磁性等纳米材料的制备与分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料在药物靶向、磁分离、类酶、生物传感等领域有着重要的应用价值。荧光贵金属簇材料由于其独特的光学性能,在成像、传感等领域也有着广泛的应用前景。发展制备这些材料的新方法、新技术,研究这些材料不同微纳结构对性质的影响,不仅有重要的理论价值,而且对生命分析领域的快速发展具有重要现实意义。
     在本论文工作中,我们以四氧化三铁纳米材料及荧光贵金属簇等材料为研究主体,以溶剂热、微波、超声等液相合成策略为手段,从探索材料的结构、表面性质与其生物性能的关系出发。同时针对生命分析应用中的新要求,结合纳米材料的表面化学,制备/组装了适合要求的多元复合新材料。
     本论文研究工作主要包括以下几方面的内容:
     第二章,利用溶剂热反应过程中的水解、醇解以及熟化过程,设计了一种无模板合成四氧化三铁纳米空心球的反应途径,运用多种手段对该空心结构进行了表征。在此基础上,利用其空心结构和磁性特征,以罗丹明6G为模拟药物进行了负载和释放的研究,展现了该磁性空心结构在药物靶向和控制释放领域的应用前景。
     第三章,结合微波技术,成功合成出兼具超顺磁性质、强磁响应能力以及良好生物相容性的四氧化三铁纳米簇状结构。通过场发射扫描电子显微镜,透射电子显微镜,X射线光电子能谱,傅立叶变换红外光谱,热重和磁性分析,细胞毒性实验等方法对多酸修饰Fe3O4超顺磁性复合物进行了形貌、结构、组成、性质的研究。材料尺寸可随反应体系中FeCl3量的不同在100-400nm之间调节。材料表出良好的磁性质,生物相容性和分散性。研究结果表明羧基的修饰不仅是其独特簇状结构的主导因素,而且对优化材料的表面性质起着至关重要的作用。
     第四章,高指数晶面对催化活性的影响已经得到广泛关注。我们结合近期四氧化三铁类酶活性的发现,利用溶剂热方法,通过选择合适的反应条件,控制合成了不同结构、暴露不同晶面的四氧化三铁纳米材料。以TMB和H202为底物对类酶活性进行了比较研究,结果表明纳米类酶活性主要受晶粒尺寸以及晶面活性的影响。该研究对纳米类酶在生物催化和生物技术领域有重要的理论意义。
     第五章,通过微波辅助溶剂热反应以蔗糖为包覆原料制备了四氧化三铁为核、含碳多聚糖为壳层的核壳纳米结构,并结合层层组装技术,实现了贵金属纳米颗粒在其表面的组装。实现了纳米复合结构各组分性质的组装,该三元复合纳米材料兼具了核的磁性,壳的稳定性,以及贵金属的独特性质。我们以组装纳米金的复合材料为研究对象进行了血红蛋白的负载,利用材料的独特结构及生物相容性,在电极表面实现蛋白质的快速直接电化学。
     第六章,以Cd(OH)Cl纳米棒为牺牲模板成功地合成了CdSeTe纳米管。纳米管的尺寸可以通过调节所用模板的尺寸来控制,产物中Se/Te元素比例也可以通过改变实验条件调整。随后,利用超声辅助氧化还原在纳米管表面成功组装了金纳米颗粒,通过XRD、TEM、SEM等手段对产物的组成、结构进行了表征。该方法是一个制备合金纳米管的通用方法。该材料三维结构及纳米金修饰能够促进Hb和电极表面之间的直接电子转移。所组装的生物传感器对2μmol L-1到200μmol L-1浓度范围内过氧化氢有着良好的响应。
     第七章,利用微波技术,建立了一种水溶性荧光银纳米簇的快速、绿色合成新方法。该合成简单快速,只需70秒即可完成。所制得的水溶性荧光银纳米簇在510nm处激发可以在575nm左右有强的橙红色荧光,展现了良好的光学性能,有望用于传感、成像、生物标记领域。在随后的研究中,我们利用三价铬离子对荧光的淬灭作用,实现了三价铬离子的高灵敏、高选择性的快速检测,检测限为28 nmol L-1。此外,该合成策略也有望用于其他贵金属荧光纳米簇的制备。
Magnetic nanomaterials have great potentials in the field of targeted delivery, bioseparation, artificial enzymes and biosensor applications. Meanwhile, noble metal fluorescent nanoclusters have also been widely used in the filed of imaging and sensing. Developing new synthetic strategies for these nanomaterials and exploring the effect of structure on properties are very important to both fundamental research and practical application.
