用户名: 密码: 验证码:
酸碱双功能介孔材料的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于合成具有酸碱双中心的介孔分子筛SBA-15并用于羟醛缩合反应中。
     第一章为绪论,主要介绍介孔分子筛的合成机理,模板剂类型,介孔分子筛类型及介孔分子筛应用等方面的信息。特别介绍了介孔分子筛SBA-15的研究进展;第二章是论文实验完成过程中所用的实验试剂及各种测试仪器型号及测试条件;在第三章中,介绍了one-pot法制备了氨基功能化的SBA-15介孔分子筛、磺酸基功能化的SBA-15介孔分子筛。通过黄烷酮反应来测试具有单一活性中心的介孔碱性氨基功能化材料的催化性能,通过苯酚叔丁基化反应测试具有单活性中心的介孔酸性磺酸功能化材料的催化性能;在第四章中,使用具有不同空间体积的基团改变酸-碱中心的相对空间位置从而获得两个酸碱双功能介孔材料,以对硝基苯甲醛和丙酮的羟醛缩合反应测试材料催化性能;第五章中,采用具有一定体积的二碳酸二叔丁酯(Boc酸酐)保护试剂来保护有机硅源中的氨基,然后将保护后的氨基硅源和巯基硅源与正硅酸乙酯在弱酸体系中共同缩合制备了有机改性的介孔材料,将SH氧化磺酸后再通过脱Boc得到了酸碱双功能介孔材料。通过对硝基苯甲醛和丙酮的羟醛缩合反应来测试双功能材料对酸碱协同催化反应的影响。
According to International Union of Pure and Applied Chemistry (IUPAC) definition, porous materials can be classified into three types according to pore size: microporous materials are characterized by pore size of <2.0 nm, mesoporous materials are characterized by pore size in the range of 2-50nm, and porous materials with pore size> 50.0 nm can vest in macroporous materials. In general,“molecular sieve”is a genetic terms of the micro-and mesoporous materials, and macroporous materials have lost the ability of sieving capacity because their pore sizes are too large. Molecular sieves can be divided into another three types according to pore arrangement and ordering of framework: (1) microporous crystalline material. For example, zeolite is microporous crystalline material with rules of pore structure and ordering of skeleton atoms; (2) MCM-41 and SBA-15 have high surface area, ordered mesoporous pore size distribution and large pore volume, but their skeleton atoms was disorderly arranged; (3) HMS-type、MSU-type materisl have uniform pore size distribution, channel array and composition of the the skeleton atoms arranged disorderly, such type of material is conducive to catalysis, adsorption process of mass transfer because its one-dimensional pore channel has crossed into three-dimensional structure each other.
     Microporous materials can only be applied in the area related to small molecules; they can not effectively deal with large molecules due to the limitation of pore size. Therefore, investigating porous materials with larger pores becomes very necessary. Since the M41S family of mesoporous molecular sieves was synthesized, many types of mesoporous molecular sieves have been developed. Mesoporous materials with high specific surface areas and narrow pore size distributions are of great interest for potential applications in many fields such as separation, catalysis, biology and electronics.
     Mesoporous SBA-15 was firstly synthesized using polyoxyethylene -polyoxypropylene-polyoxyethylene triblock copolymer (P123) as template agent under acidic condition by zhao et al. in 1998. Triblock copolymers are an interesting class of structure-directing agents and attracted much attention in recent years because template agent with large PEO segments display excellent interfacial stabilization properties and are low-cost, nontoxic, biodegradable, and adapt to the needs of economy. Solid catalysts can provide numerous opportunities for recovering and recycling catalysts from reaction environments.
     Surface-modified mesoporous materials with various active sites have been extensively investigated in recent years because functional modification permits tailoring of the surface properties for numerous potential applications in the fields of heterogeneous catalysis and adsorption–separation. A great of modification techniques such as element-substituted, loading, inorganic-organic hybrid method has become paramount for its application in the field of mesoporous molecular sieves. Among the known mesoporous materials, hydrothermal stable SBA-15 is highly ordered mesoporous silica with two-dimensional p6mm symmetry, which possesses hexagonal arrays of uniform pores, large special surface area, and high pore volume, which will be conducive to heterostructure self assembly. Therefore, a series of organic functionalities such as alkyl, amino, thiol, carboxyl, vinyl etc were incorporated into the channel of mesoporous materials. The synthesis of modified mesoporous materials is very important for application in acid catalysis reaction or base catalysis reaction. Generally, the modification of mesoporous materials typically employs two approaches: (1) the direct synthesis wherein a silane containing the desired functional group is added to the synthesis mixture and the functional group is incorporated during synthesis, and (2) post-synthetic grafting, i.e. the functional group is incorporated after the surfactant/polymer template is removed from the mesopores. However, the distribution of the functional groups on the surface of the pore wall is likely not uniform and the organic groups are grafted mainly on the external surface of the mesoporous particles or near the pore mouth due to mass transfer limitation. Comparatively, the advantage of direct synthesis is that it produces materials with high loading and relatively uniform distribution of the functional groups.
     Among the known organic modified mesoporous materials, many monofunctionalized SBA-15 mesoporous silica catalysts have been reported and shown to have unique properties. Monofunctionalized material was restricted for its application to industry because of it has only a single catalytic active sites. Preparation of chemicals must be completed through the two-step or multiple step reaction, These catalytic reactions need multifunctionality of active sites with cooperative effect, e.g. the combination of acid and base sites, thus required one-pot reaction manner and a catalyst with multi-centers. However, the previous multi-center catalytic materials are mostly homogeneous catalyst so that it is not conducive to recycling and reuse. In recent years, many materials with dual-avtivation have been prepared and applied through co-condensation or post-synthetic grafting method. However, only ten odd literatures were reported and applied with acid-base dual-avtivation centers. Based on this background, this paper carries out research of the synthesis of acid-base bifunctional mesoporous materials.
     It is difficult to synthesize alkali amino-functionalized mesoporous materials under acid conditions. In the third chapter, a series of amino-functionalized mesoporous materials were successfully synthesized by a direct synthesis method at first. Then, SBA-15 mesoporous silica has been functionalized with sulfonic acid groups through a simple co-condensation approach by tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxy(3-MPTS) silane using amphiphilic block copolymers as template under acidic conditions. Various methods were employed to characterize the synthesized mesoporous materials. The experimental results indicate that it is difficult to introduce the amount of over 10% organosilane. The obtained amino-functionalized materials have greatly promising applications in base catalysis (Claisen-Schmidt condensation reaction). The obtained sulfonic acid- functionalized materials have the enhanced acid sites and show high catalytic activity for alkylation of phenol with tert-butanol.
     In the fourth chapter, two solid mesoporous materials containing both sulfonic acid and secondary amine were synthesized. Adjustment of the volume of secondary amine can control steric hindrance and thus prevents amine-sulfoacid interaction. The two solid materials were used as bifunctional heterogeneous catalysts for the aldol condensation of acetone with 4-nitrobenzaldehyde. Compared with Benzyl-APS-SBA-15, Anthracyl-APS-SBA-15 displays higher catalytic performance, showing excellent conversion for the aldol condensation reaction.
     Many research efforts have focused on functionalization of amino group onto the surface of the mesoporous silica materials by the direct incorporation of organic groups through co-condensation of siloxane precursors due to their potential applications in the field of enzyme catalysis, selectively catalytic reactions and separation. Mesoporous silica materials MCM-type and HMS-type functionalized with amino groups have been prepared continually using cetyltrimethylammonium bromide (CTAB) as a template agent under basic or neutral conditions. Mesoporous material SBA-15 has been synthesized by using triblock copolymer surfactant as a template under acidic conditions, and superseded other mesoporous materials because of its high special surface area, narrow pore size distribution and thicker pore walls, much larger pore size and better stability. Larger pores enable immobilization of larger biomolecules which cannot be accommodated in small pores. Up to now, a great deal of research effort has been made duo to applications of amino-functionalized mesoporous SBA-15. However, it was’t ignored that the protonated amine groups would interfere with the selfassembly of the copolymer pore-directing agent and the silica precursor under the strong acidic condition. In chapter five, a method of synthesizing acid-base bifunctional material through protection of amino group is described. Firstly, tert-butyloxycarbonyl(aminopropyl)trimethoxysilane (NHBoc) was prepared by mixing 3-aminopropyltrimethoxysilane (APTMS) and Di-tert-butyl dicarbonate (Boc acid anhydride) in anhydrous ethanol. The synthesis of SH-SBA-15-NH2 was performed by co-condensation of the corresponding NHBoc, 3-MPTS and TEOS in the presence of P123 under weak acidic conditions. The resulting material was then subsequently treated with H2O2 solution at room temperature for 3 h. The carbamate deprotection was completely achieved by thermal treatment of NHBoc-SBA-15-SO3H at 185°C under vacuum during 4 h and obtained bifunctional mesoporous silica material containing aminopropyl groups and sulfonic acid groups, named NH2-SBA-15-SO3H. Compared with SBA-15-SO3H and SBA-15-NH2, bifunctional material SO3H-SBA-15-NH2 exhibit excellent acid-basic properties and high activity for aldol condensation of acetone with 4-nitrobenzaldehyde.
