MCM-22分子筛的合成、改性及其在处理染料废水中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MCM-22分子筛兼具十元环和十二元环的孔道特征,具有特殊的物化性质,已显示良好的应用前景。本论文旨在缩短MCM-22分子筛合成时间,降低合成成本,并通过掺杂改性优化其吸附方面的性能。
     本论文以硅溶胶为硅源、六亚甲基亚胺(HMI)为模板剂,按照SiO_2∶0.3HMI∶0.035Al_2O_3∶0.2NaOH∶20H_2O的摩尔配比,对常规合成MCM-22法和变温静态水热晶化法进行了比较,结果表明,变温静态水热晶化法缩短了合成的时间,降低了合成的温度,并合成出具有MWW层状结构的MCM-22分子筛。然后利用粉末X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、傅立叶红外(FT-IR)、热重-差热(TG-DTA)、N2吸附脱附等方法对其进行了表征。结果表明合成的MCM-22分子筛结晶度良好,孔径均匀,比表面积达到了388 m2/g,属于良好的吸附和催化材料。
     因杂原子的引入可以有效地调节分子筛的性质,还可以引入其它活性中心,使分子筛具有特殊的催化性能。本论文通过掺杂引入金属铈(Ce),按照0.0025Ce:SiO_2∶0.3HMI∶0.035Al_2O_3∶0.2NaOH∶20H_2O的摩尔配比合成了Ce-MCM-22,经XRD、TEM等表征表明,仍保持层状晶相结构特征,分子筛的有序结构性并没有被破坏,是一种较为新型的吸附材料。在Ce-MCM-22分子筛对模拟废水亚甲基蓝溶液的吸附性能研究中,结果表明在Ce-MCM-22分子筛的投加量为0.6g/L,亚甲基蓝浓度为2.0mg/L,pH为7,震荡吸附60分钟时,吸附效果最好,脱色率达到90.5%。Ce-MCM-22吸附动力方程拟二级方程y=0.4657x +1.2005,R2=0.9995,相对拟一级反应模型,这个结果相关性更好,更能真实地反映分子筛吸附亚甲蓝溶液的反应机理。
     然后通过掺杂钛(Ti)和非金属氮(N)元素,按照0.008N:SiO_2∶0.03TiO2∶0.3HMI∶0.035Al_2O_3∶0.2NaOH∶20H_2O的摩尔配比合成了N-Ti-MCM-22分子筛,并研究了它光催化降解模拟废水亚甲基蓝溶液的效果和溶液pH、亚甲基蓝浓度、分子筛投加量等因素对其效果的影响。结果表明,采用含氮量为0.008 mol的Ti-MCM-22分子筛光催化剂加入量为1g/L,亚甲基蓝溶液浓度4.0mg/L,pH值为中性左右,光催化时间40分钟,对亚甲基蓝脱色率和降解率分别达到95.9%和97.8%,是良好的复合催化材料。
Owing to its unique structure comprising both 10 member-ring (MR) and 12MR channel system and special physiochemical properties, MCM-22 zeolite has shown many promising applications. This paper aims to reduce the synthesis of MCM-22 molecular sieve time, and low-cost synthesis, and optimize its absorption performance by doped.
     In this paper, silica sol was used as silicon source, hexamethylene imine (HMI) as template agent, with the molar ratio of SiO2: 0.3HMI: 0.035Al_2O_3: 0.2NaOH: 20H_2O, and compared the method of conventional synthesis of MCM-22 and the temperature change static hydrothermal method, The results showed that the static temperature change hydrothermal method reduce the synthesis time, reducing the synthesis temperature, and MCM-22 molecular sieve with MWW of layer structure was synthesized. Molecular sieve of MCM-22 was characterizated by power X-ray diffraction(XRD), scanning electron microscope(SEM)、transmission electron microscopy (TEM),fourier transform infrared spectroscopy (FT-IR), TG-DTA,N2 adsorption and desorption and so on. The results showed that the synthesis of MCM-22 molecular sieve pore size was very uniformity, specific surface area was reached 388 m2/g, and it is a good adsorption and catalytic materials.