     Based on the solvothermal and microwave technology, this dissertation presents a systematic research on the relationship between the structure, surface properties and bioapplication of magnetic and fluorescent metal nanoclusters materials. And several nanostructures and nanocomposites were purposeful synthesized based on application requirements in the field of life science. The main results were summarized as follows:
     Chapter 2, Based on oriented attachment and subsequent local Ostwald ripening in the solvothermal process. Monodispersed Fe3O4 nanospheres with hollow interior structures were fabricated by a facile one-pot route. The fabrication process is very simple with no templates or surfactants involved. Field-emission Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray Photoelectron Spectroscopy, and Superconducting Quantum Interference Device magnetometer were used to characterize the morphologies, structures and properties of the hollow magnetic nanospheres. In addition, the experiments of the hollow nanospheres decorated with polyacrylic acids as drug carriers and Rhodamine 6G as a model drug, revealed pH-or salt-responsive release profiles, thus demonstrating the potential of these nanostructures in biomedical applications.
     Chapter 3, A microwave-hydrothermal method was developed for the facile synthesis of polyacid-conjugated Fe3O4 superparamagnetic hybrid. Field-emission scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer, Magnetic measurement and Thermogravimetric, and Cytotoxicity assay were used to characterize the morphologies, structures, compositions and properties of the polyacid-conjugated Fe3O4 superparamagnetic hybrid. The hybrid is a kind of secondary structure which is composed of nanograins and exhibits excellent magnetic properties and good biocompatibility. The hybrid size can be adjusted from about 100 to 400 nm by varying the amount of FeCl3 in the system. Furthermore, the exposure of uncoordinated carboxylate groups on the hybrid surface plays an important role not only in the formation of structure but also on the excellent surface properties.
     Chapter 4, The catalytic activity of nanocrystal catalysts depends strongly on their structures. In this chapter, we report three distinct structures of Fe3O4 nanocrystals, including cluster spheres, octahedra, and triangular plates, prepared by the similar hydrothermal procedure. Additionally, the three Fe3O4 nanostructures were used as peroxidase nanomimetics and the correlation between the catalytic activities and the structures was firstly explored by using TMB and H2O2 as peroxidase substrates. The results showed that the peroxidase-like activities of the Fe3O4 nanocrystals were structure-dependent and followed the order of cluster spheres> triangular plates> octahedra, which was closely related to their preferential exposure of catalytically active iron atoms.
     Chapter 5, Microwave-hydrothermal method was developed for the facile synthesis of core/shell nanostructures composed of Fe3O4 cores and carbonaceous shells. Noble metal nanoparticle can be loading on the surface of core/shell nanostructures through electrostatic interaction. The resulting material integrated the benefits of noble metal and magnetic properties and was expected to offer a promising template for protein immobilization and biosensor fabrication because of its satisfying biocompatibility and improved properties. The immobilized Hb exhibited fast direct electron transfer.
     Chapter 6, CdSeTe-Au nanotubes have been first successfully prepared based on sacrificial template and sonochemical techniques. The Element ratio can be tailored by controlling the experiment conditions. The products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectrometry. This is a general method for the synthesis of nanocomposites hollow structures. Due to their unique properties, the application in biosensing was investigated. The immobilized Hb in the surface of nanotubes exhibited fast direct electron transfer and showed a good electrocatalytic performance to H2O2 with high sensitivity, wide linear range from 2μmol L"1 to 200μmol L-1.
