水杨醛类西佛碱离子识别性质与分子逻辑功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,分子识别与分子逻辑功能的研究倍受人们关注,进一步地,利用简单分子开发复杂逻辑功能性质如分子键盘锁等也成为目前超分子领域研究的前沿和热点。然而,目前可以被用来研究阴离子识别,阳离子识别等分子识别并能进一步地发展为特殊分子逻辑功能的体系还比较少。本论文的主体思想是寻找合适受体分子体系,设计并合成结构较为理想的水杨醛类西佛碱受体分子,进一步地详细研究这些分子对阴离子、阳离子的识别能力以及分子逻辑功能。本论文开展了以下几个方面的工作:
     1.设计并合成了含氯取代的联二萘桥联西佛碱分子,研究了这类分子对各种阴阳离子的识别能力,结果表明这类分子可以通过紫外吸收以及荧光光谱有效地识别氟离子以及二价锌离子,二价铜离子。进一步地,选择铜离子,锌离子以及EDTA分子作为输入信号,这类分子可完成比较特殊的逻辑功能。研究还发现,将此类分子通过超分子氢键自组装到有序介孔材料SBA-15上时,分子的离子识别性质得到了较好的保持,并存在具有自身特色的逻辑功能。
     2.设计合成无氯取代的联二萘桥联西佛碱分子,研究了这类分子对阳离子识别能力,研究发现此类分子可以很好地识别二价锌离子。同时这类分子对紫外光照射比较敏感,当选用锌离子与紫外光照射作为两种输入信号时,我们可以得到逻辑上比较重要的半减法器功能。
     3.设计合成简单的含氯取代的水杨醛西佛碱分子,研究了这类分子阴离子识别能力,结果表明此类分子可以在四氢呋喃溶剂中识别氟离子与氰根离子,而在乙醇溶剂中仅对氰根离子有识别作用。进一步地,在四氢呋喃溶剂体系中引入锌离子和EDTA分子两种输入,此类分子可以被开发为由氟离子,锌离子,EDTA分子共同作用的分子键盘锁。
Supramolecular chemistry is one new developing research area. Molecular recognition, once described as "lock and key" for the unique combination of molecules, which is one of the process related closely to supramolecular chemistry, has developed more and more function in synthesis chemistry, life sciences, material sciences and information sciences. Compared with electric and magnetic signal, optical signal has some advantages such as convenience, high sensitivity and selectivity. Moreover, the "naked eye" detection, watching the color change with no instruments, has become the focus in molecular recognition. Furthermore, molecular logic function has been another focus in many crossed studies, based on which, molecular brake and molecular keypad lock has become one foreland of this research area.
     Firstly, we choose one binaphyl bridged salicylidene Schiff base with chlorine atoms in the phenyl of the salicylidene (BCHB), which was once applied as one ligand for molecular structure and asymmetric catalysis, as receptor to study its ability in cation and anion recognition. It can be concluded that, when the solution of BCHB was titrated with fluoride anion, the absorption would be affected dramaticly because of the deprotonation function. The color of the solution was then from colorless to yellow. In the same condition, other anions such as chloride, bromide, iodide, phosphate had no obvious change for this. Andthen, many kinds of metal cations were introduced to the fluoride acted solution. As can be seen from the result of absorbance and fluorescence that only the addition of Zn~(2+) and Cu~(2+) can cause a obvious change, indicating the presence of of unique coordination complex with deprotonated BCHB respectively. The naked eye observation also shows that only Zn~(2+) and Cu~(2+) can result in a yellow to light green color change, while the others remain the original state and the disturbance for color change can be neglected.
     On the other hand, BCHB presents a tunable system integrated with one OR logic gate as well as one INHIBIT logic gate with Zn~(2+) and Cu~(2+) as chemical inputs by monitoring fluorescence and absorbance as output signals. Also, one IMPLICATION gate operating in fluorescence mode with Cu~(2+) and EDTA as chemical inputs, based on their different binding capability, is present in the system. This research has been rarely reported.
     Furthermore, we choose the same structure as BCHB but with no chlorine atoms in the phenyl of the salicylidene (BHB) as another receptor for molecular recognition. Exhibiting absorption and fluorescence changes in the presence of Zn~(2+) in chloroform and ethanol mixed solution, BHB could be used as a fluorescent chemosensor for the detection of Zn~(2+). Furthermore, by monitoring the fluorescence and absorbance as output signals, BHB can function as a combinatorial logic circuit for a molecular half-subtractor with Zn~(2+) and UV irradiation as input variables. Most of the reported molecular half-subtractors mainly focused on acid, base, and other chemical input variables, with UV light irradiation as an independent input, to the best of our knowledge, has not been reported yet.
     Lastly, we choose one simple salicylidene Schiff base SPEA as another receptor to study its ability for anions recognition. With THF as organic solvent, F- and CN- could be detected through both absorbance and fluorescence change. Noting that, F- can be detected in rather low concentration (10-8) for its high sensitivity with the receptor. When using ethanol as organic solvent, the spectrum of SPEA could only be affected by the additon of CN-. In conclusion, SPEA can be developed as a sensor for F- and CN- in different solution.
     In additon, we also studied the stimulating spectral results of F- acted SPEA with Zn~(2+) and EDTA as inputs in THF solution. It could be found that with different input sequence, the result of fluorescence would be totally different. Then, SPEA can be also applied as a new receptor for developing one simple keypad lock for information secuirity in molecular level.
     In summary, we choose three kinds of salicylidene Schiff base as receptors to study their molecular recognition and molecular logic function. It can be concluded that, BCHB exhibits“naked eye”colour change and significant fluorescence change in preference to other anions. And then, its deprotonated derivative behaves as a chromogenic detector for Cu~(2+) and a dual ratiometric fluorogenic and chromogenic chemosensor for Zn~(2+) over other metal ions. Moreover, we can describe two sets of integrated logic gates through the emission and absorbance mode respectively; BHB can be developed as a new selective fluorescence probe for Zn~(2+) among other metal cations. Furthermore, under the individual actions of Zn~(2+) ion and UV light as well as the combination of the two actions, we successfully obtained a monomolecular half-subtractor circuit, which responds to one optical and one chemical input producing two optical outputs; SPEA can be a effective sensor for F- and CN- in THF solution and can only detect CN- in ethanol solution. In addition, a keypad lock can be developed with Zn~(2+) and EDTA as two inputs with different results for different sequences. It can offer a new information secuirity platform in molecular level.
引文
[1] LEHN J M,SAUVAGE J P. [2]-Cryptates: Stability and Selectivity of Alkali and Alkaline-Earth M acrobicyclic Complexes[J]. J. Am. Chem. Soc., 1975, 97: 6700-6707.
    [2]马立军.基于氨基酸的重金属离子荧光探针的设计、合成及识别机理[D].长春:吉林大学化学学院,2008.
    [3]吴世康.超分子光化学导论----基础与应用[M],北京:科学出版社,2005:185-234.