引文
[1] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [2] BECK J S, VARTULI J. C, ROTH W J, LEONOWICZ M E, KRESGE C T, SCHMITT K D, CHU C T W, OLSON D H, SHEPPARD E W, MCCULLEN S B, HIGGINS J B, SCHLENKER J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114:10834-10843.
    [3] HUO Q S, MARGOLESE D I, CIESLA U, ET AL. Generalized synthesis of periodic surfactant inorganic composite-materials [J]. Nature, 1994, 368: 317-321.
    [4] HUO Q S, LEON R, PETROFF P M, STUCKY G D. Mesostructure design with gemini surfactants - supercage formation in a 3-dimensional hexagonal array [J]. Science, 1995, 268: 1324-1327.
    [5] ZHAO D Y, HUO Q S, FENG J L, ET AL.. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants [J]. Chem. Mater., 1999, 11: 2668-2672.
    [6] ZHAO D Y, FENG J L, HUO Q S, ET AL.. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [7] ZHAO D Y, HUO Q S, FENG J L, ET AL.. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [8] INAGAKI S, FUKUSHIMA Y, KURODA K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J. Chem. Soc-Chem. Commun., 1993, 680-682.
    [9] TANEV P T, CHIBWE M, PINNAVAIA T J. Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds [J]. Nature, 1994,368: 321-323.
    [10] TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865-867.
    [11]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44: 1905-1920.
    [12] BAGSHAW S A, PROUZET E, PINNAVAIA T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [13] BAGSHAW S A, KEMMITT T, MILESTONE N. Mesoporous [M]-MSU-x metallo-silicate catalysts by non-ionic polyethylene oxide surfactant templating Acid [N0(N+)X?I+] and base (N0M+I?) catalysed pathways [J]. Micropor. Mesopor. Mater., 1998, 22: 419-433.
    [14] PROUZET E, PINNAVAIA T J. Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature [J]. Angew. Chem., Int. Ed. Engl., 1997, 36: 516-518.
    [15] PROUZET E, COT F, NABIAS G, LARBOT A, KOOYMAN P, PINNAVAIA T J. assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors [J]. Chem. Mater., 1999, 11:1498-1503.
    [16] Kim S S, Zhang W, Pinnavaia T J. Ultrastable mesostructured silica vesicles [J]. Science, 1998, 282: 1302-1305.
    [17] SAYARI A, KARRA V R, REDDY J S, MOUDRAKOVSKI J. Synthesis of mesostructured lamellar aluminophosphates [J]. Chem. Commun., 1996, 411-412.
    [18] KIMURA T, SUGAHARA Y, KURODA K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents [J]. Chem. Mater., 1999, 11: 508-518.
    [19] HOLLAND B T, ISBESTER P K, BLANFORD C F, MUNSON E J, STEIN A. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalatecluster/surfactant salts as precursors [J]. J. Am. Chem. Soc., 1997, 119: 6796-9803.
    [20] SHIMOJIMA A, KURODA K. Direct formation of mesostructured silica-based hybrids from novel siloxane oligomers with long alkyl chains [J]. Angew. Chem. Int. Ed., 2003, 42: 4057-4060.
    [21] TIAN Z R, TONG W, WANG J Y, DUAN N G, KRISHNAN V V, SUIB S L. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts [J]. Science, 1997, 276: 926-930.
    [22] BRAUN P. V, OSENAR P, S. STUPP I. Semiconducting superlattices templated by molecular assemblies [J]. Nature, 1996, 380: 325-328.
    [23] OSENAR P, BRAUN P. V, STUPP S. I. Lamellar semiconductor-organic nanostructures from self-assembled templates [J]. Adv. Mater., 1996, 8: 1022-1025.
    [24] BAGSHAW S A, PINNAVAIA T J. Mesoporous alumina molecular sieves [J]. Angew. Chem., Int. Ed. Engl., 1996, 35:1102-1105.
    [25] CARBRERA S, HASKOURI J E, ALAMO J, BELTRAN A, BELTRAN D, MENDIOROZ S, MARCOS M D, AMOROS P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes [J]. Adv. Mater., 1999, 11: 379-381.
    [26] ATTARD G S, GLYDE J C, GOLTNER C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature, 1995, 378: 366-368.
    [27] RYOO R, JOO S H, JUN S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B., 1999, 103: 7743-7746.
    [28] KRUK M, JARONIEC M, RYOO R, JOO S H. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates [J]. J. Phys. Chem. B., 2000, 104: 7960–7968.
    [29] JUN S, JOO S H, RYOO R, KRUK M, JARONIEC M, LIU Z, OHSUNA T, TERASAKI O. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712–10713.
    [30] JOO S H, CHOI S J, OH I, KWAK J, LIU Z, TERASAKI O, RYOO R. Orderednanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169-172.
    [31] INAGAKI S, GUAN S, OHSUNA T, TERASAKI O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature, 2002, 416: 304-307.
    [32] EDLER K J, WHITE J W. Room-temperature formation of molecular sieve MCM-41 [J]. J Chem. Soc., Chem. Commun., 1995, 155-156.
    [33] CHATTERJEE M, IWASAKI T, HAYASHI H, ET AL. Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41 [J]. Catal. Lett., 1998, 52: 21-23.
    [34] WU C G, BEIN T. Microwave synthesis of molecular sieve MCM-41 [J]. J Chem. Soc., Chem. Commun., 1996, 925-926.
    [35]尹伟,张迈生,康北笙.纳米级介孔分子筛及其超分子发光功能材料的制备与表征[J].发光学报,2001, 122(3): 232-236.
    [36] LIN W, CHEN J, SUN Y, ET AL. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel [J]. J Chem. Soc., Chem. Commun., 1995, 2367-2368.
    [37] FYFE C A, FU G. Structure organization of silicate polyanions with surfactants: a new approach to the syntheses, structure transformations, and formation mechaniams of mesostructural materials [J]. J Am. Chem. Soc., 1995, 117: 9709-9714.
    [38] GALLIS K W, LANDRY C C. Synthesis of MCM-48 by a phase transformation process [J]. Chem. Mater., 1997, 9: 2035-2038.
    [39] ROH H S , CHANG J S, PARK S E. Synthesis of mesoporous silica in acidic condition by solvent evaporation method [J]. Korean Z Chem. Eng., 1999, 16(3): 331-337.
    [40] YANG P, ZHAO D, MARGOLESE D I, ET AL.. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396: 152-155.
    [41] MACLACHLAN M J, COOMBS N, OZIN G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4- clusters [J]. Nature, 1999, 397: 681-684.
    [42] YANG P D, ZHAO D Y, MARGOLESE D I, ET AL. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396: 152-155.
    [43] MACLACHLAN M J, COOMBS N, OZIN G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)(4-) clusters [J]. Nature, 1999, 397: 681-684.
    [44] ZHAO D Y, YANG P D, MELOSH N, ET AL. Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv. Mater., 1998, 10: 1380-1385.
    [45] MELOSH N A, DAVIDSON P, CHMELKA B F. Monolithic mesophase silica with large ordering domains [J]. J. Am. Chem. Soc., 2000, 122: 823-829.
    [46] YANG P D, ZHAO D Y, MARGOLESE D I, ET AL. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem. Mater., 1999, 11: 2813-2826.