     Chapter 7, A rapid microwave-assisted green method was proposed firstly for facile synthesis of highly fluorescent Ag nanoclusters in aqueous solution. The reaction time is greatly reduced. The obtained Ag nanoclusters have favorable monodispersity and good stability and exhibit bright and photostable emission excited by visible light. The fluorescent Ag nanoclusters can be used as a fluorescence probe for Cr3+sensing. The proposed detection protocol provides high sensitivity, with a detection limit of 28 nmol L-1, and excellent selectivity. In addition, the microwave-assisted green method is expected to be extended to the synthesis of other fluorescent metal nanoclusters.
引文
1张立德;牟季美.纳米材料和纳米结构 科学出版社.2001.
    2 Stix G. et al. Scientific American (中文版).2001,12,18.
    3 Webb, R. A. Phys. Rev. Lett.1985,54,2696.
    4 Kroto, H. W. Nature 1985,318,162.
    5 Kubo, R. J. Phys. Soc.1962,17,56.
    6 Leon, R.; Petroff, P. M.; Leonard, D.; Fafard, S. Science 1995,267,1966.
    7 Ball, P.; Garwin, L. Nature 1992,355,761.
    8 Awschalom, D. D.; McCord, M. A.; Grinstein, G. Phys. Rev. Lett.1990,65,783.
    9张立德;牟季美.物理1992,21,167.
    10 Zhang, L. D.; Mou, J. M. Science for Nanocrystals, Liaoning:Liaoning Science and Technology Press,1994.
    11 Rabenau, A. Angew. Chem. int. Ed.,1985,24,1026.
    12 Liu, S.; Xing, R.; Lu, F.; Rana, R. K.; Zhu, J. J. J. Phys. Chem. C.2009,113,21042.
    13 Wang, X.; Zhuang, J.; Peng Q.; Li, Y. Nature 2005,437,121.
    14 Gedye, R.; Smith, F.; Westaway, K.; Humera, A.; Baldisera, L.; Laberge, L.; Rousell, L. Tetrahedron Lett.1986,27,279.
    15 Roberts, B. A.; Strauss, C. R. Acc. Chem. Res.2005,38,653.
    16 Song, Q.; Ai, X.; Topuria, T.; Rice, P. M.; Alharbi, F. H.; Bagabas, A.; Bahattab, M.; Bass, J. D. Kim, H. C.; Scott, J. C.; Miller, R. D. Chem. Commun.2010,46,4971.
    17 Zhu, J. J.; Palchik, O.; Chen, S.; Gedanken, A. J. Phys. Chem. B.2000,104,7344.
    18 Baruwati, B.; Polshettiwar, V.; Varma, R. S. Green Chem.2009,11,926.
    19 Pal, A.; Shah, S.; Devi, S. Mater. Chem. Phys.2009,114,530.
    20 Zhu, Y. J.; Wang, W. W.; Qi, R. J. et al. Angew. Chem. Int. Ed. 2004,43,1410.
    21 Wang, W. W.; Zhu, Y. J.; Mater. Res. Bull.2005,40,1929.
    22 Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Chem. Phys. Chem.2006,7,296.
    23 Roberts, B. A.; Strauss, C. R. Acc. Chem. Res.2005,38,653.
    24 Stuerga, D.; Gaillard, P. J. Microwave Power Electromagn. Energy.1996,31,87.
    25 Stuerga, D.; Gaillard, P. J. Microwave Power Electromagn. Energy.1996,31,101.
    26张寒畸;金铁汉.微波化学,大学化学 2001,16,1.
    27 Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res.2002,35,717.
    28 Schanche, J. S. Mol. Divers.2003,7(2-4),293.
    29 Gizdavic-Nikolaidis, M. R.; Stanisavljev, D. R.; Easteal, A. J.; Zujovic, Z. D. Macromol.
    Rapid Commun.2010,31,657.