    [4] LI H W,LI Y,DANG Y Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for mercury(II) ions [J]. Chem. Commun., 2009: 4453–4455.
    [5] XIANG Y,TONG A J,JIN P Y,et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity [J]. Org. Lett., 2006, 8:2863-2866.
    [6] NANDHIKONDA P,BEGAYE M P,HEAGY M D,Highly water-soluble, OFF–ON, dual fluorescent probes for sodium and potassium ions [J]. Tetrahedron Letters,50(2009):2459–2461.
    [7]曾振亚,何永炳,孟令芝.阴离子荧光受体研究进展[J].化学进展, 2005, 17: 254-265.
    [8] KIM S K,LEE D H,HONG J,et al. Chemosensors for Pyrophosphate [J]. Acc. Chem. Res., 2009, 42 (1):23-31.
    [9] CALTAGIRONE C,GALE P A,Anion receptor chemistry: highlights from 2007 [J]. Chem. Soc. Rev., 2009, 38:520–563.
    [10] AMENDOLA V,FABBRIZZI L, Anion receptors that contain metals as structural units [J]. Chem. Commun., 2009:513–531.
    [11] STEED J W,Coordination and organometallic compounds as anion receptors and sensors [J]. Chem. Soc. Rev., 2009, 38:506–519.
    [12]许胜,刘斌,田禾.阴离子荧光化学传感器新进展[J].化学进展, 2006, 18: 687-697.
    [13] LEE K S,KIM T K,LEE J H. et al. Fluorescence turn-on probe for homocysteine and cysteine in water [J]. Chem. Commun., 2008:6173–6175.
    [14] GERMAIN M E,KNAPP M J,Turn-on Fluorescence Detection of H2O2 and TATP [J].Inorg. Chem., 2008, 47:9748–9750.
    [15]田玉平,王东辉,郭卫荣.乳及乳制品中三聚氰胺的检测方法[J].化学世界, 2009:467-471.
    [16] MULLER D A, SORSCH T, MOCCIO S. et al. The electronic structure at the atomic scale of ultrathin gate oxides [J]. Nature, 1999, 399:758-761.
    [17] SERVICE R F.Optical Lithography Goes to Extremes--And Beyond [J].Science, 2001, 293:785-786.
    [18] WHITESIDES G M, LOVE J C. The Art of Building Small [J].Sci. Am., 2001, 285:32-41.
    [19] FEYNMAN R P.There is plenty of room at the bottom [J].Eng. Sci., 1960, 23,:22-36.
    [20] BALZANI V, CREDI A, VENTURI M. Molecular Devices and Machines: A Journey into the Nanoworld[M]. Wiley-VCH. Weinheim, 2003.
    [21] AVIRAM A, RATNER M A. Molecular rectiferss [J]. Chem. Phys. Lett., 1974,29:277-283.
    [22] BALZANI V, SCANDOLA F.Supramolecular Photochemistry[M].Horwood, Chichester, 1991.
    [23] SCANDOLA F, CHIORBOLI C, INDELLI M T, et al. in Electron Transfer in Chemistry (Ed.: V. Balzani)[M].Wiley-VCH, Weinheim, 2001, 3:337.
    [24] BARIGELLETTI F, FLAMIGNI L. Photoactive molecular wires based on metal complexes[J].Chem. Soc. Rev., 2000, 29:1.
    [25] ASHTON P R, BALLARDINI R, BALZANI V. et al. Molecular Meccano, Part 61 A Photochemically Driven Molecular-Level Abacus [J]. Chem. Eur. J., 2000, 6: 3558-3574.
    [26] JIMéNEZ M C, DIETRICH-BUCHECKER C O, SAUVAGE J P. Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer [J]. Angew. Chem. Int. Ed., 2000, 39:3284-3287.
    [27] OTERO T F, CHENG S A, ALONSO D. Hybrid materials polypyrrole/PW12O3-40. 2. Physical, spectroscopic and electrochemical charaterization [J].J. Phys. Chem. B, 2000, 104:10528.
    [28] COLLIN J P, DIETRICH-BUCHEKER C O, GAVINA P. et al. Shuttles and Muscles: Linear Molecular Machines Based on Transition Metals [J].Acc. Chem. Res., 2001, 34:477-487.
    [29] Molecular Switches (Ed.: B.L. Feringa), Wiley-VCH, Weinheim, 2001
    [30] HOLTEN D, BOCIAN D F, LINDSEY J S. Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices [J].Acc. Chem. Res., 2002, 35:57-69.
    [31] IRIE M. in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, 37.
    [32] BERKOVIC G, KRONGAUZ V, WEISS V. Spiropyrans and Spirooxazines for Memories and Switches [J]. Chem. Rev., 2000, 100:1741-1754.
    [33] TYSON D S, BIGNOZZI C A, CASTELLANO F N. Metal-Organic Approach to Binary Optical Memory [J].J. Am. Chem. Soc., 2002, 124:4562-4563.
    [34] JAGER W F, DE JONG J C, DE LANGE B. et al. A Highly Stereoselective Optical Switching Process Based on Donor-Acceptor Substituted Dissymmetric Alkenes [J]. Angew. Chem. Int. Ed. Engl., 1995, 34:348-350.
    [35] ASHTON P R, BALZANI V, BECHER J. et al. A Three-Pole Supramolecular Switch [J].J. Am. Chem. Soc., 1999, 121:3951-3957.
    [36] TAJC S G, MILLER B L. A Designed Receptor for pH-Switchable Ion Binding in Water [J]. J. Am. Chem. Soc., 2006, 128:2532-2533.
    [37] BADJIC J D, RONCONI C M, STODDART F. et al.Operating Molecular Elevators [J]. J. Am. Chem. Soc., 2006, 128, 1489-1499.
    [38] MILLER J S,DRILLON M.Magnetism: Molecules to Materials, Series [M]. Eds.; Viley-VCH: Weinheim, Germany, 2002.
    [39] TAKEUCHI M, IKEDA M, SUGASAKI A. et al. Acc. Chem. Res.. Molecular Design of Artificial Molecular and Ion Recognition Systems with Allosteric Guest Responses [J]. 2001:34, 865-873.
    [40] COOK N P,Introductory Digital Electronics. Prentice-Hall Inc.: Upper Saddle River, NJ, 1998.
    [41] FLOYD T L,Digital Fundamentals. Prentice-Hall International Inc.: Upper Saddle River, NJ, 1997.
    [42] HILLIS W D.The Pattern on the Stone. The Simple Ideas That Make Computers Work; Perseus Publishing: Boulder, CO, 1999.
    [43] DE SILVA A P,MCCLENAGHAN N D. Molecular-Scale Logic Gates [J]. Chem. Eur. J. 2004, 10, 574-586.
    [44] MILANI M,PESCE A,NARDINI M. et al. Inorg. Biochem. 2005, 99, 97.