     Due to the introduction of heteroatoms can effectively regulate the nature of zeolite, but also the introduction of other active center, so zeolite has a special catalytic property. In this paper, synthesized Ce-MCM-22 zeolite with the molar ratio of 0.0025Ce:SiO2∶0.3HMI∶0.035Al_2O_3∶0.2NaOH∶20H_2O,and characterizated it by XRD, TEM. The results show it maintains crystalline layered structure, the ordered zeolite structure has not been destroyed, it is a new type of adsorbent material. In the study of Ce-MCM-22 molecular sieve adsorption methylene blue, the results showed that Ce-MCM-22 zeolite dosage was 0.6g / L, methylene blue concentration was 2.0mg / L, pH was 7, the shock absorption time xas 60 minutes, the adsorption effect was best, and decolorization rate reached 90.5%. Ce-MCM-22 adsorption dynamic second equation was y = 0.4657x + 1.2005, R~2 = 0.9995, relative to be a equation model, the results related to be better, more truly reflect the response of molecular sieve adsorption of methylene blue solution mechanism.
     Then synthesized N-Ti-MCM-22 molecular sieves by doped titanium (Ti) and non-metallic nitrogen (N), synthesized N-Ti-MCM-22 zeolite with the molar ratio of 0.008N:SiO2∶0.03TiO2∶0.3HMI∶0.035Al_2O_3∶0.2NaOH∶20H_2O and study of its photocatalytic degradation of methylene blue solution effects, and study of the solution pH, methylene blue concentration, zeolite dosage factors that influence their effect. The results showed that the nitrogen content was 0.008 mol of Ti-MCM-22 zeolite , and zeolite dosage was 1g / L, the concentration of methylene blue solution was 4.0mg / L, pH was neutral, the photocatalytic time was 40 minutes, the methylene blue decoloration rate and the degradation rate reached 95.9% and 97.8%, was a good composite catalytic materials.
引文
[1]乔晓辉.MCM-22分子筛的合成、表征及应用[D].汕头大学.2008
    [2] Rubin M K,Cynwyd B,Chu P,et al.Composition of synthetic porous crystalline material,its synthesis and use[P].US,4954325.1990-09-04.
    [3] Robson H.Discussion[J].Microporous and Mesoporous Materials,1998,22(4-6): 551-662.
    [4] Zones S I.New Zeolite SSZ-25[P].EP,0231860,1987-08-12.
    [5]Kushnerick J,Marler D E A.Process for preparing short chain alkyl aromatic compounds[P].US,4992606,1991-02-12.
    [6] Bennett J M,Chang C D,Lawton S L,et al.Synthetic porous crystalline MCM-49,its synthesis and use[P].US,5236575,1993-08-17.
    [7] Camblor M A,Corell C,Corma A,et al.A new microporous:polymorph of silica isomorphous to zeolite MCM-22[J].Chemistry of Materials,1996,8(10):779-780.
    [8] Kresge C T,Roth W J,Simmons K G,et al.Crystalline Oxide Material[P].US, 5229341, 1993-07-20.
    [9] Fung A S,Lawton S L,Roth W J.Synthetic layered MCM-56,its synthesis and use[P].US, 5362697,1994-11-08.
    [10]傅军,刘中清,何鸣元.MWW结构分子筛的研究进展[J].石油化工,2002,31(7): 574-579.
    [11] Leonowicz M E,Lawton J A,Lawton S L,et al.MCM-22:A molecular sieve with two independent multidimensional channel systems[J]. Science, 1994,264(5167): 1910-1913.
    [12] Juttu G G,Lobo R F.Characterization and catalytic properties of MCM-56 and MCM-22 zeolites[J].Microporous and Mesoporous Materials,2000,40(1-3):9-23.
    [13]柳林.MCM-22分子筛的修饰及其在催化中的应用[D].中国科学院大连化学物理研究所博士论文,2007,12-13.
    [14] Lawton S,Leonowicz M E,Partridge R,et al.Twelve-ring pockets on the external surface of MCM-22 crystals[J].Microporous and Mesoporous Materials, 1998,23 (1-2):109-117.