    [47] CREPALDI E L, SOLER-ILLIA G, GROSSO D, ET AL. Design and post-functionalisation of ordered mesoporous zirconia thin films [J]. Chem. Commun., 2001, 1582-1583. [48 ] ATTARD G S, GLYDE J C, GOLTNER C G. Synthesis of inorganic materials with complex form [J]. Nature, 1995, 378: 366-368. [49 ] HUO Q S, MARGOLESE D I, CIESLA U ET AL. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater. , 1994, 6: 1176-1191.
    [50] ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [51] ANTONELLI D M, YING J Y. Synthesis of hexagonally packed mesoporousTiO_2 by a modified sol-gel method [J]. Angew Chem. Int. Ed. Engl. 1995, 34: 2014-2017.
    [52] ANTONELLI D M, YING J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism [J]. Angew Chem. Int. Ed. Engl., 1996, 35: 426-430.
    [53] YANG P, ZHAO D, MARGOLESE D I, CHMELKA B F, STUCKY G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396: 152-155.
    [54] YAMAMOTO K, TATSUMI T. Organic functionalization of mesoporous molecular sieves with Grignard reagents [J]. Micropor. Mesopor. Mater., 2001, 44-45: 459-464.
    [55] CLARK J H, MACQUARRIE D J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids [J]. Chem. Commun., 1998, 853-860.
    [56] ANWANDER R, NAGL I, WIDENMEYER M, ENGELHARDT G, GROEGER O, PALM C, ROSER T. Surface characterization and functionalization of MCM-41 silicas via silazane silylation [J]. J. Phys. Chem. B, 2000, 104: 3532–3544.
    [57] MOLLER K, BEIN T. Inclusion chemistry in periodic mesoporous hosts [J].Chem. Mater., 1998, 10: 2950–2963.
    [58] CHEN J, LI Q, XU R, XIAO F. Zur unterscheidung der silanolgruppen im mesopor?sen molekularsieb MCM-41 [J]. Angew. Chem., 1995, 107: 2898-2900; Distinguishing the silanol groups in the mesoporous molecular sieve MCM-41 [J]. Angew. Chem. Int. Ed. Engl., 1996, 34: 2694-2696.
    [59] SHEPHARD D S, ZHOU W, MASCHMEYER T, MATTERS J M, ROPER C L, PARSON S, JOHNSON B F G., DUER M J. Ortsspezifische derivatisierung von MCM-41: molekulare erkennung und lokalisierung funktioneller gruppen in mesopor?sen materialien durch hochaufl?sende Transmissionselektronenmikroskopie [J]. Angew. Chem., 1998, 110: 2847-2851; Site-Directed surface derivatization of MCM-41: use of high-resolution transmissionelectron microscopy and molecular recognition for determining the position of functionality within mesoporous materials [J]. Angew. Chem. Int. Ed. Engl., 1998, 37: 2719-2723.
    [60] ZHAO X S, LU G Q, WHITTAKER A K, MILLAR G J, ZHU H Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA [J]. J. Phys. Chem. B., 1997, 101: 6525-6531.
    [61] CAUVEL A, RENARD G, BRUNEL D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups [J]. J. Org. Chem., 1997, 62: 749-751.
    [62] SUBBA R Y V, DE VOS D E , BEIN T, JACOBS P A. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene immobilized in MCM-41: A strongly basic porous catalyst [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 2661-2663.
    [63] DIAZ J F, BALKUS JR K J, BEDIOUI F, KURSHEV V, KEVAN L. Synthesis and Characterization of cobalt?omplex functionalized MCM-41 [J]. Chem. Mater., 1997, 9: 61-67.
    [64] LIU C J, LI S G, PANG W Q, CHE C M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation [J]. Chem. Commun., 1997, 65-66.
    [65] STEIN A, MELDE B J, SCHRODEN R C. Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419.
    [66] LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic?organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285–3295.
    [67] BURKETT S L, SIMS S D, MANN S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun. 1996, 1367-1368.
    [68] MACQUARRIE D J. Direct preparation of organically modified MCM-type materials: preparation and characterisation of aminopropyl–MCM and2-cyanoethyl–MCM [J]. Chem. Commun., 1996, 1961-1962.
    [69] BAMBROUGH C M, SLADE R C R, WILLIAMS R T. Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption [J]. J. Mater. Chem., 1998, 8: 569-571.
    [70] BHAUMIK A, TATSUMI T. Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions [J]. J. Catal., 2000, 189: 31-39.
    [71] HALL S R, FOWLER C E, LEBEAU B, MANN S. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases [J]. Chem. Commun., 1999, 201-202.
    [72] MERCIER L, PINNAVAIA T J. Direct Synthesis of hybrid organic?inorganic nanoporous silica by a neutral amine assembly route: structure?function control by stoichiometric incorporation of organosiloxane molecules [J]. Chem. Mater., 2000, 12: 188-196.
    [73] KOYA M, NAKAJIMA H. Hybrid inorganic-organic mesoporous molecular sieves [J]. Stud. Surf. Sci. Catal., 1998, 117: 243-248.
    [74] SLADE R C T, BAMBROUGH C M, WILLIAMS R T. An incoherent inelastic neutron scattering investigation of the vibrational spectrum of phenyl-modified (C6H5–) mesoporous silica and its variations in the presence of sorbed benzene (C6H6) and of sorbed deuteriobenzene (C6D6) [J]. Phys. Chem. Chem. Phys., 2002, 4: 5394-5399.
    [75] FOWLER C E, BURKETT S L, MANN S. Synthesis and characterization of ordered organo–silica–surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, 1769-1770.
    [76] LIM M H, BLANFORD C F, STEIN A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts [J]. Chem. Mater., 1998, 10: 467-470.
    [77] VAN RHIJN W M, DE VOS D E, SELS B R, BOSSAERT W D, JACOBS P A. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions [J]. Chem. Commun., 1998, 317-318.
    [78] RICHER R, MERCIER L. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly [J]. Chem. Commun., 1998, 1775-1777.
    [79] CORMA A, JORDA J L, NAVARRO M T, REY F. One step synthesis of highly active and selective epoxidation catalysts formed by organic–inorganic Ti containing mesoporous composites [J]. Chem. Commun., 1998, 1899-1900.
    [80] RICHER R, MERCIER L. Direct synthesis of functional mesoporous silica by neutral pH nonionic surfactant assembly: factors affecting framework structure and composition [J]. Chem. Mater., 2001, 13: 2999-3008.
    [81] LIM M H, BLANFORD C F, STEIN A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41: probing the internal pore structure by a bromination reaction [J]. J. Am. Chem. Soc., 1997, 119: 4090-4091.
    [82] BABONNEAU F, LEITE L, FONTLUPT S. Structural characterization of organically-modified porous silicates synthesized using CTA+ surfactant and acidic conditions [J]. J. Mater. Chem., 1999, 9:175-178.
    [83] MACQUARRIE J D J, JACKSON D B, MDOE J E G, CLARK J H. Organomodified hexagonal mesoporous silicates [J]. New. J. Chem., 1999, 23: 539-544.
    [84] MOLLER K, BEIN T, FISCHER R X. Synthesis of ordered mesoporous methacrylate hybrid systems: hosts for molecular polymer composites [J]. Chem. Mater., 1999, 11: 665–673.
    [85] HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512–4519.
    [86] HANG F, MENG Y, GU D, YAN Y, YU C, TU B, ZHAO D. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia d bicontinuous cubic structure [J]. J. Am. Chem. Soc., 2005, 127: 13508-13509.
    [87] MENG Y, GU D, ZHANG F, SHI Y, YANG H, LI Z, YU C, TU B, ZHAO D. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angew. Chem., 2005, 117: 7215;Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int. Ed. Engl., 2005, 44: 7053-7059.
    [88] HUO Q, MARGOLESE D I, CIESLA U,DEMUTH D K, FENG P Y, GIER T E, ET AL. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, 6: 1176-1191.
    [89] CHE S, LIU Z, OHSUNA T, ET AL. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429: 281-284.
    [90] ULAGAPPAN N, RAO C N R. Mesoporous phases based on SnO2 and TiO2 [J]. Chem. Commun., 1996, 1685-1686.
    [91] PROUZET E, PINNAVAIA T J. Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 516-518.
    [92] PROUZET E, COT F, NABIAS G, LARBOT A, KOOYMAN P, PINNAVAIA T J. Assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors [J]. Chem. Mater., 1999, 11: 1498-1503.
    [93] KIM S S, ZHANG W, PINNAVAIA T J. Ultrastable mesostructured silica vesicles [J]. Science, 1998, 282: 1302-1305.