    [45] SZACI?OWSKI K. Digital Information Processing in Molecular Systems [J]. Chem. Rev. 2008, 108:3481–3548.
    [46]赵立彦.水杨醛类西佛碱分子的开关性质及其逻辑功能的研究[D].长春:吉林大学化学学院,2008.
    [47] AVIRAM A. Molecules for memory, logic, and amplification [J]. J. Am. Chem. Soc., 1988, 110, 5687-5692.
    [48] DE SILVA A P, GUNARATNE H Q N, MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling. Nature, 1993, 364, 42-44.
    [49] DE SILVA A P, JAMES M R, MCKINNEY O F. et al. Molecular computational elements encode large populations of small objects [J]. Nature materials, 2006, 5, 787-790.
    [50] GHOSH P, BHARADWAJ P K, ROY J. et al. Transition Metal (II)/(III), Eu(III), and Tb(III) Ions Induced Molecular Photonic OR Gates Using Trianthryl Cryptands of Varying Cavity Dimension [J]. J. Am. Chem. Soc. 1997, 119:11903-11909.
    [51] BALLARDINI R, CERONI P, CREDI A. et al. Molecular Photochemionics [J]. Adv. Funct. Mater. 2007, 17:740–750.
    [52] STRAIGHT S D, ANDRASSON J, KODIS G. et al. Molecular AND and INHIBIT Gates Based on Control of Porphyrin Fluorescence by Photochromes [J]. J. Am. Chem. Soc., 2005, 127 (26):9403-9409.
    [53] QIAN J, QIAN X, XU Y. et al. Multiple molecular logic functions and molecular calculations facilitated by surfactant’s versatility [J]. Chem. Commun., 2008:4141–4143.
    [54] DE SILVA A P, MCCLENAGHAN N D. Simultaneously Multiply-Configurable or Superposed Molecular Logic Systems Composed of ICT (Internal Charge Transfer) Chromophores and Fluorophores Integrated with One- or Two-Ion Receptors [J]. Chem. Eur. J. 2002, 8:4935-4945.
    [55] QU D H, WANG Q C, TIAN H. A Half Adder Based on a Photochemically Driven
    [2]Rotaxane [J]. Angew. Chem. Int. Ed. 2005, 44:5296–5299.
    [56] MARGULIES D, MELMAN G, FELDER G E. et al. Chemical Input Multiplicity Facilitates Arithmetical Processing [J]. J. AM. CHEM. SOC. 2004, 126: 15400-15401.
    [57] ZONG G, LU G. A molecular half-subtractor based on a fluorescence and absorption dual-modal sensor for copper ions [J]. Tetrahedron Letters 49 (2008): 5676–5679.
    [58] LUXAMI V , KUMAR S. Molecular half-subtractor based on 3,3-bis(1H-benzimidazolyl-2-yl)[1,1’]-binaphthalenyl-2,2’-diol [J]. New J. Chem., 2008, 32:2074–2079.
    [59] KUZNETZ O, SALMAN H, SHAKKOUR N. et al. A novel all optical molecular scale full adder [J]. Chemical Physics Letters 451 (2008):63–67.
    [60] MARGULIES D, MELMAN G, SHANZER A. A Molecular Full-Adder and Full-Subtractor, an Additional Step toward a Moleculator [J]. J. AM. CHEM. SOC.2006, 128:4865-4871.
    [61] DE SILVA A P,MCCLENAGHAN N D. Molecular-Scale Logic Gates [J]. Chem. Eur. J. 2004, 10:574 - 586.
    [62] PISCHEL U. Chemical Approaches to Molecular Logic Elements for Addition and Subtraction [J]. Angew. Chem. Int. Ed. 2007, 46:4026– 4040.
    [63] BALZANI V, CREDI A, SILVI S. et al. Artificial nanomachines based on interlocked molecular species: recent advances [J]. Chem. Soc. Rev., 2006, 35:1135–1149.
    [64] QU D H, WANG Q C, TIAN H. A Half Adder Based on a Photochemically Driven
    [2]Rotaxane [J]. Angew. Chem., Int. Ed., 2005, 44:5296-5299.
    [65] QU D H, WANG Q C, Tian H. A [3]Rotaxane with Three Stable States That Responds to Multiple-Inputs and Displays Dual Fluorescence Addresses [J]. Chem.–Eur. J., 2005, 11:5929-5937.
    [66] BERNA′J, LEIGH D A, LUBOMSKA M. et al. Macroscopic transport by synthetic molecular machines [J].Nat. Mater., 2005, 4:704-710.
    [67] KATZ E, LIOUBASHEVSKY O, WILLNER I. Electromechanics of a Redox-Active Rotaxane in a Monolayer Assembly on an Electrode [J] .J. Am. Chem. Soc., 2004, 126: 15520-15532.
    [68] BADJIC J D, BALZANI V, CREDI A. et al. A Molecular Elevator [J]. Science, 2004, 303:1845-1849.
    [69] LIU Y, FLOOD A H, BONVALLETT P A. et al. Linear Artificial Molecular Muscles [J]. J. Am. Chem. Soc., 2005, 127:9745-9759.
    [70] BALZANI V, CREDI A, VENTURI M. Light powered molecular machines [J]. Chem. Soc. Rev., 2009, 38:1542–1550.
    [71] DE SILVA A P, UCHIYAMA S. Molecular logic and computing. nature nanotechnology [J]. 2007, 2: 399-410.
    [72] JIANG G, SONG Y, GUO X. et al. Organic Functional Molecules towards Information Processing and High-Density Information Storage [J]. Adv. Mater. 2008, 20, 2888–2898.
    [73] GUPTA T,VAN DER BOOM M E. Redox-Active Monolayers as a Versatile Platform for Integrating Boolean Logic Gates [J]. Angew. Chem. Int. Ed. 2008,47:5322–5326.
    [74] CREDI A. Monolayers with an IQ. nature nanotechnology [J] . 2008, 3:529-530.
    [75] DE SILVA A P. A layer of logic [J]. Nature. 2008, 454:417-418.
    [76] SUN W, ZHOU C, XU C.et al. A Fluorescent-Switch-Based Computing Platform in Defending Information Risk [J]. Chem. Eur. J. 2008, 14:6342– 6351.
    [77] SURESH M, GHOSH A, DAS A. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock [J]. Chem. Commun., 2008: 3906–3908.
    [78]魏丹毅,李冬成,姚克敏.希土元素与β-丙氨酸席夫碱双核配合物的合成、表征及催化活性.无机化学学报. 1998, 14(2):209.
    [79] CAI L, MAHMOUD S H, HAN Y. J. Tetrahedron. Asym., 1999, 10(3):411.
    [80] GICHINGA M G,STRIEGLER S. Effect of Water on the Catalytic Oxidation of Catechols [J]. TTJ. Am.Chem.SocTT, 2008, 130(15):5150-5156.
    [81] BASEER M A, JADHAV V D, PHULE R M. J .Orion. Chem., 2000, 16(3):553-567.