    [15]范志勇.Ti-MWW的合成及其对烯丙醇环氧化性能的研究[D].福州大学.2005
    [16]张伟. MCM-22分子筛的合成、表征及其剥层沸石ITO-2的研究[D].太原理工大学.2007
    [17]袁忠勇,张怀彬,王敬中,等.沸石分子筛MCM-22的合成与表征[J].石油学报,1998,14(2):28-31
    [18]牛雄雷.MCM-22分子筛的合成与应用研究[D].中国科学院.2006
    [19] Okumura K,Hashimoto M,Mimura T,and Niwa M.“Acid properties and catalysisof MCM-22 with different Al concentrations”,J Catal 2002,206,23–28
    [20]马广伟,葛学贵,黄少云.中孔沸石分子筛合成研究进展[J].湖北化工,2002, (05) : 1-3.
    [21] Han B D,Lee S H,Shin C H,et al.Zeolite synthesis using flexible diquaternary alkylammonium ions(C_nH_(2n+1))_2HN~+(CH_2)_5N+H(C_nH_(2n+1))_2 with n=1-5 as structure-directing agents[J].Chemistry of Materials,2005,17(3):477-486.
    [22]彭建彪,谢素娟,徐龙伢,等.MCM-22分子筛的结构、性质及合成和应用前景[J].天然气化工(C1化学与化工),2001,26(02):42-47.
    [23] Guray I,Warzywoda J,Bac N,et al.Synthesis of zeolite MCM-22 under rotating and static conditions[J].Microoporous and mesoporous materials,1999,31 (3): 241-251.
    [24]吴建梅,李牛,王保玉,等.几种金属盐对合成MCM-22分子筛的影响[J].南开大学学报(自然科学版),2006,39(4):1-7.
    [25]彭建彪,谢素娟,王清遐,等.几种分子筛转晶和混晶的控制及单一晶体的优化合成[J].催化学报,2002,23(04):363-366.
    [26] Cheng M J,Tan D L,Liu X M,et al.Effect of aluminum on the formation of zeolite MCM-22 and kenyaite[J].Microporous and Mesoporous Materials,2001, 42(2-3) : 307-316.
    [27]刘中清,王一萌,何鸣元等.新世纪的催化科学技术.第十届全国催化学术会议论文集,2000.
    [28] Vuono D,Pasqua L,Testa F,et al.Influence of NaOH and KOH on the synthesis ofMCM-22 and MCM-49 zeolites[J].Microporous and mesoporous materials, 2006, 97(1-3):78-87.
    [29] Wu Y J,Ren X Q,Lu Y D,et al.Crystallization and morphology of zeolite MCM-22influenced by various conditions in the static hydrothermal synthesis[J]. Microporous and Mesoporous Materials,2007
    [30] Aiello R,Crea F,Testa F,et al.Synthesis and characterization of aluminosilicate MCM-22 in basic media in the presence of fluoride salts[J].Microporous and Mesoporous Materials,2000,(35-36):585-595.
    [31] Marques A L S,Monteiro J L F,Pastore H.Static crystallization of zeolites MCM-22 and MCM-49[J].Microporous and Mesoporous Materials, 1999, 32(1-2):131-145.
    [32]王一萌,朱斌,舒兴田,等.一种具有特殊晶体结构的分子筛(MCM-22)的合成方法[P].CN,99123718.8,2001-05-30. [ 33 ]曹钢,史建公,卢冠忠,等.一种分子筛的合成方法[P].CN,03142805.3, 2005-01-19.
    [34]董晋湘,董平.蒸汽相法合成沸石的技术进展石油化工,1995,24(3):221-223
    [35]李英霞,陈标华,穆致君,等.VPT法制备MCM-22分子筛催化剂颗粒及其烷基化性能化工学报,2004,55,2015-2019
    [36] AurouxA,GervosiniA,JordaEetal.StudSurfseiCatal,1994,84:65
    [37] MuseasM,SolinasV,Gontier5etal.StudSurfSeiCatal,1995,94:101
    [38]白杰.MCM-22分子筛的合成和应用[J].石油与天然气化工.2000,29, (3):100~103
    [39] Meng,W J,Chen,B H,Li,Y X,Li,C Y,Cao,G.“Catalytic properties of beta and MCM-22 in alkylation of benzene with propylene.”Shiyou Xuebao,Shiyou Jiagong,2003,19(5):47-52
    [40] Cejka J,Krejci A,Zilkova N,Kotrla J,Ernst S,Weber A.“Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene withpropylene”,Micr Meso Mater 2002,53(1-3):121-133
    [41] Kumar N,Lindfors L E.“Synthesis,characterization and application of H-MCM-22 Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane”,Appl Catal A,1996,147(1):175~187.