    [94] TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular-Sieves [J]. Science, 1995, 267: 865-867.
    [95] CORMA A, NAVARRO M T, PARIENTE J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons [J]. J. Chem. Soc., Chem. Commun., 1994, 147-148.
    [96] KHUSHALANI D, KUPERMAN A, COOMBS N, OZIN G A. Mixed surfactant assemblies in the synthesis of mesoporous silicas [J]. Chem. Mater., 1996, 8: 2188-2193.
    [97] CHEN F X, HUANG L M, LI Q Z. Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates [J]. Chem. Mater., 1997, 9: 2685-2686.
    [98] YAN X W, CHEN H Y, LI Q Z. A mixed neutral cationic surfactant templating pathway to cubic mesoporous molecular sieves [J]. Acta. Chim. Sin., 1998, 56: 1214-1217.
    [99] ANTONIETTI M, BERTON B, GOLTNER C, HENTZE H P. Synthesis of mesoporous silica with large pores and bimodal poresize distribution by templating of polymer lattices [J]. Adv. Mater., 1998, 10: 154-159.
    [100] LIN H P, MOU C Y. Structural and morphological control of cationic surfactant- templated mesoporous silica [J]. Accounts. Chem. Res., 2002, 35: 927-935.
    [101] WEI Y, FENG Q W, XU J G, ET AL. Polymethacrylate-silica hybrid nanoporous materials: a bridge between inorganic and polymeric molecular sieves [J]. Adv. Mater., 2000, 12: 1448-1450.
    [102] RYOO R, JOO S H, JUN S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B., 1999, 103, 7743–7746.
    [103] LAHA S C, RYOO R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J]. Chem. Commun., 2003, 2138-2139.
    [104] ZHU K, YUE B, ZHOU W, HE H. Highly enantioselective spiro cyclization of 1,6-enynes catalyzed by cationic skewphos rhodium(I) complex [J]. Chem. Commun., 2003, 98-99.
    [105] TIAN B, LIU X, YANG H, XIE S, YU C, TU B, ZHAO D. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv. Mater., 2003, 15: 1370-1374.
    [106] LEE K, KIM Y H, HAN S B, KANG H, PARK S, SEO W S, PARK J T, KIM B, CHANG S. Osmium replica of mesoporous silicate MCM-48: efficient and reusable catalyst for oxidative cleavage and dihydroxylation reactions [J]. J. Am. Chem. Soc., 2003, 125, 6844-6845.
    [107] JACKIE Y Y, CHRISTIAN P M, MICHAEL S W. Synthesis and applicationsof supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56 -77.
    [108]张爱菊,沈毅,李子成.硅基介孔材料的合成机理及其应用[J].河北理工学院学报, 2006, 28: 75-79.
    [109] VARTULI J C, KRESGE C T, LEONOWICZ M E. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates [J]. Chem. Mater., 1994, 6: 2070–2077.
    [110] CHEN C Y, LI H X, DAVIS M E. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41 [J]. Micropor. Mater., 1993, 2: 17-26.
    [111] FIROUZI A, KUMAR D, BULL L M, ET AL. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science, 1995, 267: 1138-1143.
    [112] MONNIER A, SCHUTH F, HUO Q, ET AL. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261: 1299-1303.
    [113] CHEN C Y, BURKETTE S L, LI H X, DAVIS M E. Studies on mesoporous materials. II. synthesis mechanism of MCM -41 [J]. Micropor. Mater., 1993, 2: 27–34.
    [114] STEEL A, CARR S W, ANDEERSON M W. 14NNMR study of surfactant mesophases in the synthesis of mesoporous silicates [J]. Chem. Commun., 1994, 1571-1572.
    [115] ATTARD G S, GLYDE J C, G.LTNER C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature, 1995, 378: 366-367.
    [116] TANEV P T, PINNAVAIA T J. Mesoporous silicas molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties [J]. Chem. Mater., 1996, 8: 2068-2079.
    [117] XIANG S, ZHANG Y L, XIN Q, ET AL.. Enantioselective epoxidation of olefins catalyzed by Mn (salen)/MCM-41 synthesized with a new anchoring method [J]. Chem. Commun., 2002, 22: 2696-2697.
    [118] SUNG J B, WOOK K S, TAEGHWAN H, ET AL.. New chiral heterogeneouscatalysts based on mesoporous silica: asymmetric diethylzinc addition to benzaldehyde [J]. Chem. Commun., 2000, 1: 31-32.
    [119] KAGEYAMA K, OGINO S, AIDA T. Mesoporous zeolite as a new class of catalyst for controlled polymerization of lactones macromolucules [J]. 1998, 31: 4069-4073.
    [120] ABEKI-FATTAH T M, PINAVAIA T J. Tin-substituted mesoporous silica molecular sieve (Sn-HMS): synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization [J]. Chem. Commun., 1996, 665-666.
    [121] SCOTT B J, WIMSBERGER G, STUCKY G D. Mesoporous and mesostructured materials for optical applications [J]. Chem. Mater., 2001, 13 (10): 3140-3150.
    [122] NELSON P A, ELLIOTT J M, ATTARD G S, ET AL. Mesoporous nickel/nickel oxide electrodes for high power applications [J]. J. New Mater. Electrochem. Sys. , 2002, 5 (1): 63- 65.
    [123] OH S M, HYEON T H, JANG J H, ET AL. Mesoporous carbon material, carbon /metal oxide composite materials and electrochemical capacitors using them[P] [J]. PCT Int. Appl., WO, 2001089991, 2001: 11-29.
    [124] JANG J H, HAN S, HYEON T, ET AL. Electrochemical capacitor performance of hydrous ruthenium oxide /mesoporous carbon composite electrodes [J]. J. Power Sources, 2003, 123 (1): 79-85.
    [125] YE B, HE X, TRUDEAU M, ANTONELLI D. Observation of a double maximum in the dependence of conductivity on oxidation state in potassium fulleride nanowires supported by a mesoporous niobium oxide host lattice [J]. Adv. Mater., 2001, 13: 561-565.
    [126] HE X, ANTONELLI D. Recent advances in synthesis and application of transition metal containing mesoporous molecular sieves [J]. Angew. Chem. Int. Ed. Engl., 2002, 41: 214-229.
    [127] YU A, FRECH R. Mesoporous tin oxides as lithium intercalation anode material [J]. J. Power Sources, 2002, 104 (1): 97-100.
    [128] YANG P, WIMSBERGER G. HUANG H, CORDERO S, MCGEHEE M, SCOTT B, DENG T, WHITESIDES G, CHRNELKA B, STUCKY G D. Mirrorless lasing from mesostructured waveguides patterned by soft Lithography [J]. Science, 2000, 287: 465-467.
    [129]李晓芬,何静,马润宇,段雪,朱月香.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究[J].化学学报, 2000, 58: 167-171.
    [130]高波,朱广山,傅学奇,辛明红,裘式纶.介孔分子筛SBA-15中a-胰凝乳蛋白酶组装及催化活性研究[J].高等学校化学学报. 2003, 24: 1100-1102.
    [131]高峰,赵建伟,张松,周峰,金婉,张祥民,杨原,赵东元.中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用[J].高等学校化学学报, 2002, 23: 1494-1497.
    [132] ZHAO J, GAO F, FU Y L, JIN W, YANG P, ZHAO D. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography [J]. Chem. Commum., 2002, 752-753.
    [133] HAN Y, STUCKY G, BUTTER A. Mesoporous silicate sequestration and release of proteins [J]. J. Am. Chem. Soc., 1999, 121: 9897-9898.
    [134] FENG X, FRYXELL G E,WANG L Q, ET AL. Functionalized monolayers on ordered mesoporous supports [J]. Science. 1997, 276: 923-926.
    [135] SUN J H, JACOB A, MOULIJN, ET AL.Alcothennal Synthesis Under Bacic Conditions of a SBA-15 with Long-range Order and Stability.[J]. Adv Mater. 2001, 13 (5): 327-330.
    [136] CHOI D G., YANG S M. Effect of Two-step Sol-gel Reaction on the Mesoporous Silica Structure. [J]. Journal of Colloid and Interface Science. 2003, 261: 127-132.
    [137]孙锦玉,赵东元.“面包圈”状高度有序大孔径介孔分子筛SBA-15的合成[J].高等学校化学学, 2000, 21 (1): 21-23.