    30 Richards, W. T.; Loomis, A. L. J. Am. Chem. Soc.1927,49,3086.
    31 Suslick, K. S.; Price, G. J. Annu. Rev. Mater. Sci.1999,29,295.
    32 Suslick, K.S.; Choe, S. B.; Cichowlas, A. A. et al. Nature 1991,353,414.
    33 Suslick, K. S. Science.1990,247,1439.
    34 Hiller, R.; Putterman, S. J.; Barber, B. P. Phys. Rev. Lett.1992,69,1182.
    35 Suslick, K. S.; Price, G. J. Annu. Rev. Mater. Sci.1999,29,295.
    36 Harpenness, R.; Palchik, O.; Gedanken, A. et al. Chem. Mater.2002,14,2094.
    37 Qiu, X. F.; Burda, C.; Fu, R. L. et al. J. Am. Chem. Soc.2004,126,16276.
    38 Zhu, J. J.; Xu, S.; Wang, H. et al. Adv. Mater.2003,15,156.
    39 Miao, J. J.; Fu, R. L.; Zhu, J. M. et al. Chem. Commun.2006,28,3013.
    40 Shen, Q. M.; Jiang, L, P.; Miao, J. J.; Hou, W. H.; Zhu, J. J. Chem. Commun.2008,1683.
    41 Miao, J. J.; Jie, G. F.;Chen, Y. P.; Zhang, L.; Jiang, L. P.; Zhu, J. J. Chem. Commun.2008, 3762.
    42 Hoar, T. P.; Schulman, J. H. Nature 1943,152,102.
    43薛宽宏;包建春.纳米化学 化学工业出版社 2006.
    44 Filankembo, M. P. Pileni. Appl. Surf. Sci.2000,164,260.
    45 Ganguli, A. K.; Ganguly, A.; Vaidya, S. Chem. Soc. Rev.2010,39,474.
    46 Quintela, M. A.; Tojo, C.; Blanco, M. C.; Garca Rio, L. Leis, J. R. Curr. Opin. Colloid Interface Sci.2004,9,264.
    47郑忠.胶体科学导论 高等教育出版社 SBN7040010488/0.658.
    48 Helmnez, PualC著,周祖康;马季铭译.胶体与表面化学原理北京大学出版社ISBN13209124.
    49孙小明.低维功能纳米材料的液相合成、表征与性能研究 清华大学 2005,5.
    50 Peng, X.; Manna, L.; Yang, W. et al. Nature 2000,404,59.
    51 Talapin, D. V.; Rogach, A. L.; Hasse, M. et al. J. Phys. Chem. B 2001,105,12278.
    52 Kumar, S.; Nann, T. Small 2006,2,316.
    53 Mullin, J.W. Crystallization,4th Ed. Butterworth Heinemann, Boston,2001.
    54 Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc.2000,122,12700.
    55 Penn, R. L.; Bannfield, J. F. Am. Mineral.1998,83,1077.
    56 Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert T. T.; Penn, R. L. Science 2000,289,751.
    57 AliVisatos, A. P. Science.2000,289,736.
    58 Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Ed.2002,41,1188.
    59 Ostwald, W. Z. Phys. Chem.1897,22,289.
    60 Ostwald, W. Z. Phys. Chem.1900,34,495.
    61 Yang, L.; Xing, R.; Shen, Q.; Jiang, K.; Ye, F.; Wang J.; Ren, Q. J. Phys. Chem. B 2006, 110,10534.
    62 Bao, J.; Liang, Y.; Xu, Z.; Si, L. Adv. Mater.2003,15,1832.
    63 Liu, B.; Zeng H. C. Small 2005,1,566.
    64 Smigelskas, A.D.; Kirkendall, E.O. Trans. AIME.1947,171,130.
    65 Yin, Y. R.; Rioux, M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004,304,711.
    66 Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gsele, U. Nano Lett.2007,7,993.
    67 Sheng, P.; Sun, S. H. Angew. Chem. Int. Ed.2007,46,4155.
    68 Niederberger, M.; Colfen, H. PCCP 2006,8,3271.
    69 Colfen, H.; Mann, S. Angew. Chem. Int. Ed.2003,42,2350.
    70何天百;胡汉杰.功能高分子与新技术 北京 化学工业出版社 2001.