    [42] Shu Y Y,Ma D,Xu LY,Xu Y D,Bao X H.“Methane dehydro-aromatization over Mo/MCM-22 catalysts:a highly selective catalyst for the formation of benzene”,Catal Lett,2000,70(1-2):67~73.
    [43] Bai J,Liu S L,Xie S J,Xu L Y,Lin L W.“Shape selectivity in methane dehydroaromatization over Mo/MCM-22 catalysts during a lifetime experiment”,Catal Lett,2003,90(3):123~130.
    [44] Corma A,Davis M,Fornes V,GonzalezAlfaro V,Lobo R,Orchilles AV.“Cracking behavior of zeolites with connected 12-and 10-member ring channels:The influence of pore structure on product distribution”,J Catal,1997,167:438~446.
    [45] Absil R,Angevine P.“Octane Improvement in Catalytic Cracking and Cracking Catalyst Composition Therefor”,USP 4,983,276,1991-01-08
    [46] Testa F,Crea F,Diodati GD,Pasqua L,Aiello R,Terwagne G,Lentz P,Nagy JB.“Synthesis and characterization of Fe-and[Fe,Al]-MCM-22 Zeolites”,Micro Meso Mater,1999,30(1):187~197.
    [47] Kirker G,Shih S.“Process for upgrading Hydrocarbons”,USP 4,968,402,1990-11-06.
    [48] Pirngruber G D,Seshan K,Lercher J.“Direct conversion of n-butane to isobutene over Pt-MCM22”,J Catal,2000,190(2):396~405.
    [49] Wu P,Komatsu T,Yashima T.“Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts”,Micro Meso Mater,1998,22(1-3):343~356.
    [50] Verhoef M J,Creyghton E J,Peters J A,Vabekkum H.“Reductive etherification of substituted cyclohexanones with secondary alcohols catalysed by zeolite H-MCM-22”,Chem Commun,1997(20),1989~1990.
    [51] Collins N,Harandi M.“Desulfurization of Hydrocarbon Streams”,USP.5,482,617,1996-01-09.
    [52] Asensi M A,Corma A,Martinez A.“Skeletal isomerization of 1-butene onMCM-22 zeolite catalyst”,J Catal,1996,158(2):561~569.
    [53] Levin D,Chang C D,Luo S,et al.Olefin epoxidation catalysts[P].US:6 114 551,2000.
    [54] Corma A,Díaz C,Maria J,et al.Synthesis and structural characterization of MWW type zeolite ITQ-1,the pure silica analog of MCM-22 and SSZ-25[J].J Phys Chem B,1998,102(1):44-51.
    [55] Khouw C B,Davis M E.Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions[J].J Catal,1995,151(1):77-86.
    [56] Wu P,Miyaji T,Liu Y,He M,Tatsumi T.Synthesis of Ti-MWW by a dry-gel conversion method[J].Catal Today,2004,99(1-2):233-240.
    [57] Wu P,Tatsumi T.Preparation of B-free Ti-MWW through reversible structural conversion[J]. Chem Commun,2002,1026-1027.
    [58] Fan W,Wu P,Namba S et al.A titanosilicate that is structurally analogous to an MWW-Type lamellar precursor[J].Angew Chem Int Ed,2003,43(2):236-240.
    [59] Nuntasri D,Wu P,Tatsumi T.Highly active delaminated Ti-MWW for epoxidation of bulky cycloalkenes with hydrogen peroxide[J].Chem Lett,2003,32(4):326-327.
    [60] Wu P,Nuntasri D,Ruan J,et al.Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes[J].J Phys Chem B,2004,108(50):19126-19131.