    [138]王晓来,赵睿,索继栓.纳米中孔分子筛SBA-15的合成方法[P]. CN1611447, 2005-05-04.
    [139]包信和,张贺,孙军明,缪少军,谭大力.一种短孔SBA-15中孔硅基材料的制备方法[P]. CN1718541, 2006-01-11.
    [140]罗永明,侯昭胤,金顶峰,郑小明.介孔分子筛SBA-15的合成方法[P].: CN1724364,2006-01-25.
    [141]罗永明,侯昭胤,金顶峰,郑小明.环境友好合成介孔分子筛SBA-15的方法[P]. CN1724365,2006-01-25.
    [142] TEMPLIN M, FRANCK A, CHESNE A D, ET AL. Organically modified aluminosilicate mesostructures from block copolymer phases [J]. Science, 1997, 278: 1795-1798.
    [143] ZHAO D Y, SUN J Y, LI Q Z , ET AL. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater., 2000, 12: 275-278.
    [144] BENNADJA Y, BEAUNIER P, MARGOLESE D, DAVIDSON A. Fine tuning of the interaction between Pluronic surfactants and silica walls in SBA-15 nanostructured materials [J]. Micropor. Mesopor. Mater., 2001, 147-152.
    [145] MIYAZAWA K, INAGAKI S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15 [J]. Chem Comm, 2000, 1211-2122.
    [146] WANG Y, NOGUCHI M, TAKAHASHI Y, ET AL. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts [J]. Catalysis Today, 2001, 68: 3-9.
    [147]徐如人,庞文琴,等.分子筛与多孔材料化学[M] [J].北京:科学出版社, 2004: 616.
    [148] MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater., 2000, 12: 2448-2459.
    [149] WANG X, LIU K S K, CHAN J C C, CHENG S. Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl-group through one-pot synthesis [J]. Chem. Commun., 2004, 2762-2763.
    [150] HUANG M H, CHOUDREY A, YANG P. Ag nanowire formation within mesoporous silica [J]. Chem. Commun., 2000, 1063-1064.
    [151] HAN Y J, KIM J M, STUCKY G D. Preparation of noble metal nanowiresusing hexagonal mesoporous silica SBA -15 [J]. Chem. Mater., 2000, 12: 2068-2069.
    [152] HAN Y J, STUCKY G D, BUTTER A. Mesoporous silicate sequestration and release of proteins [J]. J . Am. Chem. Soc., 1999, 121: 9897-9898.
    [153] JUN S, JOO S H, RYOO R , ET AL.. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712-10713.
    [154]郑欣梅,齐彦兴,张小明等.新型分子筛SBA-15固载手性Salen Mn(Ⅲ)配合物的合成及其催化性能的研究[J].分子催化, 2003, 17(6): 461-464.
    [1] THOMAS J M. Design, Synthesis, and in situ characterization of new solid catalysts [J]. Angew. Chem.Int. Ed., 1999, 38: 3588-3628.
    [2] YANG P, ZHAO D, MARGLKESE D I, ET AL. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396:152-155.
    [3] SAYARI A, LIU P. Non-silica periodic mesostructured materials: recent progress [J]. Micropor. Mater.1997, 12:149-177.
    [4] TIAN Z R, TONG W, WANG J Y, ET AL. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts [J]. Science .1997, 276: 926.
    [5] KRESGE C T, LEONOWICZ M E, ROTH W T, ET AL. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992, 359: 710-712.
    [6] MOLLER K, BEIN T. Inclusion chemistry in periodic mesoporous hosts [J]. Chem. Mater., 1998, 10: 2950-2963.
    [7] YAMAMOTO K, TATSUMI T. Organic functionalization of mesoporous molecular sieves with Grignard reagents [J]. Micropor. Mesopor. Mater., 2001, 44-45: 459-464.
    [8] CLARK J H, MACQUARRIE D J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids [J]. Chem. Commun., 1998, 853-860.
    [9] ANWANDER R, NAG I, WIDENMEYER M, ENGELHARDT G., GROEGER O, PALM C, ROSER T. Surface characterization and functionalization of MCM-41 silicas via silazane silylation [J]. J. Phys. Chem. B, 2000, 104: 3532-3544.
    [10] CHEN J, LI Q, XU R, XIAO F. Zur unterscheidung der silanolgruppen im mesopor?sen molekularsieb MCM-41 [J]. Angwe. Chem., 107 (1995) 2898-2900; Distinguishing the silanol groups in the mesoporous molecular sieve MCM-41 [J]. Angew. Chem. Int. Ed. Engl., 1996, 34: 2694-2696.
    [11] SHEPHARD D S, ZHOU W, MASCHMEYER T, MATTERS J M, ROPER C L, PARSON S, JOHNSON B F G., DUER M J. Ortsspezifische derivatisierung von MCM-41: molekulare erkennung und lokalisierung funktioneller gruppen in mesopor?sen materialien durch hochaufl?sende transmissionselektronenmikroskopie. [J]. Angew. Chem., 1998, 110: 2847-2851; Site-directed surface derivatization of MCM-41: use of high-resolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials [J]. Angew. Chem. Int. Ed. Engl., 1998, 37: 2719-2723.
    [12] ZHAO X S, LU G Q, WHITTAKER A K, MILLAR G J, ZHU H Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA [J]. J. Phys. Chem.B, 1997, 101: 6525-6531.
    [13] CAUVEL A., RENARD G, BRUNEL D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with aminogroups [J]. J. Org. Chem., 1997, 62: 749-751.
    [14] SUBBA RAO Y V, DEVOS D E, BEIN T, JACOBS P A. 1,5,7-Triazabicyclo [4.4.0] dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 2661-2663.
    [15] DIAZ J F, BALKUS K J J, BEDIOUI F, KURSHEV V, KEVAN L. Synthesis and characterization of cobalt?complex functionalized MCM-41 [J]. Chem. Mater., 1997, 9: 61-67.
    [16] LIU C J, LI S G., PANG W Q, CHE C M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation [J]. Chem. Commun., 1997, 65-66.
    [17] STEIN A., MELDE B J, SCHRODEN R C. Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419.
    [18] LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic?organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11: 3285-3295.
    [19] BURKETT S L, SIMS S D, MANN S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun., 1996, 1367-1368.
    [20] MACQUARRIE D J. Direct preparation of organically modified MCM-type materials: preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM [J]. Chem. Commun., 1996, 1961-1962.
    [21] BAMBROUGH C M, SLADE R C R, WILLIAMS R T. Synthesis of large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption [J]. J. Mater. Chem., 1998, 8: 569-571.
    [22] BHAUMIK A, TATSUMI T. Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions [J]. J. Catal., 2000, 189: 31-39.
    [23] HALL S R, FOWLER C E, LEBEAU B, MANN S. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases [J].Chem. Commun., 1999, 201-202.
    [24] MERCIER L, PINNAVAIA T J. Direct synthesis of hybrid organic?inorganic nanoporous silica by a neutral amine assembly route: Structure?function control by stoichiometric incorporation of organosiloxane molecules [J]. Chem. Mater., 2000, 12:188-196.
    [25] KOYA M, NAKAJIMA H. Hybrid inorganic-organic mesoporous molecular sieves [J]. Stud. Surf. Sci. Catal., 1998, 117: 243-248.
    [26] SLADE R C T, BAMBROUGH C M, WILLIAMS R T. An incoherent inelastic neutron scattering investigation of the vibrational spectrum of phenyl-modified (C6H5–) mesoporous silica and its variations in the presence of sorbed benzene (C6H6) and of sorbed deuteriobenzene (C6D6) [J]. Phys. Chem. Chem. Phys., 2002, 4: 5394-5399.
    [27] FOWLER C E, BURKETT S L, MANN S. Synthesis and characterization of ordered organo–silica–surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, 1769-1770.
    [28] LIM M H, BLANFORD C F, STEIN A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts [J]. Chem. Mater., 1998, 10: 467-470.
    [29] RHIJN V W M, DE VOS D E, SELS B R, BOSSAERT W D, JACOBS P A. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions [J]. Chem. Commun., 1998, 317-318.
    [30] RICHER R., MERCIER L. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly [J]. Chem. Commun., 1998, 1775-1777.
