jicheng Z, Hean L, et al. Synthesis, characterization of Ag/MCM-41 and the catalytic performance for liquid-phase oxidation of cyclohexane [J]. Catalysis Letters,2006,108(1-2):49-54
    [116]何乐芹,赵继全.MCM-41负载手性Salen Mn (Ⅲ)的制备及其催化性能[J1.河北工程大学学报(自然科学版),2007,24(3):48-51
    [117]Jaroniec C. P., Kruk M., Jaroniec M.. Tailoring surface and structural Properties of MCM-41 silicas by bonding organosilanes [J]. J. Phys. Chem. B,1998,102 (28):5503-5510
    [118]Myong H. L, Andreas S. Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials [J]. Chemistry of Materials, 1999,11 (11):3285-3295
    [119]Douglas S. S, Wuzong Z, Thomas M,et al. Site-directed surface derivatization of MCM-41:use of high-resolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials [J]. Angew. Chem. Int. Ed.,1998,37 (19):2719-2723
    [120]Valentyn A, Mietek J. Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes [J]. Chem. Commun.,1999,2373-2374
    [1]Zekeriya B, Halit K. Microwave assisted synthesis and characterization of novel metal-free and metall-ophthalocyanines containing four pyridyl groups [J]. Transition Metal Chemistry,2007,32:851-856
    [2]Torrc de la G., Torres T., Agullo-Lopez F.. The phthalocyanine approach to second harmonic generation [J]. Adv. Mater.,1997,9:265-269
    [3]Moser F. H., Thomas A. L.. The phthalocyanines, manufacture and applications [M]. Vols 1 and 2. CRC Press:Boca Raton,FL,1983
    [4]Allen C. M., Sharman W. M., Lier van J. E.. Current status of phthalocyanines in the photodynamic therapy of cancer [J]. J. Porphyrins Phthalocyanines,2001,5 (2):161-169
    [5]Detty M. R., Gibson S. L., Wagner S. J., et al. Current clinical and preclinical photosensitizers for use in photodynamic therapy [J]. J. Med. Chem.,2004,47 (16):3897-3915
    [6]Lukyanets E. A.. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer [J]. J. Porphyrins Phthalocyanines,1999.3 (6):424-432
    [7]Minh L., YooJin L., Min D., et al. Photodynamic therapy with the silicon phthalocyanine Pc4 induces apoptosis in mycosis fungoides and sezary syndrome [J]. Advances in Hematology,2010, doi:10.1155/2010/896161
    [8]Ling L., Li-ping G., Xiang-jie B., et al. Electrochemical sensors based on binuclear cobalt phthalocyanine/surfactant/ordered mesoporous carbon composite electrode [J]. Analytica Chimica Acta,2010,673:88-94
    [9]Shane O., Benjamin S., Dermot D., et al. Preparation and sensor evaluation of a pacman phthalocyanine [J]. Tetrahedron Letters,2007,48(51):9003-9007
    [10]Andres de la E., Martinez-Diaz M. V., Joaquin B., et al. Self-organization of phthalocyanine-[60] fullerene dyadsin liquid crystals [J]. J. Org. Chem.,2008,73 (4):1475-1480
    [11]Shirk J. S., Pong R. G. S., Flom S. R., et al. Effect of axial substitution on the optical limiting properties of indium phthalocyanines [J]. J. Phys. Chem. A,2000 104(8):1438-1449
    [12]Torre de la G., Vazquez P., Agullo-lopez F., et al. Phthalocyanines and related compounds:organic targets for nonlinear optical applications [J]. J. Mater. Chem.,1998,8:1671-1683
    [13]Christian G. C., Werner J. B., Michael C., et al. Phthalocyanines and phthalocyanine analogues:the quest for applicable optical properties [J]. Monatshefte fur Chemie/Chemical Monthly,2001,132,3-11
    [14]Mathieu A., Sylvain C., Oualid O., et al. Single layer of polymeric Fe-phthalocyanine:an organometallic sheet on metal and thin insulating film [J]. J. Am. Chem. Soc,2010, doi:10.1021/ja108628r