    71 Lu, A. H.; Ferdi Schuth, E. L. S. Angew. Chem. Int. Ed.2007,46,1222.
    72 Leslie-Pelecky, D. L.; Pieke, R. D. Chem. Mater.1996,8,1770.
    73 Walker, M. M.; Diebel, C. E.; Haugh, C. V.; Pankhurst, P. M.; Montgomery, J. C.; Green, C.R. Nature 1991,390,371.
    74 Morales, P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J. Chem. Mater.1999, 11,3058.
    75 Jun,Y. M.; Huh, J. S.; Choi, J. H.; Lee, H. T.; Song, S. J.; Kim, S.; Yoon, K. S.; Kim, J. S.; Shin, J. S.; Seo, J. W.; Cheon, J. J. Am. Chem. Soc.2005,127,5732.
    76 Jun, Y. W.; Seo, J. W.; Cheon, J. Acc. Chem. Res.2008,41,179.
    77 Suginmoto, T.; Matijevic, E. J. Colloid Interface Sci.1980,74,227.
    78 Schwertmann, U.; Cornell, R. M. WILEY-VCH, New York,2000,11.
    79 Latham, A. H.; Williams, M. E. Acc. Chem. Res.2008,41,411.
    80季俊红;季生福;杨伟;李成岳.化学进展 2010,08,1566.
    81 Molday, R.; Yen, S.; Rembaurn, A. Nature 1977,266,437.
    82盖青青;屈锋;梅芳;张玉奎.化学通报 2010,2,99.
    83 Gu, H. W.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B. J. Am. Chem. Soc.2003,125, 15702.
    84 Ouyang, R. Z.; Lei, J. P.; Ju, H. X. Nanotechnology 2010,21,9.
    85 Dobson J. Drug Dev. Res.2006,67,55.
    86 Widder, K. J.; Senyei, A. E.; Scarpeni, D.G. Pre. Soc. Exp. Biol. Med.1978,158,141.
    87 Widder, K. J.; Morris, R.M.; Poore, G. A. J. Cancer Clin. Oncol.1983,19(1),135.
    88 Yanase, M.; Shinkai, M.; Honda, H. et al. Jpn. J. Cancer Res.1998,89,463.
    89 Viroonchatapan, E.; Ueno, M.; Sato, H. et al. Pharm. Res.1995,12,1176.
    90 Alexiou, C.; Schmid, R.; Jurgons, R.; Kremer, M.; Wanner, G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold, W.; Parak, F. Eur. Biophys. J.2006,55,446.
    91 Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi F.; Zink, J. I. ACS Nano 2008,2,889.
    92 Matsunaga, T.; Kawasaki, M.; Yu, X. et al. Anal.Chem.1996,68,3551.
    93 Huang, S. H.; Liao, M. H.; Chen, D. H. Biotechnol. Prog.2003,19,1095.
    94 Dyal, A.; Loos, K.; Noto, M. et al. J. Am. Chem. Soc.2003,125,1684.
    95 Nelson, D.L.; Cox, M. M.; Lehninger Principles of Biochemistry,4th ed. W.H.Freeman & Co Ltd. New York,2005, Chapter 6.
    96 Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Nat. Nano 2007,2,577.
    97 Perez, J. M. Nat. Nano 2007,2,535.
    98 Wei, H.; Wang, E. Anal.Chem.2008,80,2250.
    99 Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Angew. Chem. Int. Ed.2009,48, 2308.
    100 Dai, Z.; Liu, S.; Bao J.; Ju, H. Chem. Eur. J.2009,15,4321.
    101 Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Chem. Eur. J.2010, 16,3617.
    102 Weissleder, R.; Bogdanov, A.; Neuwelt, E.; Adv. Drug Deliver Rev.1995,16,321.
    103 Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; Van de Kaa, C. H.; Rosette, J. de la; Weissleder, R. New England Journal of Medicine 2003,348, 2491.
    104 Gao, J.; Liang, G.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X.; Wu, E. X.; Xu, B. J. Amer. Chem. Soc.2008,130,11828.
    105 Chemla, Y R.; Grossman, H. L., Poon, Y. et al. P Natl Acad Sci USA 2000,97(26), 14268.
    106 Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Science 2003,301,1884.
    107 Fan, A.; Lau, C.; Lu, J. Anal Chem,2005,77,3238.
    108陈庆梅;宗小林.微纳电子技术 2009,46,340.