    [31] CORMA A, JORDA J L, NAVARRO M T, REY F. One step synthesis of highly active and selective epoxidation catalysts formed by organic–inorganic Ti containing mesoporous composites [J]. Chem. Commun., 1998, 1899.
    [32] RICHER R, MERCIER L. Direct synthesis of functional mesoporous silica by neutral pH nonionic surfactant assembly: Factors affecting framework structure andcomposition [J]. Chem. Mater., 2001, 13: 2999-3008.
    [33] LIM M H, BLANFORD C F, STEIN A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction [J]. J. Am. Chem. Soc., 1997, 119: 4090-4091.
    [34] BABONNEAU F, LEITE L, FONTLUPT S. 71Ga and 31P solid state NMR: a powerful tool for the characterization of the first gallium phosphonates [J]. J. Mater. Chem., 1999, 9: 175-176.
    [35] MACQUARRIE J D J, JACKSON D B, MDOE J E G., CLARK J H. Organomodified hexagonal mesoporous silicates [J]. New. J. Chem., 1999, 23: 539-541.
    [36] MOLLER K, BEIN T, FISCHER R X. Synthesis of ordered mesoporous methacrylate hybrid systems: hosts for molecular polymer composites [J]. Chem. Mater., 1999, 11: 665-673.
    [37] HUQ R, MERCIER L. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [38] MARIA C A S, ZHAO X S, KUSTEDJO A T, QIAO S Z. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis [J]. Micropor. Mesopor. Mater., 2004, 72: 33-42.
    [39] YIU H H P, WRIGHT P A, BOTTING N P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. J. Mol. Catal. B, 2001, 15: 81-92.
    [40] MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G. D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater., 2000, 12: 2448-2459.
    [41] YIU H H P, BOTTING C H, BOTTING N P, WRIGHT P A. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys. Chem. Chem. Phys., 2001, 3: 2983-2985.
    [42] WANG X, LIN K S K, CHAN J C C, CHENG S. Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-potsynthesisElectronic supplementary information (ESI) available: pore-size distributions, TEM, 29Si {1H} CPMAS NMR spectra, TGA and the results of the Knoevenagel reaction of carbonyl compounds with cyanoacetate [J]. Chem. Commun., 2004, 2762-2763.
    [43] WANG Y, ZIBROWIUS B, YANG C, SPLIETHOFF B, SCHUETH F. Anion dependence of Ag(i) reactions with 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz): isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2 [J]. Chem. Commun., 2004, 46-47.
    [44] YANG C, ZIBROWIUS B, SCHUETH F. A novel synthetic route for negatively charged ordered mesoporous silica SBA-15 [J]. Chem. Commun., 2003, 1772-1773.
    [45] YANG C, WANG Y, ZIBROWIUS B, SCHUETH F. Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15 [J]. Phys. Chem. Chem. Phys., 2004, 6: 2461-2467.
    [46] RODRIGUEZ I, IBORRA S, CORMA A, REY F, JORDA J L. MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Brnsted base catalysts [J]. Chem. Commun., 1999, 593-594.
    [47] DAS D, LEE J F, CHENG S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups [J]. J. Catal., 2004, 223: 152-160.
    [48] YANG Q, LIU J, YANG J, KAPOOR M P, INAGAKI S, LI C. Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas [J]. J. Catal., 2004, 228: 265-272.
    [49] MACQUARRIE D J, JACKSON D B. Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica [J]. Chem. Commun., 1997, 1781-1782.
    [50] J. E. MDOE, G. J. H. CLARK, D. Michael additions catalysed by N,N-dimethyl-3-aminopropyl-derivatised amorphous silica and hexagonal mesoporous silica[J]. J. Macquarrie, Syn. Lett., 1998, 625-627.
    [51] SARTORI G, BIGI F, MAGGI R, SARTORIO R, MACQUARRIE D J,LENARDA M., STORARO L, . COLUCCIA, MARTRA G.. Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes [J]. J. Catal., 2004, 222: 410-418.
    [52] ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [53] ZHAO D, HUO Q, FENG J, B. CHMELKA F, STUCKY G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [54] CHONG A S M, ZHAO X S. Functionalization of SBA-15 with APTES and characterization of functionalized materials [J]. J. Phys. Chem. B, 2003, 107: 12650-12657.
    [55] CHONG A S M, ZHAO X S, KUSTEDJO A T, QIAO S Z. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis [J]. Micropor. Mesopor. Mater., 2004, 72: 33-42.
    [56] WANG X, LIU K S K, CHAN J C C, CHENG S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials [J]. J. Phys. Chem. B, 2005, 109:1763-1769.
    [57] WANG X, TSENG Y H, CHAN J C C, CHENG S. Direct synthesis of highly ordered large-pore functionalized mesoporous SBA-15 silica with methylaminopropyl groups and its catalytic reactivity in flavanone synthesis [J]. Micropor. Mesopor. Mater., 2005, 85: 241-251.
    [58] MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater, 2000, 12: 2448-2459.
    [59] DEBASISH D, JYH F L, CHENG S. Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for Bisphenol-A synthesis [J]. Chem. Commun., 2001, 2178–2179.
    [60] MERCIER L, PINNAVAIA T J. Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J]. Adv. Mater., 1997, 9: 500-503.
    [61] WANG X, TSENG Y H, CHAN J C C, CHENG S. Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis [J]. J. Catal., 2005, 233: 266-275.
    [62] ZEIDAN R K, DUFAUD V, DAVIS M E. Enhanced cooperative, catalytic behavior of organic functional groups by immobilization [J]. J. Catal., 2006, 239: 299-306.
    [1] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [2] BECK J S, VARTULI J. C, ROTH W J, LEONOWICZ M E, KRESGE C T, SCHMITT K D, CHU C T W, OLSON D H, SHEPPARD E W, MCCULLEN S B, HIGGINS J B, SCHLENKER J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114:10834-10843.
    [3] TANEV P T, CHIBWE M, PINNAVAIA T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368: 321-323.
    [4] YING J Y, MEHNERT C P, WONG M S. Sythesis and applications of supramolecular- templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [5] DE VOS D E, DAMS M, SELS B F, JACOBS P A. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations [J]. Chem. Rev., 2002, 102: 3615-3640.
    [6] BRANTON P J, HULL P G, KING K S W. Physisorption of nitrogen and oxygen by MCM-41, a model mesoporous adsorbent [J]. J. Chem. Soc., Chem. Commun., 1993, 1257-1258.
    [7] KICKELBICK G.. Hybrid inorganic-organic mesoporous materials [J]. Angew. Chem. Int. Ed., 2004, 43: 3102-3104.
    [8] BURLEIGH C M, JAYASUNDERA S, SPECTOR M S, ET AL., A new family of copolymers: multifunctional periodic mesoporous organosilicas [J]. Chem. Mater., 2004, 16: 3-6.
    [9] DAS D, LEE J F, CHENG S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups [J]. J. Catal., 2004, 223: 152-160.
    [10] MOKAYA R. Ultrastabile mesopores alumosilicate durch Pfropfsynthesen [J]. Angew. Chem., 1999, 111: 3079-3015.
    [11] RYOO R, JUN S, KIM J M, KIM M J. Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation [J]. Chem. Commun., 1997, 2225-2226.
    [12] LUAN Z, MAES E M, VAN DER HEIDE P A W, ZHAO D, CZERNUSZEWICZ R S, KEVAN L. Incorporation of titanium into mesoporous silica molecular sieve SBA-15 [J]. Chem. Mater., 1999, 11: 3680-3686.
    [13] LUAN Z, BAE J Y, KEVAN C. Vanadosilicate mesoporous SBA-15 molecular sieves incorporated with N-alkylphenothiazines [J]. Chem. Mater., 2000, 12: 3202-3206.
    [14] YUE Y, GéDéON A, BONARDET J J, MELOSH N, ESINOSE J B D,FRAISSARD J. Direct synthesis of Al-SBA mesoporous molecular sieves: characterization and catalytic activities [J]. Chem. Commun., 1999, 1697-1702.
    [15] ZHANG W, LU Q, HAN B, LI M, XIU J, YING P, LI C. Direct synthesis and characterization of Titanium-substituted mesoporous molecular sieve SBA-15 [J]. Chem. Mater., 2002, 14: 3413-3421.
    [16] HAN Y, XIAO F, WU S, SUN Y, MENG X, LI D, LIN S. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media [J]. J. Phys. Chem. B, 2001, 105: 7963-7966.