    [15]Ferda H., Mahmut D. Serkan Y., et al. The synthesis, spectroscopic and thermal properties of phenoxycyclotriphosphazenyl-substituted phthalocyanines [J]. Dyes and Pigments,2008,79:14-23
    [16]Vesper B. J., Salaita K., Zong H., et al. Surface-bound porphyrazines: controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface [J]. J. Am. Chem. Soc.,2004,126: 16653-16658
    [17]Kimura M., Wada K., Iwashima Y., et al. Preparation of organic-inorganic composites containing rod-like phthalocyanine polymers [J]. Chem. Commun., 2003,39 (19):2504-2505
    [18]董国孝,李纪生,庄瑞舫.四羧基酞菁配合物修饰电极对分子氧的电还原[J].分子催化,1996,10(1):19-24
    [19]Sharman W. M., Lier van J. E.. A new procedure for the synthesis of water-soluble tricationic and-anionic phthalocyanines [J]. J. Porphyrins Phthalocyanines,2005,9:651-658
    [20]Mack J., Stillman M. J.. Assignment of the optical spectrum of metal phthalocyanines through spectruml band deconvolution analysis and ZINDO calculations [J]. Coordin. Chem. Rev.,2001,219-221:993-1032
    [21]Achar B. N., Lokesh K. S.. Studies on polymorphic modifications of copper phthalocyanine [J]. J. Solid State Chem.,2004,177:1987-1993
    [22]Ozil M., Agar E., Sxasxmaz S., et al. Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-aza bridge [J]. Dyes and Pigments,2007,75:732-740
    [23]Yarasir M. N., Kandaz M., Senkal B. F., et al. Metal-ion sensing and aggregation studies on reactive phthalocyanines bearing soft-metal receptor moieties; synthesis, spectroscopy and electrochemistry [J]. Polyhedron 2007,26: 5235-5242
    [24]Nagao K., Ryoko K., Shinichiro N., et al. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines [J]. J. Am. Chem. Soc., 1990,112(26):9640-9641
    [25]Clifford C. L Tse W. H. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support [J]. Tetrahedron Letters,1982,23(30): 3023-3026
    [26]Jincan C., Naisheng C., Jinling H., et al, Derivatizable phthalocyanine with single carboxyl group:Synthesis and purification [J]. Inorg. Chem. Commun.,2006,9: 313-315
    [27]史成武,桃李,刘清安,等.双核/三核酞菁羧酸盐氧化脱硫催化剂及其制备方法[P].CN:101525337A,2009
    [28]Meryem C., Ali R. O., Mustafa B.. Novel phthalocyanines bearing four 4-phenyloxyacetic acid functionalities [J]. Polyhedron,2007,26:2638-2646.
    [29]Cihan K., Nesuhi A., Erbil A.. Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties [J]. Dyes and Pigments,2008,76:7-12
    [30]林梅金,许秀枝,王俊东等,4-溴-5-硝基邻苯二甲腈的合成及晶体结构[J].合成化,2005,13(2):169-171
    [31]张龙庆,张春华,王光煦.4-溴代苯酐的合成新方法[J].有机化学,2003,23(3):296-297
    [32]Edward T. S., Anatoli O.. A convenient synthesis of 4-ethynylphthalic anhydride via 2-methyl-3-butyn-2-ol [J]. J. Org. Chem.,1983, (48)25:5135-5137
    [33]Christian W., Shuanglong L., Xuefeng M.. Regioselective copper-catalyzed amination of bromobenzoic acids using aliphatic and aromatic amines [J]. J. Org. Chem.,2006,71:3270-3273
    [34]殷焕顺.易溶性金属酞菁衍生物的合成及性质研究[D].湘潭大学硕士论文,2004.5
    [1]IUPAC Manual of Symbols and Terminology. Appendix 2, part I, colloid and surface chemistry [J]. Pure Appl. Chem.,1972,31:578
    [2]Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359: 710-712
    [3]Baojuan D., Qin H., Jinjun L., et al, Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry [J], J. Hazard. Mater.,2010, doi:10.1016/j.jhazmat.2010.12.051