    109 Gilchrist, R. K. et al. Ann.Surg.1957,146,596.
    110 Gordon, R.T. et al. Medial Hypothesis 1979,5,83.
    111 Chan, D. C. F. et al. J. Magn. Magn. Mater.1993,122,367.
    112 Hilger, I. et al. Investigative Radiology 2000,35,170.
    113 Kullberg, M.; Mann, K.; Owens, J. L. Medical Hypotheses 2005,64,468.
    114 Hergt, R. et al. IEEE Trans. Magn.1998,34,3745.
    115 Babincov, M. et al. J. Magn. Magn. Mater.2001,225,109.
    116 Jordan, A.; Scholz, R.; Wust, P. et al. J. Magn. Magn. Mater.1999,201,413.
    1 Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Angew. Chem. Int. Ed. 2005, 44,2782.
    2 Lu, A. H.; Salabas, E. L.; Schuth, F. Angew. Chem. Int. Ed.2007,46,1222.
    3 Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Nat. Mater.2004, 3,891.
    4 Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Angew. Chem. Int. Ed.2007, 46,4342.
    5 Ge, J. P.; Hu, Y. X.; Yin, Y. D. Angew. Chem. Int. Ed.2007,46,7428.
    6 Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Science 2003,301,1884.
    7 Gao, L.; Wu, J.; Lyle, S.; Zehr, K.; Cao, L.; Gao, D. J. Phys. Chem. C 2008,112,17357.
    8 Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Nat. Nanotechnol.2007,2,577.
    9 Fried, T.; Shemer, G.; Markovich, G. Adv. Mater.2001,13,1158.
    10 Wang, L.; Bao, J.; Wang, L.; Zhang, F.; Li, Y D. Chem. Eur. J.2006,12,6341.
    11 Arruebo, M.; Fernandez-Pacheco, R.; Ibarra, M. R.; Santamaria, J. Nano Today 2007,2, 22.
    12 Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. J. Am. Chem. Soc.2004,126,273.
    13 Lee, Y.; Lee, J.; Bae, C. J.; Park, J. G.; Noh, H. J.; Park, J. H.; Hyeon, T. Adv. Funct. Mater. 2005,15,503.
    14 Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Nature 2005,437,121.
    15 Wang, L.; Yang, Z.; Zhang, Y.; Wang, L. J. Phys. Chem. C 2009,113,3955.
    16 Peng, S.; Sun, S. Angew. Chem. Int. Ed.2007,46,4155.
    17 Kim, D.; Park, J.; An, K.; Yang, N.-K.; Park, J.-G.; Hyeon, T. J. Am. Chem. Soc.2007,129, 5812.
    18 Jia, B.; Gao, L. J. Phys. Chem. C 2008,112,666.
    19 Hu, P.; Yu, L.; Zuo, A.; Guo, C.; Yuan, F. J. Phys. Chem. C 2009,113,900.
    20 Cong, Y.; Wang, G.; Xiong, M.; Huang, Y.; Hong, Z.; Wang, D.; Li, J.; Li, L. Langmuir 2008,24,6624.
    21 Lee, D.; Cohen, R. E.; Rubner, M. F. Langmuir 2007,23,123.
    22 Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater.2001,13, 109.
    23 Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater.2008,20,3987
    24 Jagadeesan, D.; Mansoori, U.; Mandal, P.; Sundaresan, A.; Eswaramoorthy, M. Angew. Chem. Int. Ed.2008,120,7799.
    25 Yu, D.; Sun, X.; Zou, J.; Wang, Z.; Wang, F.; Tang, K. J. Phys. Chem. B 2006,110,21667.
    26 Cao, S. W.; Zhu, Y.-J.; Ma, M.-Y.; Li, L.; Zhang, L. J. Phys. Chem. C2008,112,1851.
    27 Wang, Y.; Angelatos, A. S.; Dunstan, D. E.; Caruso, F. Macromolecules 2007,40,7594.
    28 Angelatos, A. S.; Wang, Y.; Caruso, F. Langmuir 2008,24,4224.
    29 Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C. Nano Lett.2007,7,3065.