    [82] N YARKU S K, MAVUSO E. J .Sou. Afri. Chem, 1998, 51(4), 168.
    [83] ZHAO L, HOU Q, SUI D. et al.Multistate/multifunctional switches based on photochromic Schiff base [J] . Spectrochimica Acta Part A 67 (2007):1120–1125.
    [84]梁志.杯芳烃西佛碱的光致变色性质研究[D] .北京:中国科学院理论技术研究所, 2007.
    [85] GRAY G W,HARTLEY J B,IBBOTSON A.et al. J. Chem. Soc, 1955, 4359.
    [86] LIN T F, HO R M, SUNG C H. et al. The Variation of Helical Twisting Power in Self-assembled Chiral Schiff-based Rod-Coil Amphiphiles [J]. Chem. Mater., 2008, 20:1404–1409.
    [87] GALYAMETDINOV Y G, HAASE W, GODERIS B. et al. Magnetic Alignment Study of Rare-Earth-Containing Liquid Crystals [J]. J. Phys. Chem. B, 2007, 111:13881-13885.
    [88] BIOFIZIKA I K. Physico-chemical study of the reaction between transition metal ions and Schiff bases. Polarographic study of complexes of copper(II) with salicylidene-beta-alanine [J].1980, 25:199-202.
    [89] MORRIS G A, ZHOU H, STERN C L. et al. A General High-Yield Route toBis(salicylaldimine) Zinc(II) Complexes: Application to the Synthesis of Pyridine-Modified Salen-Type Zinc(II) Complexes [J]. Inorg. Chem. 2001, 40: 3222-3227.
    [90] YUAN M, ZHAO F, ZHANG W. et al. Azide-Bridged One-Dimensional MnIII Polymers: Effects of Side Group of Schiff Base Ligands on Structure and Magnetism [J]. Inorg. Chem. 2007, 46:11235-11242.
    [91] YOKOI N, UENO T, UNNO M. et al. Ligand design for the improvement of stability of metal complex protein hybrids [J]. Chem. Commun., 2008:229–231.
    [92] LI S, HE L, XIONG F. et al. Enhanced Fluorescent Emission of Organic Nanoparticles of an Intramolecular Proton Transfer Compound and Spontaneous Formation of One-Dimensional Nanostructures [J]. J. Phys. Chem. B 2004, 108: 10887-10892.
    [93] MUKHERJEE P, DREW M G B, GHOSH A. Solvent-Assisted Formation of Vesicles by a Self-Assembling Ni3-Schiff Base Complex [J]. Inorg. Chem. 2009, 48: 2364-2370.
    [94] JIANG J, MA K, ZHENG Y. et al. Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air [J]. Applied Clay Science 45 (2009):117–122.
    [95] ZHOU M D, YU Y, CAPAPE A. et al. (N-Salicylidene)aniline Derived Schiff Base Complexes of Methyltrioxorhenium ACHTUNGTRENUNG(VII): Ligand Influence and Catalytic Performance [J]. Chem. Asian J. 2009, 4:411– 418.
    [96] ADA?O P, PESSOA J C, HENRIQUES R T. et al. Synthesis, Characterization, and Application of Vanadium-Salan Complexes in Oxygen Transfer Reactions [J]. Inorg. Chem. 2009, 48:3542-3561.
    [97] CHE CM, HUANG J S, LEE F W. et al. Synthesis and Crystal Structure of a Chiral Metlloporphyrin Carbene Complex [J].J. Am. Chem. Soc. 2001, 123:4119-4129.
    [98] CHE CM, HUANG J S. Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations [J] . Coord. Chem. Rev. 2003, 242:97-113.
    [99] Li G. Y, ZHANG J, CHAN P W H. et al. Enantioselective IntramolecularCyclopropanation of cis-Alkenes by Chiral Ruthenium(II) Schiff Base Catalysts and Crystal Structures of (Schiff base)ruthenium Complexes Containing Carbene, PPh3, and CO Ligands [J] .Organometallics, 2006, 25:1676-1688.
    [100] XU Z J, FANG R, ZHAO C. et al. cis-β-Bis(carbonyl) Ruthenium-Salen Complexes: X-ray Crystal Structures and Remarkable Catalytic Properties toward Asymmetric Intramolecular Alkene Cyclopropanation [J]. J. AM. CHEM. SOC. 2009, 131:4405–4417.
    [101] YUAN C, LU L, GAO X. et al. Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities [J]. J Biol Inorg Chem (2009) 14: 841–851.
    [102] XIAO T, XIE X Y, XUE C B. et al. Inhibitory effects of Schiff analogs of salicylidene aniline on phenoloxidase from Pieris rapae L. (Lepidoptera: Pieridae)[J] Pesticide Biochemistry and Physiology 91 (2008):39–44.
    [103] BARONE G, GAMBINO N, RUGGIRELLO A. et al. Spectroscopic study of the interaction of NiII-5-triethyl ammonium methyl salicylidene ortho-phenylendiiminate with native DNA [J]. Journal of Inorganic Biochemistry 103 (2009):731–737.
    [104] KUO K L, HUANG C C, LIN Y C. Synthesis and photophysical properties of multinuclear zinc-salophen complexes: enhancement of fluorescence by fluorene termini [J]. Dalton Trans., 2008:3889–3898.
    [105] KAGKELARI A, BEKIARI V, STATHATOS E. et al. Photoluminescence and electroluminescence by gallium(III) complexes of N-salicylidene-o-aminophenol and its derivatives [J]. Journal of Luminescence 129 (2009):578–583.
    [106] ZIO′LEK M, SOBCZAK I. Photochromism and hydrolysis of aromatic Schiff base N,N0-bis(salicylidene)-p-phenylenediamine (BSP) studied in heterogeneous environments [J]. J Incl Phenom Macrocycl Chem (2009) 63:211–218.
    [107] LI Y, YAN B. Schiff-base-functionalized mesoporous silica SBA-15: Covalently bonded assembly of blue nanophosphors [J]. Solid State Sciences 11 (2009):994–1000.
    [108] GAO L, WANG Y, WANG J. et al. A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized MesoporousSBA-15 [J]. Inorg. Chem. 2006, 45:6844-6850.
    [109] WANG J Q, HUANG L, GAO L. et al. A small and robust Al(III)-chemosensor based on bis-Schiff base N,N0-(1,4-phenylenedimethylidyne)bis-1,4-benzene diamine [J]. Inorganic Chemistry Communications 11 (2008):203–206.
    [110] WANG J Q, HUANG L, XUE M. et al. Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15 [J]. J. Phys. Chem. C 2008, 112:5014-5022.
    [111] GAO L, WANG J Q, HUANG L. et al. Novel Inorganic-Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation [J]. Inorg. Chem. 2007, 46:10287-10293.