    [17] LIU Y, PINNAVAIA T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions [J], Chem. Mater., 2002, 14: 3-5.
    [18] TODOROVA S, PARVULESCU V, KADINOV G, TENCHEV K, SOMACESCU S, SU B L. Metal states in cobalt- and cobalt–vanadium-modified MCM-41mesoporous silica catalysts and their activity in selective hydrocarbons oxidation [J]. Micropor. Mesopor. Mater., 2008, 113: 22-30.
    [19] SALAMA T M, ALI I O, GUMAA H A. Synthesis and characterization of Cu (I)–salen complex immobilized aluminosilicate MCM-41 [J]. Micropor. Mesopor. Mater., 2008, 113: 90-98.
    [20] YAMAMOTO K, TATSUMI T. Organic functionalization of mesoporous molecular sieves with Grignard reagents [J]. Micropor. Mesopor. Mater., 2001, 44-45: 459-464.
    [21] CLARK J H, MACQUARRIE D J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids [J]. Chem. Commun., 1998, 853-860.
    [22] ANWANDER R, NAGL I, WIDENMEYER M, ENGELHARDT G., GROEGER O, PALM C, ROSER T. Surface characterization and functionalization of MCM-41 silicas via silazane silylation [J]. J. Phys. Chem. B, 2000, 104: 3532-3544.
    [23] MOLLER K, BEIN T. Inclusion chemistry in periodic mesoporous hosts [J]. Chem. Mater., 1998, 10: 2950-2963.
    [24] CHEN J, LI Q, XU R, XIAO F. Zur Unterscheidung der Silanolgruppen im mesopor?sen Molekularsieb MCM-41 [J]. Angwe. Chem., 1995, 107: 2898-2900; Distinguishing the silanol groups in the mesoporous molecular sieve MCM-41 [J]. Angew. Chem. Int. Ed. Engl., 1996, 34: 2694-2696.
    [25] SHEPHARD D S, ZHOU W, MASCHMEYER T, MATTERS J M, ROPER C L, PARSON S, JOHNSON B F G., DUER M J. Ortsspezifische derivatisierung von MCM-41: molekulare erkennung und lokalisierung funktioneller gruppen in mesopor?sen materialien durch hochaufl?sende transmissionselektronenmikroskopie [J]. Angew. Chem., 1998, 110: 2847-2851.
    [26] ZHAO X S, LU G Q, WHITTAKER A K, MILLAR G J, ZHU H Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA [J].J. Phys. Chem. B, 1997, 101: 6525-6531.
    [27] CAUVEL A, RENARD G, BRUNEL D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups [J]. J. Org. Chem., 1997, 62: 749-751.
    [28] SUBBA R Y V, DE VOS D E , BEIN T, JACOBS P A. 1,5,7-triazabicyclo [4.4.0] dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 2661-2663.
    [29] DIAZ J F, BALKUS K J JR, BEDIOUI F, KURSHEV V, KEVAN L. Synthesis and characterization of cobalt-complex functionalized MCM-41 [J]. Chem. Mater., 1997, 9: 61-67.
    [30] LIU C J, LI S G., PANG W Q, CHE C M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation [J]. Chem. Commun., 1997, 65-66.
    [31] STEIN A, MELDE B J, SCHRODEN R C. Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419.
    [32] LIM M H, STEIN A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11:3285-3295.
    [33] BURKETT S L, SIMS S D, MANN S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun., 1996, 1367-1368.
    [34] MACQUARRIE D J. Direct preparation of organically modified MCM-type materials: preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM [J]. Chem. Commun., 1996, 1961-1962.
    [35] BAMBROUGH C M, SLADE R C R, WILLIAMS R T. Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption [J]. J. Mater. Chem., 1998, 8: 569-571.
    [36] BHAUMIK A, TATSUMI T. Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions [J]. J. Catal., 2000, 189: 31-39.
    [37] HALL S R, FOWLER C E, LEBEAU B, MANN S. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases [J]. Chem. Commun., 1999, 201-202.
    [38] MERCIER L, PINNAVAIA T J. Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route: structure-function control by stoichiometric incorporation of organosiloxane molecules [J]. Chem. Mater., 2000, 12: 188-196.
    [39] SLADE R C T, BAMBROUGH C M, WILLIAMS R T. An incoherent inelastic neutron scattering investigation of the vibrational spectrum of phenyl-modified (C6H5–) mesoporous silica and its variations in the presence of sorbed benzene (C6H6) and of sorbed deuteriobenzene (C6D6) [J]. Phys. Chem. Chem. Phys., 2002, 4: 5394-5399.
    [40] FOWLER C E, BURKETT S L, MANN S. Synthesis and characterization of ordered organo–silica–surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, 1769-1770.
    [41] LIM M H, BLANFORD C F, STEIN A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acidcatalysts [J]. Chem. Mater., 1998, 10: 467-470.
    [42] VAN RHIJN W M, DE VOS D E, SELS B R, BOSSAERT W D, JACOBS P A. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions [J]. Chem. Commun., 1998, 317-318.
    [43] RICHER R, MERCIER L. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly [J]. Chem. Commun., 1998, 1775-1777.
    [44] CORMA A, JORDA J L, NAVARRO M T, REY F. One step synthesis of highly active and selective epoxidation catalysts formed by organic–inorganic Ti containing mesoporous composites [J]. Chem. Commun., 1998, 1899-1900.
    [45] RICHER R, MERCIER L. Direct synthesis of functional mesoporous silica by neutral pH nonionic surfactant assembly: Factors affecting framework structure and composition [J]. Chem. Mater., 2001, 13: 2999-3008.
    [46] LIM M H, BLANFORD C F, STEIN A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41: probing the internal pore structure by a bromination reaction [J]. J. Am. Chem. Soc., 1997, 119: 4090-4091.
    [47] BABONNEAU F, LEITE L, FONTLUPT S. Structural characterization of organically-modified porous silicates synthesized using CTA+ surfactant and acidic conditions [J]. J. Mater. Chem., 1999, 9: 175-178.
    [48] MACQUARRIE J D J, JACKSON D B, MDOE J E G, CLARK J H. Organomodified hexagonal mesoporous silicates [J]. New J. Chem., 1999, 23: 539-544.
    [49] MOLLER K, BEIN T, FISCHER R X. Synthesis of ordered mesoporous methacrylate hybrid systems: hosts for molecular polymer composites [J]. Chem. Mater., 1999, 11: 665-673.
    [50] HUQ R, MERCIER L, KOOYMAN P J. Incorporation of cyclodextrin into mesostructured silica [J]. Chem. Mater., 2001, 13: 4512-4519.
    [51] MARGOLLESE D, MELERO J A, CHRISTIANESN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containingsulfonic acid groups [J]. Chem. Mater., 2000, 12: 2448-2459.
    [52] INAGAKI S, GUAN S, OHSUNA T, TERASAKI O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature, 2002, 416: 304-307.
    [53] FOWLER C E, BURKETT S L, MANN S. Synthesis and characterization of ordered organo–silica–surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, 1769-1770.
    [54] WIGHT A P, DAVIS M E. Design and preparation of organic-inorganic hybrid catalysts [J]. Chem. Rev., 2002, 102: 3589-3614.
    [55] GELMAN F, BLUM J, AVNIR D. Acids and bases in one pot while avoiding their mutual destruction [J]. Angew. Chem. Int. Ed., 2001, 40: 3647-3649.
    [56] VOIT B. Sequential one-pot reactions using the concept of site isolation [J]. Angew. Chem. Int. Ed., 2006, 45: 4238-4240.
    [57] MOTOKURA K, FUJITA N, MORI K, MIZUGAKI T, EBITANI K, KANEDA K. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions [J]. J. Am. Chem. Soc., 2005, 127: 9674-9675.
    [58] HELMS B, GUILLAUDEU S J, XIE Y, MCMURDO M, HAWKER C J, FRECHET J M J. One-pot reaction cascades using star polymers with core-confined catalysts [J]. Angew. Chem. Int. Ed., 2005, 44: 6384-6387.
    [59] COUTINKO D, MADHUGIRI S, BALKUS K J, J. Synthesis and characterization of organosilane functionalized DAM-1 mesoporous silica [J]. Porous Mater., 2004, 11: 239-254.