    [4]Zhao J.. Wang W., Zhang Y.. Preparation of MCM-41 supported salen vanadium complex and its catalysis for the oxidation of cyclohexane with H2O2 as an oxidant [J]. J. Inorg. Organomet Polym.,2008,18:441-447
    [5]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J]科学通报,1999,44(18):1905-1920
    [7]Gavrilko T., Gnatyuk I., Puchkovskaya G., et al. Effect of encapsulation in MCM-41 type molecular sieves on vibrational spectra of liquid crystalline state [J]. Vib Spectrosc,2000,23:199-206
    [8]Prado A. G. S., Airoldi C.. Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas [J]. J. Mater. Chem.,2002,12: 3823-3826
    [9]Shinji I, Shiyou G, Yoshiaki F, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks [J]. J. Am. Chem. Soc.,1999,121:9611-9614
    [10]Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992,114(27):10834-10843
    [1]詹望成,卢冠忠,王艳芹.介孔分子筛的功能化制备及催化性能研究进展[J].化工进展,2006,25(1):1-7
    [2]Corma A., Fomes V., Navarro M. T., et al. Acidity and stability of MCM-41 crystalline aluminosilicates[J]. Journal of Catalysis,1994,148(2):569-574
    [3]Jiquan Z., Weiyu W., Yuecheng Z. Preparation of MCM-41 supported salen vanadium complex and its catalysis for the oxidation of cyclohexane with H2O2 as an oxidant [J]. J. Inorg. Organomet Polym.,2008,18:441-447
    [4]Pankaj D., Ana R. S., Ana P. C., et al. Organo-functionalized mesoporous supports for Jacobsen-type catalyst:laponite versus MCM-41[J]. J. Mater. Sci.,2009,44: 2865-2875
    [5]Koushik D., Krishanu S., Dipankar S., et al. A new functionalized mesoporous matrix supported Pd(Ⅱ)-Schiff base complex:an efficient catalyst for the Suzuki-Miyaura coupling reaction [J]. Dalton Trans.,2010,39:6395-6402
    [6]John M., Martin J. S.. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations [J]. Coordin. Chem. Rev.,2001,219-221:993-1032.
    [7]Achar B. N., Lokesh, K. S.. Studies on polymorphic modifications of copper phthalocyanine [J]. J. Solid State Chem.,2004,177:1987-1993
    [8]Grobosch M., Schmidt C., Kraus R., et al. Electronic properties of transition metal phthalocyanines:the impact of the central metal atom (d5-d10) [J]. Organic Electronics,2010,11:1483-1488
    [9]Carey F. A., Sundberg R. J.. Advanced organic chemistry part I:structure and mechanism [M].5ed, Springer
    [1]Babich I. V., Moulijn J. A.. Science and technology of novel processes for deep desulfurization of oil refinery streams a review [J]. Fuel,2003,82:607-631
    [2]Song C.. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86:211-263
    [3]Shafi R., Hutchings G. J.. Hydrodesulfurization of hindered dibenzothiophenes:an overview [J]. Catalysis Today,52000,9:423-442
    [4]Iliuta M. C., Larachi F.. Gas-liquid partition coefficients and Henry's law constants of methyl mercaptan in aqueous solutions of Fe(Ⅱ)-CDTA chelate complex [J]. Fluid Phase Equilibria,2007,253:124-129
    [5]杜彬,梅华,刘晓勤,等.MgO/C-CoPcS催化剂的制备及其催化氧化脱硫醇性能[J].催化剂与载体的制备,2007,15(8):50-54
    [6]陈文兴,魏莉莉,汪进前,等.平面双核铜酞菁催化氧化硫醇[J].中国科学,B辑化学,2006,36(4):299-303
    [7]陈彬,杨树卿,赵成大,等.双核金属酞菁类化合物催化脱硫机理研究Ⅲ—M(Ⅱ)Pc-PcM(Ⅱ)的电子结构及M(Ⅱ)与Pc的键合方式[J].分子科学学报,1996,12(3):204-210
    [8]陈彬,邵允,杨树卿,等.双核金属酞菁类化合物催化脱硫机理研究Ⅵ—电子转移机制和催化脱硫机理[J].分子科学学报,1996,12(4):261-264
    [9]陈彬,杜锡光,杨树卿等.双核余属酞菁类化合物催化脱硫机理研究Ⅳ—中心离子对MPc-PcM催化活性的影响[J].分子科学学报,1996,12(3):211-217
    [10]陈彬,邵允,李连忠,等.双核金属酞菁类化合物催化脱硫机理研究Ⅴ—MPc-PcM与氧分子的键合及荷移方式[J].分子科学学报,1996,12(3):218-223
    [11]杨树卿,陈彬,邵允,等.双核令属酞菁类化合物催化脱硫机理研究Ⅰ—抗CN-1中毒性能及其机理[11].催化学报,1991,12(6):459-465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700