    [112] GANJALI M R, POURSABERI T, BASIRIPOUR F. et al. Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium–Schiff’s base complex [J]. Fresenius J Anal Chem (2001) 370:1091–1095.
    [113] ARDAKANY M M, ENSAFI A A, NAEIMI H. et al. Highly selective lead(II) coated-wire electrode based on a new Schiff base [J]. Sensors and Actuators B 96 (2003):441–445.
    [114] GHOLIVAND M B, AHMADI F, RAFIEE E. A Novel Al(III)-Selective Electrochemical Sensor Based on N,N’-Bis(salicylidene)-1,2-phenylenediamine Complexes [J]. Electroanalysis 18, 2006, 16:1620– 1626.
    [115] GUPTA V K, GOYAL R N, JAIN A K. et al. Aluminium (III)-selective PVC membrane sensor based on a Schiff base complex of N,N -bis (salicylidene)-1, 2-cyclohexanediamine [J]. Electrochimica Acta 54 (2009):3218–3224.
    [116] GUPTA V K, SINGH A K, MEHTAB S. et al. A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N -bis(salicylidene)-3,4-diaminotoluene [J], Analytica Chimica Acta 566 (2006):5–10.
    [117] JEONG T, LEE H K, JEONG D C. et al. A lead(II)-selective PVC membrane based on a Schiff base complex of N,N’-bis(salicylidene)-2,6-pyridinediamine [J]. Talanta 65 (2005):543–548.
    [118] SINGH A K, MEHTAB S. Polymeric membrane sensors based on Cd(II) Schiffbase complexes for selective iodide determination in environmental and medicinal samples [J]. Talanta 74 (2008):806–814.
    [119] HUANG X, HE Y, CHEN Z. et al. Colorimetric Sensors for Anion Recognition Based on the Proton Transfer Signaling Mechanism [J]. Chinese Journal of Chemistry, 2009, 27:1526—1530.
    [120] LI J, LIN H, CAI Z. et al. A high selective anion colorimetric sensor based on salicylaldehyde for fluoride in aqueous media [J]. Spectrochimica Acta Part A 72 (2009):1062–1065.
    [121] SHAO J, LIN H, YU M. et al. Study on acetate ion recognition and sensing in aqueous media using a novel and simple colorimetric sensor and its analytical application [J]. Talanta 75 (2008):551–555.
    [122] QIAO Y H, LIN H, SHAO J. et al. A highly selective naked-eye colorimetric sensor for acetate ion based on 1,10-phenanthroline-2,9-dicarboxyaldehyde-di-(p-substitutedphenyl-hydrazone) [J]. Spectrochimica Acta Part A 72 (2009):378–381.
    [123] SHAO J, YU X, LIN H. et al. Colorimetric recognizing of biologically important anions based on anion-induced tautomerism of the sensor [J]. J. Mol. Recognit., 2008, 21: 425–430.
    [124] SHAO J, LIN H, LIN H K. A simple and efficient colorimetric anion sensor based on a thiourea group in DMSO and DMSO–water and its real-life application [J]. Talanta 75 (2008):1015–1020.
    [125] SHAO J, LIN H, CAI Z S. et al. A simple colorimetric and ON–OFF fluorescent chemosensor for biologically important anions based on amide moieties [J]. Journal of Photochemistry and Photobiology B: Biology 95 (2009):1–5.
    [126] LI J, LIN H, CAI Z. et al. A novel coumarin-based switching-on fluorescent and colorimetric sensor for F [J]. Journal of Luminescence 129 (2009):501–505.
    [127] KAUR N, SINGH N, CAIRNS D. et al. A Multifunctional Tripodal Fluorescent Probe:“Off-On”Detection of Sodium as well as Two-Input AND Molecular Logic Behavior [J]. Org. Lett., 2009, 11:2229-2232.
    [128] KUMAR M, DHIR A, BHALLA V. A Molecular Keypad Lock Based on the Thiacalix[4]arene of 1,3-Alternate Conformation [J]. Org. Lett., 2009, 11:2567-2570.
    [129] ZHAO L, SUI D, Jiang S. et al. Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base [J]. J. Phys. Chem. B 2006, 110:24299-24304.
    [130] ZHAO L, WANG S, Jiang S. et al. Salicylidene Schiff Base Assembled with Mesoporous Silica SBA-15 as Hybrid Materials for Molecular Logic Function [J]. J. Phys. Chem. C 2007, 111:18387-18391.
    [1] JANATA J. Introduction: Modern topics in chemical sensing [J]. Chem. Rev. 108 (2008): 327-328.
    [2] QUE E L, DOMAILLE D W, CHANG C J. Metals in neurobiology: probing their chemistry and biology with molecular imaging [J]. Chem. Rev. 108 (2008): 1517-1549.
    [3] JIANG P, GUO Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors [J]. Coord. Chem. Rev. 248 (2004): 205-229.
    [4] YU M, SHI M, CHEN Z. et al. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging [J]. Chem. Eur. J. 14 (2008): 6892-6900.
    [5] KAUR N, KUMAR S. Single molecular colorimetric probe for simultaneous estimation of Cu2+ and Ni2+ [J]. Chem. Commun. 2007: 3069-3070.
    [6] MASHRAQUI S H, KHAN T, SUNDARAM S. et al. Phenothiazine-pyridyl chalcone: an easily accessible colorimetric and fluorimetric‘on-off’dual sensing probe for Cu2+[J]. Tetrahedron. Lett. 49 (2008): 3739-3743.
    [7] CHE C M, HUANG J S. Metal complexes of chiral binaphthyl Schiff-base ligandsand their application in stereoselective organic transformations [J]. Coord. Chem. Rev. 242 (2003): 97-113.
    [8] ZHAO L, SUI D, Jiang S. et al. Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base [J]. J. Phys. Chem. B 2006, 110:24299-24304.
    [9] ZHAO L, WANG S, Jiang S. et al. Salicylidene Schiff Base Assembled with Mesoporous Silica SBA-15 as Hybrid Materials for Molecular Logic Function [J]. J. Phys. Chem. C 2007, 111:18387-18391.
    [10] SMITH H E, COOK S L, WARREN M E. Optically Active Amines. II. The Optical Rotatory Dispersion Curves of the N-Benzylidene and Substituted N-Benzylidene Derivatives of Some Open-Chain Primary Amines [J].J. Org. Chem. 1964, 29: 2265-2272.
    [11] AMENDOLA V, ESTEBAN-GOMEZ D, FABBRIZZI L. et al. What Anions Do to N-H-Containing Receptors [J]. Acc. Chem. Res. 39 (2006): 343-353.
    [12] GUNNLAUGSSON T, KRUGER P E, JENSEN P. et al. Colorimetric“Naked Eye”Sensing of Anions in Aqueous Solution [J].J org chem., 70 (2005): 10875-10878.
    [13] DEVARAJ S, SARAVANAKUMAR D, KANDASWAMY M. Dual responsive chemosensors for anion and cation: Synthesis and studies of selective chemosensor for F- and Cu(II) ions [J]. Sensors and Actuators B 136 (2009): 13–19.