    [60] BASS J D, KATZ A. Bifunctional surface imprinting of silica: thermolytic synthesis and characterization of discrete thiol?amine functional group pairs [J]. Chem. Mater., 2006, 18: 1611-1620.
    [61] DUFAUD V, DAVIS M E. Design of heterogeneous catalysts via multiple active site positioning in organic?inorganic hybrid materials [J]. J. Am. Chem. Soc., 2003, 125: 9403-9413.
    [62] ZEIDAN R K, DUFAUD V, DAVIS M E. Enhanced cooperative, catalyticbehavior of organic functionalgroups by immobilization [J]. J. Catal., 2006, 239: 299-306.
    [63] HUH S, CHEN H T, WIENCH J W, PRUSKI M, LIN V S Y. Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres [J]. Angew. Chem. Int. Ed., 2005, 44:1826-1830.
    [64] GELMAN F, BLUM J. Acids and bases in one pot while avoiding their mutual destruction [J]. Avnir, Angew. Chem. Int. Ed., 2001, 40: 3647-3649.
    [65] BASS J D, SOLOVYOV A, PASCALL A J, KATZ A. Acid?base bifunctional and dielectric outer-sphere effects in heterogeneous catalysis: a comparative investigation of model primary amine catalysts [J]. J. Am. Chem. Soc., 2006, 128: 3737-3747.
    [66] SHI LY, WANG Y M, JI A, GAO L, WANG Y. In situ direct bifunctionalization of mesoporous silica SBA-15 [J]. J. Mater. Chem., 2005, 15: 1392-1396.
    [67] MOTOKURA K, FUJITA N, MORI K, MIZUGAKI T, EBITANI K, KANEDA K. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions [J]. J. Am. Chem. Soc., 2005, 127: 9674-9675.
    [68] YOKOI T, YOSHITAKE H, TATSUMI T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes [J]. J. Mater. Chem., 2004, 14: 951-957.
    [69] HUH S, WIENCH J W, YOO J C, PRUSKI M, LIN V S Y. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method [J]. Chem. Mater. 2003, 15: 4247-4256.
    [70] SRINIVAS D, RATNASAMY P. Spectroscopic and catalytic properties of SBA-15 molecularsieves functionalized with acidic and basic moieties [J]. Micropor. Mesopor. Mater., 2007, 105: 170-180.
    [71] MOTOKURA K, TADA M, IWASAWA Y. Heterogeneous organic base-catalyzed reactions enhanced by acid supports [J]. J. Am. Chem. Soc., 2007, 129: 9540-9541.
    [72] DUFAUD V, DAVIS M E. Design of heterogeneous catalysts via multiple active site positioning in organic?inorganic hybrid materials [J]. J. Am. Chem. Soc., 2003, 125: 9403-9413.
    [73] KUBOTA Y, GOTO K, MIYATA S, GOTO Y, FUKUSHIMA Y, SUGI Y. Enhanced effect of mesoporous silica on base-catalyzed aldol reaction [J]. Chem.Lett., 2003, 32: 234–235.
    [74] ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [75] ZHAO D, HUO Q, FENG J, CHMELKA B F, STUCKY G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [76] MERCIER L., PINNAVAIA T. J., Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J]. Adv. Mater., 1997, 9: 500-503.
    [77] ZHAO X S, LU G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study [J]. J. Phys. Chem. B, 1998, 102: 1556-1561.
    [78] IGARASHI N, HASHIMOTO K, TATSUMI T J. Studies on the structural stability of mesoporous molecular sieves organically functionalized by a direct method [J]. J. Mater. Chem., 2002, 12: 3631-3636.
    [79] JUAN F, HITZKY E R. Selective functionalisation of mesoporous silica [J]. Adv. Mater., 2000, 12: 430-432.
    [1] CORMA A, GARCIA H. Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis [J]. Adv. Synth. Catal., 2006, 348: 1391-1412.
    [2] WIGHT A P, DAVIS M E. Design and preparation of organic?inorganic hybrid catalysts [J]. Chem. Rev., 2002, 102: 3589-3614.
    [3] CHE S, GARCIA-BENNET A E, YOKOI T, SAKAMOTO K, KUNIEDA H, TERASAKI O, TATSUMI T T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nature Mater., 2003, 2: 801-805.
    [4] GAO C, SAKAMOTO Y, SAKAMOTO K, TERASAKI O, CHE S. Synthesis and characterisation of mesoporous silica AMS-10 with a novel biconttinuous cubic Pn-3m symmetry [J]. Angew. Chem. Int. Ed., 2006, 45: 4295-4298.
    [5] GARCIA-BENNET A E, KUPFERSCHMIDT N, SAKAMOTO Y, CHE S, TERASAKI O. Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants [J]. Angew. Chem. Int. Ed., 2005, 44: 5317-5322.
    [6] YIU H H P, WRIGHT P A, BOTTING N P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. J. Mol. Catal. B, 2001, 15: 81-92.
    [7] CHONG A S M, ZHAO X S, KUSTEDJO A T, QIAO S Z. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis [J]. Micropor. Mesopor. Mater., 2004, 72: 33-42.
    [8] WANG X, TSENG Y H, CHAN J C C, CHENG S. Direct synthesis of highly ordered large-pore functionalized mesoporous SBA-15 silica with methylaminopropyl groups and its catalytic reactivity in flavanone synthesis [J]. Micropor. Mesopor. Mater., 2005, 85: 241-251.
    [9] DAS D, LEE J F, CHENG S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups [J]. J. Catal., 2004, 223: 152-160.
    [10] YANG Q H, LIU J, YANG J, KAPOOR M P, INAGAKI S, LI C. Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas [J]. J. Catal., 2004, 228: 265-272.
    [11] HUH S, CHEN H T, WIENCH J W, PRUSKI M, LIN V S Y. Controlling the selectivity of competitive nitroaldol condensation by using a bifunctionalized mesoporous silica nanosphere-based catalytic system [J]. J. Am. Chem. Soc., 2004, 126: 1010-1011.
    [12] HUH S, CHEN H T, WIENCH J W, PRUSKI M, LIN V S Y. Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres [J]. Angew. Chem. Int. Ed., 2005, 44: 1826-1830.
    [13] BASS J D, SOLOVYOV A, PASCALL A J, KATZ A. Acid-base bifunctional and dielectric outer-sphere effects in heterogeneous catalysis: a comparative investigation of model primary amine catalysts [J]. J. Am. Chem. Soc., 2006, 128 : 3737-3747.
    [14] GELMAN F, BLUM J, AVNIR D. Acids and bases in one pot while avoiding their mutual destruction [J]. Angew. Chem. Int. Ed., 2001, 40: 3647–3649.
    [15] ALAUZUN J, MEHDI A, REYE C, CORRIU J P. Mesoporous materials with an acidic framework and basic pores: a successful cohabitation [J]. J. Am. Chem. Soc., 2006, 128: 8718-8719.
    [16] ZEIDAN R K, DAVIS M E. The effect of acid–base pairing on catalysis: anefficient acid–base functionalized catalyst for aldol condensation [J]. J. Catal., 2007, 247: 379-382.
    [17] ZEIDAN R K, HWANG S J, DAVIS M E. Multifunctional heterogeneous catalysts: SBA-15-Containing primary amines and sulfonic acids [J]. Angew. Chem. Int. Ed., 2006, 45: 6332-6335.
    [18] CHONG A S M, ZHAO X S. Functionalization of SBA-15 with APTES and characterization of functionalized materials [J]. J. Phys. Chem. B, 2003, 107: 12650-12657.
    [19] BASS J D, KATZ A. Thermolytic synthesis of imprinted amines in bulk silica [J]. Chem. Mater., 2003, 15: 2757-2763.
    [20] MEHDI A, REYE C, BRANDE S, GUILARD R, CORRIU R J P. Synthesis of large-pore ordered mesoporous silicas containing aminopropyl groups [J]. New J. Chem., 2005, 29: 965–968.
    [21] ZHAO X S, LU G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study [J]. J. Phys. Chem. B, 1998, 102: 1556-1561.
    [22] IGARASHI N, HASHIMOTO K, TATSUMI T J. Studies on the structural stability of mesoporous molecular sieves organically functionalized by a direct method [J]. J. Mater. Chem., 2002, 12: 3631-3636.
    [23] JUAN F, HITZKY E R. Selective functionalisation of mesoporous silica [J]. Adv. Mater. 2000, 12: 430-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700