    [61]戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对Cr(VI)的光催化还原作用研究[J].环境科学,1996.17(6):34-36
    [62] Frarnk,S.N.andA.J.Bard,J.Am.Chem.Soe.,1977.99(l):P.303-304
    [63] Wang,C.M.,A.Heller,andH.Gerischer,J.Am.Chem.Soe.,1992.114:P.5230.
    [64]王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解[J].催化学报,2000.21(4):327-331
    [65]陈士夫,赵梦月;陶跃式等.玻璃纤维附载TiO2光催化降解有机磷农药[J].环境科学,1996.17(4):33-35
    [66]赵进才,张丰雷.二氧化钛微粒存在下表面活性剂光催化分解机理的研究[J].感光化学与光化学,1996.14(3):269-273
    [67]江宏富. TiO2的掺杂改性及光催化研究[D].中国科学技术大学.2006
    [68] Kayano,S etal.,Environ.Sei.Teeh.,1998.32(5):726-728
    [69]盖新军. MCM-22分子筛的合成及催化苯与丙烯烷基化性能研究[D].化学工程学院,2006
    [70]范志勇. Ti-MWW的合成及其对烯丙醇环氧化性能的研究[D].福州大学.2005
    [71]鲍莹,周丹红,杨明媚等.MCM-22分子筛酸性的DFT理论计算研究[J].无机化学学报,2005,21(7) :971~976
    [72]许海红,郭岱石,蒋淇忠等.硫酸根促进的纯硅MCM-41催化假性紫罗兰酮环化合成紫罗兰酮的性能.催化学报, 2006,27(12): 1080~1086
    [73]张祚望. MCM-22族分子筛的合成及其在苯与异丙醇烷基化反应中的催化性能研究[D].吉林大学博士论文.2009
    [74] Okumura K,Hashimoto M,Mimura T,et al. J Catal, 2002,206:23-28.
    [75]杭春燕.乙醇和聚乙二醇作有机辅助剂对MCM-22分子筛织构及催化性能的影响[D].北京化工大学硕士论文.2008
    [76]金忠秀,童红武,雍国平等. Ce-MCM-48介孔分子筛的合成、表征和催化性能[J].化学物理学报.2005,18(6),1057-1061
    [77] Rodriguez T R, Vargas S.Modification of the phase transition temperatures in titania doped with various cations [J]. Mater. Res., 1997, 12: 439
    [78]翟尚儒,张晔,吴东,等.混合表面活性剂与调节pH值法高效合成MCM-48[J].化学学报,2003,26(3):345-349.
    [79] GO′MEZ S,GIRALDO O,GARCE′S L J,et al.New synthetic route for the incorporation of manganese species into the pores of MCM-48[J].Chem Mater,2004,16(1/3):2411–2417.
    [80]李湘祁,陈琼霞,汤德平.高铈含量的MCM-48介孔分子筛的合成与表征[J].硅酸盐学报,2009,37(10).1665-1668
    [81]李艳红,曹文斌,韦袆,冉凡勇,张小宁.氮掺杂纳米TiO2粉体的制备研究.无机材料学报[J],2006,21(5):1067-1072.
    [82] Asahi ,TMorikawa ,et al. Reports visible - light photocatalysis in nitrogen -doped titanium oxides. Science ,2001 ,293 :269~271
    [83] T Ihara. Visible - light - active titanium oxide photocatalyst realized by an oxygen - deficient structure and by nitrogen doping. Ap2 plied Catalysis B : Environmental ,2003 ,42 :403~409
    [84] T Tachikawa. Visible light - induced degradation of ethyleneglycol on nitrogen - doped TiO2 powders. Phys Chem B ,2006 ,110 :13 ,158~165
    [85] Hongbo Hu. Electron spin resonance spin - trapping detection of radical intermediates in n - doped TiO2-assisted photodegradation of 4-chlorophenol. Phys Chem B,2006,110:3061~3065
    [86] Morikawa T, Asahi R, Ohwaki T,etal . Band2gap narrowing of titanium dioxide by nitrogen doping[J]. JapaneseJournal of A pplied Physics:Part 22Letters , 2001 , 40 (6A) : L5612L563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700