    [14] HUANG X, GUO Z, ZHU W. et al. A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework [J]. Chem. Commun. 2008: 5143-5145.
    [15] BENESI H A, HILDEBRAND J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons [J].J. Am. Chem. Soc., 1949, 71: 2703-2707.
    [16] DE SILVA A P, MCCLENAGHAN N D. Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (Internal Charge Transfer) chromophores and fluorophores integrated with one- or two-ion receptors [J]. Chem. Eur. J. 8 (2002): 4935-4945.
    [17] DE SILVA A P, GUNARATNE H Q N, MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling [J]. Nature, 1993, 364, 42-44.
    [18] PISCHEL U, HELLER B. Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transferprocesses [J]. New J. Chem., 2008, 32:395-400.
    [19] GUPTA T, VAN DER BOOM M E. Redox-active monolayers as a versatile platform for integrating Boolean logic gates [J]. Angew. Chem. Int. Ed. 47 (2008): 5322-5325.
    [20] HE X, ZHU N, YAM V W. Synthesis, characterization, structure, and selective Cu2+ sensing studies of an alkynylgold complex containing the dipicolylamine receptor [J]. Organometallics., 28 (2009): 3621-3624.
    [21] ZHANG D, ZHANG Q, SU J. et al. A dual-ion-switched molecular brake based on ferrocene [J]. Chem. Commun. (2009): 1700-1702.
    [22] RURACK K, TRIEFLINGER C, KOVAL’CHUCK A. et al. An ionically driven molecular IMPLICATION gate operating in fluorescence mode [J]. Chem. Eur. J. 13 (2007): 8998-9003.
    [23] KRESGE C T, LEONOWICZ M E, ROTH W J. et al.“Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,”[J]. Nature, 1992: 710-712.
    [24] ARIGA K, VINU A, HILL J P. et al. Coordination Chemistry and Supramolecular Chemistry in Mesoporous Nanospace [J]. Coordination Chemistry Reviews, 2007: 2562-2591.
    [25] GIORDANI S, RAYMO F M. A Switch in a Cage with a Memory [J]. Org. Lett., 2003: 3559-3562.
    [1] DE SILVA A P, GUNARATNE H Q N, MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling [J]. Nature, 1993, 364, 42-44.
    [2] PISCHEL U. Chemical Approaches to Molecular Logic Elements for Addition and Subtraction [J].Angew. Chem. Int. Ed., 2007, 46:4026-4040.
    [3] SZACILOWSKI K. Digital Information Processing in Molecular Systems [J].Chem. Rev., 2008, 108:3481-3548.
    [4] STRAIGHT S D, ANDRéASSON J, KODIS G. Molecular AND and INHIBIT Gates Based on Control of Porphyrin Fluorescence by Photochromes [J].et al. J. Am. Chem. Soc., 2005, 127:9403-9409.
    [5] MENG X, ZHU W, ZHANG Q. et al. Novel Bisthienylethenes Containing Naphthalimide as the Center Ethene Bridge: Photochromism and Solvatochromism for Combined NOR and INHIBIT Logic Gates [J].J. Phys. Chem. B, 2008, 112:15636-15645.
    [6] RURACK K, TRIEFLINGER C, KOVAL’CHUCK A. et al. An Ionically Driven Molecular IMPLICATION Gate Operating in Fluorescence Mode [J]. Chem. Eur. J., 2007, 13:8998-9003.
    [7] MARGULIES D, MELMAN G, FELDER C E. et al. Chemical Input Multiplicity Facilitates Arithmetical Processing [J]. J. Am. Chem. Soc., 2004, 126 :15400-15401.
    [8] COSKUN A, DENIZ E, AKKAYA E U. Effective PET and ICT Switching of Boradiazaindacene Emission: A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates [J].Org. Lett., 2005, 7 :5187-5189.
    [9] SURESH M, JOSE D A, DAS A. [2,2‘-Bipyridyl]-3,3‘-diol as a Molecular Half-Subtractor [J]. Org. Lett., 2007, 9:441-444.
    [10] LUXAMI V, KUMAR S. Molecular half-subtractor based on 3,3-bis(1H-benzimidazolyl-2-yl)[1,1]-binaphthalenyl-2,2-diol [J]. New J. Chem., 2008, 32:2074-2079.
    [11] ZONG G, LU G. A molecular half-subtractor based on a fluorescence and absorption dual-modal sensor for copper ions [J]. Tetrahedron Lett., 2008, 49: 5676-5679.
    [12] LI F, SHI M, HUANG C. et al. Multifunctional photoelectrochemical logic gates based on a hemicyanine sensitized semiconductor electrode [J]. J. Mater. Chem., 2005, 15:3015-3020.
    [13] GUO Z, ZHAO P, ZHU W. et al. Intramolecular Charge-Transfer Process Based on Dicyanomethylene-4Hpyran Derivative: An Integrated Operation ofHalf-Subtractor and Comparator [J]. J. Phys. Chem. C, 2008, 112:7047-7053.
    [14] SUN W, XU C H, ZHU Z. et al. Chemical-Driven Reconfigurable Arithmetic Functionalities within a Fluorescent Tetrathiafulvalene Derivative [J]. J. Phys. Chem. C, 2008, 112:16973-16983.
    [15] LANGFORD S J, YANN T. Molecular Logic: A Half-Subtractor Based on Tetraphenylporphyrin [J]. J. Am. Chem. Soc., 2003, 125:11198-11199.
    [16] MARGULIES D, MELMAN G, FELDER G E. et al. Chemical Input Multiplicity Facilitates Arithmetical Processing [J]. J. AM. CHEM. SOC. 2004, 126 : 15400-15401.
    [17] QU D H, WANG Q C, TIAN H. A Half Adder Based on a Photochemically Driven
    [2]Rotaxane [J]. Angew. Chem. Int. Ed. 2005, 44:5296–5299.
    [18] ZHOU Y, WU H, QU L. et al. A New Redox-Resettable Molecule-Based Half-Adder with Tetrathiafulvalene [J]. J. Phys. Chem. B, 2006, 110:15676-15679.
    [19] KOU S, LEE H N, NOORT D. et al. Fluorescent Molecular Logic Gates Using Microfluidic Devices [J]. J. Yoon and A. Park, Angew. Chem. Int. Ed., 2008, 47:872-876.
    [20] MARGULIES D, MELMAN G, SHANZER A. A Molecular Full-Adder and Full-Subtractor,an Additional Step toward a Moleculator [J].J. Am. Chem. Soc., 2006, 128, 4865-4871.
    [21] KUZNETZ O, SALMAN H, SHAKKOUR N. et al. A novel all optical molecular scale full adder [J]. Chem. Phys. Lett., 2008, 451:63-67.
    [22] COMBES A. C. R. Acad. Fr., 1889, 108, 1252.
    [23] CANALI L, SHERRINGTON D C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis [J].Chem. Soc. Rev., 1999, 28:85-93.
    [24] BHATTACHARJEE S, ANDERSON J A. Synthesis and characterization of novel chiral sulfonato–salen–manganese(III) complex in a zinc–aluminium LDH host [J].Chem. Commun., 2004:554-555.
    [25] KULL T, PETERS R. Contact Ion Pair Directed Lewis Acid Catalysis: Asymmetric Synthesis of trans-Configured–Lactones [J]. Angew. Chem. Int. Ed., 2008, 47:5461-5464.
    [26] PARK J, LANG K, ABBOUD K A.et al. Self-Assembled DinuclearCobalt(II)-Salen Catalyst Through Hydrogen-Bonding and Its Application to Enantioselective Nitro-Aldol (Henry) Reaction [J].J. Am. Chem., 2008, 130:16484-16485.
    [27] CHOLLET-KRUGLER M, TOMASI S, URIAC P. et al. Preparation and characterization of copper(II) and nickel(II) complexes of a new chiral salen ligand derived from (+)-usnic acid [J].Dalton Trans., 2008:6524-6526.
    [28] YANG X, JONES R A, WONG W K. Anion dependant self-assembly and the first X-ray structure of a neutral homoleptic lanthanide salen complex Tb4(salen)6 [J].Chem. Commun., 2008:3266-3268.
    [29] ANSARI K I, GRANT J D, WOLDEMARIAM G A. et al. Iron(III)-salen complexes with less DNA cleavage activity exhibit more efficient apoptosis in MCF7 cells [J].Org. Biomol. Chem., 2009, 7:926-932.
    [30] WOLDEMARIAM G A, MANDAL S S. Iron(III)-salen damages DNA and induces apoptosis in human cell via mitochondrial pathway [J]. J. Inorg. Biochem., 2008, 102:740-747.
    [31] CAMETTI M, CORT A D, MANDOLINI L. et al. Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit [J].New J. Chem., 2008, 32:1113-1116.
    [32] WU X, CORDEN A E V. 2-Quinoxalinol salen ligands incorporated into functionalized resins for selective solid-phase extraction of copper(II) [J].Tetrahedron. Lett., 2008, 49, 5200-5203.
    [33] BELLA S D, CONSIGLIO G, SORTINO S. et al. Langmuir–Sch?fer Films of Functional Amphiphilic Nickel(II) and Zinc(II) Schiff Base Complexes [J].Eur. J. Inorg. Chem., 2008:5228-5234.
    [34] SMITH H E, COOK S L, WARREN M E. [J] J. Org. Chem. 1964, 29:2265-2272.
    [35] SPLAN K E, MASSARI A M, MORRIS G A. et al. Photophysical and Energy-Transfer Properties of (Salen)zinc Complexes and Supramolecular Assemblies [J].Eur. J. Inorg. Chem., 2003:2348-2351.
    [36] CHANG K H, HUANG C C, LIU Y H. et al. Synthesis of photo-luminescent Zn(II) Schiff base complexes and its derivative containing Pd(II) moiety.Dalton Trans., 2004:1731-1738.
    [37] KLEIJ A W, KUIL M, TOOKE D M. et al. Metal-Directed Self-Assembly of aZnII-salpyr Complex into a Supramolecular Vase Structure [J].Inorg. Chem., 2007, 46:5829-5831.
    [38] BI W Y, LV X Q, CHAI W L. et al. Construction and NIR luminescent property of hetero-bimetallic Zn–Nd complexes from two chiral salen-type Schiff-base ligands [J]. J. Mole. Struc., 2008, 891:450-455.
    [39] BENESI H A, HILDEBRAND J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons [J].J. Am. Chem. Soc., 1949, 71: 2703-2707.
    [40] BARRA M, BOHNE C, SCAIANO J C. Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for triplet-state exit [J].J. Am. Chem. Soc., 1990, 112, 8075-8079.
    [41] SHIRAISHI Y, SUMIYA S, KOHNO Y. et al. A RhodamineCyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) [J].J. Org. Chem., 2008, 73, 8571-8574.
    [42] ZHU M, YUAN M, LIU X. et al. Visible Near-Infrared Chemosensor for Mercury Ion [J].Org. Lett., 2008, 10:1481-1484.
    [43] BERNARDO K, LEPPARD S, ROBERT A. et al. Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts [J]. Inorg. Chem., 1996:35, 387-396.
    [44] BECKER R S, RICKEY W F. [J] J. Am. Chem. Soc. 1967, 89, 1298.
    [45] LAMBI E, GEGIOU D, HADJOUDIS E J. J. Photochem. Photobiol. A 1985, 86, 241.
    [46] LANGFORD S J, YANN T. Molecular logic: a half-subtractor based on tetraphenylporphyrin [J].J. Am. Chem. Soc., 2003, 125:11198-11199.
    [47] PISCHEL U, HELLER B. Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transfer processes [J]. New J. Chem., 2008, 32:395-400.
    [1] CALTAGIRONE C, GALE P A. Anion receptor chemistry: highlights from 2007 [J]. Chem. Soc. Rev., 2009, 38: 520–563.
    [2] AMENDOLA V, FABBRIZZI L. Anion receptors that contain metals as structural units [J]. Chem. Commun., 2009: 513–531.
    [3] STEED J W. Coordination and organometallic compounds as anion receptors and sensors [J]. Chem. Soc. Rev., 2009, 38: 506–519.
    [4]曾振亚,何永炳,孟令芝.阴离子荧光受体研究进展[J].化学进展, 2005, 17: 254-265.
    [5] KUBIK S. Amino acid containing anion receptors [J]. Chem. Soc. Rev., 2009, 38: 585–605.
    [6]许胜,刘斌,田禾.阴离子荧光化学传感器新进展[J]. 2006, 18: 687-697.
    [7] QUINLAN E, MATTHEWS S E, GUNNLAUGSSON T. Colorimetric Recognition of Anions Using Preorganized Tetra-Amidourea Derived Calix[4]arene Sensors [J]. J. Org. Chem. 2007, 72: 7497-7503.
    [8] KUMAR S, LUXAMI V, KUMAR A. Chromofluorescent Probes for Selective Detection of Fluoride and Acetate Ions [J]. Org. Lett., 2008, 10: 5549-5552.
    [9] MULLEN K M, DAVIS J J, BEER P D. Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures [J]. NewJ. Chem., 2009, 33: 769–776.
    [10] BHARDWAJ V K, PANNU A P S, SINGH N. Synthesis of new tripodal receptorsda‘PET’based‘off–on’recognition of Ag+ [J]. Tetrahedron 64 (2008): 5384–5391.
    [11] YANG R, LI K, LIU F. 3,3,5,5-Tetramethyl-N-(9-anthrylmethyl)benzidine: A Dual-Signaling Fluorescent Reagent for Optical Sensing of Aliphatic Aldehydes [J]. Anal. Chem. 2003, 75: 3908-3914.
    [12] SARAVANAKUMAR D, DEVARAJ S, IYYAMPILLAI S. Schiff’s base phenol–hydrazone derivatives as colorimetric chemosensors for fluoride ions [J]. Tetrahedron Letters 49 (2008): 127–132.
    [13] CHEN Y, ZENG D X. Study on Photochromic Diarylethene with Phenolic Schiff Base: Preparation and Photochromism of Diarylethene with Benzoxazole [J]. J. Org. Chem. 2004, 69: 5037-5040.
    [14] SMITH H E, COOK S L, WARREN M E. Optically Active Amines. II. The Optical Rotatory Dispersion Curves of the N-Benzylidene and Substituted N-Benzylidene Derivatives of Some Open-Chain Primary Amines [J].J. Org. Chem. 1964, 29: 2265-2272.
    [15] GEGIOU D, LAMBI E, HADJOUDIS E. Solvatochromism in N-(2-Hydroxybenzylidene)aniline, N-(2-Hydroxybenzylidene)benzylamine, and N-(2-Hydroxybenzylidene)-2-phenylethylamine [J]. J. Phys. Chem. 1996, 100: 17762-17765.
    [16] AHN D J, LEE S, KIM J M. Rational Design of Conjugated Polymer Supramolecules with Tunable Colorimetric Responses [J]. Adv. Funct. Mater. 2008, 18: 1–14.
    [17] LI Z, XU C H, SUN W. Solvent-sensitive charge-transfer absorption behaviours and dual-emissive fluorescent properties of a thiazole-conjugated pyridinium complex [J]. New J. Chem., 2009, 33: 853–859.
    [18] QIAN Y, LI S, ZHANG G. Aggregation-Induced Emission Enhancement of 2-(2¢-Hydroxyphenyl)benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds [J]. J. Phys. Chem. B 2007, 111: 5861-5868.
    [19] HONG Y, LAMA J W Y, TANG B Z. Aggregation-induced emission: phenomenon, mechanism and applications [J]. Chem. Commun., 2009: 4332–4353.
    [20] TANG W, XIANG Y, TONG A. Salicylaldehyde Azines as Fluorophores ofAggregation-Induced Emission Enhancement Characteristics [J]. J. Org. Chem., 2009, 74 (5): 2163–2166.
    [21]郭航鸣,刘卫敏,盛瑞隆.以香豆素为基用以识别氟离子的新型比色化学传感器[J].影像科学与光化学,2008, 26: 468-473.
    [22] KIM E, KIM H J, BAE D R. Selective fluoride sensing using organic–inorganic hybrid nanomaterials containing anthraquinone [J]. New J. Chem., 2008, 32: 1003–1007.
    [23] BAO X, YUA J, ZHOU Y. Selective colorimetric sensing for F- by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units [J]. Sensors and Actuators B, 140 (2009): 467–472.
    [24] CAMETTI M, CORT A D, MANDOLINI L. Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit [J]. New J. Chem., 2008, 32: 1113–1116.
    [25] ZHANG X, SHIRAISHI Y, HIRAI T. Unmodified fluorescein as a fluorescent chemosensor for fluoride ion detection [J]. Tetrahedron Letters 48 (2007): 8803–8806.
    [26] MIYAJI H, SESSLER J L. Off-the-Shelf Colorimetric Anion Sensors [J]. Angew. Chem. Int. Ed. 2001, 40, 154-157.
    [27] SWAMY K M K, LEE Y J, LEE H N. A New Fluorescein Derivative Bearing a Boronic Acid Group as a Fluorescent Chemosensor for Fluoride Ion [J]. J. Org. Chem., 2006, 71 (22): 8626-8628.
    [28] CHO E J, RYU B J, LEE Y J. Visible Colorimetric Fluoride Ion Sensors [J]. Org. Lett., 2005 7 2607-2609.
    [29] LIN T P, CHEN C Y, WEN Y S. Synthesis, Photophysical, and Anion-Sensing Properties of Quinoxalinebis(sulfonamide) Functionalized Receptors and Their Metal Complexes [J]. Inorg. Chem. 2007, 46: 9201-9212.
    [30] BADR I H A, MEYERHOFF M E. Highly Selective Optical Fluoride Ion Sensor with Submicromolar Detection Limit Based on Aluminum(III) Octaethylporphyrin in Thin Polymeric Film [J]. J. Am. Chem. Soc., 2005, 127 (15): 5318-5319.
    [31] LEE H, CHUNG Y M, AHN K H. Selective fluorescence sensing of cyanide with an o-(carboxamido)trifluoroacetophenone fused with a cyano-1,2-diphenylethylene fluorophore [J]. Tetrahedron Letters 49 (2008): 5544–5547.
    [32] ZELDER F H. Specific Colorimetric Detection of Cyanide Triggered by aConformational Switch in Vitamin B12 [J]. Inorg. Chem. 2008, 47: 1264-1266.
    [33] NIU H T, JIANG X, HE J. A highly selective and synthetically facile aqueous-phase cyanide probe [J]. Tetrahedron Letters 49 (2008): 6521–6524.
    [34] HIJJI Y M, BARARE B, Kennedy A P. Synthesis and photophysical characterization of a Schiff base as anion sensor [J]. Sensors and Actuators B, 136 (2009): 297–302.
    [35] YANG Y K, TAE J. Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water [J]. Org. Lett., 2006, 8: 5721-5723.
    [36] CHO D J, KIM J H, SESSLER J L. The Benzil-Cyanide Reaction and Its Application to the Development of a Selective Cyanide Anion Indicator [J]. J. Am. Chem. Soc., 2008, 130 (36): 12163–12167.
    [37] CHUNG Y, LEE H, AHN K H. N-Acyl Triazenes as Tunable and Selective Chemodosimeters Toward Cyanide Ion [J]. J. Org. Chem. 2006, 71: 9470-9474.
    [38] AGOU T, SEKINE M, KOBAYASHI J. Detection of Biologically Important Anions in Aqueous Media by Dicationic Azaborines Bearing Ammonio or Phosphonio Groups [J]. Chem. Eur. J. 2009, 15: 5056– 5062.
    [39] JIANG G, SONG Y, GUO X. et al. Organic Functional Molecules towards Information Processing and High-Density Information Storage [J]. Adv. Mater. 2008, 20, 2888–2898.
    [40] KUMAR M, DHIR A, BHALLA V. A Molecular Keypad Lock Based on the Thiacalix[4]arene of 1,3-Alternate Conformation [J]. Org. Lett., 2009, 11 : 2567-2570.
    [41] SURESH M, GHOSH A, DAS A. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock [J]. Chem. Commun., 2008: 3906–3908.
    [42] SUN W, ZHOU C, XU C.et al. A Fluorescent-Switch-Based Computing Platform in Defending Information Risk [J]. Chem. Eur. J. 2008, 14:6342– 6351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700