    30 Park, H.; Yang, J.; Seo, S.; Kim, K.; Suh, J.; Kim, D.; Haam, S.; Yoo, K. Small 2008,4, 192.
    31 Yu, M.; Jeong, Y.; Park, J.; Park, S.; Kim, J.; Min, J.; Kim, K.; Jon, S. Angew. Chem. Int. Ed.2008,47,5362.
    32 Wang, Y; Caruso, F. Chem. Mater.2005,17,953.
    33 Latham, A. H.; Wilson, M. J.; Schiffer, P.; Williams, M. E. J. Am. Chem. Soc.2006,128, 12632.
    34 Narayanaswamy, A.; Xu, H.; Pradhan, N.; Peng, X. Angew. Chem. Int. Ed.2006,45,5361.
    35 Descostes, M.; Merrier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M. Appl. Surf. Sci. 2000,165,288.
    36 Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Chem. Rev.2008,108,2064.
    37 Lou, X. W.; Wang, Y.; Yuan, C.; Lee, L.; Archer, L. A. Adv. Mater.2006,18,2325.
    38 Karmakar, S.; Chakravorty, A. Inorg. Chem.1996,35,1935.
    39 Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X. J. Am. Chem. Soc.2007,129, 10937.
    40 Chen, Y.; Johnson, E.; Peng, X. J. Am. Chem. Soc.2007,129,10937.
    41 Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y. Angew. Chem. Int. Ed. 2005,117,5213.
    1 Grancharov, S. G.; Zeng, H.; Sun, S. H. et al. J. Phys. Chem. B 2005,109,13030.
    2 Robinson, D. B.; Persson, H. H. J.; Zeng, H. et al. Langmuir 2005,21,3096.
    3 Sun, S. H.; Zeng, H.; Robinson, D. B. et al. J. Am. Chem. Soc.2004,126,273.
    4 Zeng, H.; Li, J.; Wang, Z. L. et al. Nano Lett.2004,4,187.
    5 Zeng, H.; Rice, P. M.; Wang, S. X. et al. J. Am. Chem. Soc.2004,126,11458.
    6 Sun, S. H.; Zeng, H. J. Am. Chem. Soc.2002,124,8204.
    7 Sun, S. H.; Murray, C. B.; Weller, D.; Folks L.; Moser, A. Science 2000,287,1989.
    8 Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. J. Am. Chem. Soc.2004,126,9938.
    9 Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H. J. Am. Chem. Soc. 2008,130,11606.
    10 Yang, C. H.; Huang, K. S.; Lin, Y S.; Lu, K.; Tzeng, C. C.; Wang, E. C.; Lin, C. H.; Hsu, W. Y.; Chang, J. Y Lab on Chip 2009,9,961.
    11 Arruebo, M.; Fernandez-Pacheco, R.; Ibarra M. R.; Santamaria, J. Nano Today 2007,2, 22.
    12 Jia, X.; Chen, D.; Jiao, X.; Zhai, S. Chem. Commun.2009,968.
    13 Ge, J. P.; Biasini, Y X. H. M.; Dong, C. L.; Guo, J. H.; Beyermann, W. P.; Yin, Y. D. Chem. Eur. J.2007,13,7153.
    14 Lu, A. H.; Salabas, E. L.; Schuth, F. Angew. Chem. Int. Ed.2007,46,1222.
    15 Kwon, S. G.; Hyeon, T. Acc. Chem. Res.2008,41,1696.
    16 Bae, C. J.; Angappane, S.; Park, J. G.; Lee, Y.; Lee, J.; An K.; Hyeon, T. Appl. Phys. Lett. 2007,91,102502.
    17 Li, X. H.; Zhang, D. H.; Chen, J. S. J. Am. Chem. Soc.2006,128,8382.
    18 Li, Z.; Tan, B.; Allix, M.; Cooper, A. I.; Rosseinsky, M. J. Small 2008,4,231.
    19 Zhang, L.; Qiao, S.; Jin, Y.; Yang, H.; Budihartono, S.; Stahr, F.; Yan, Z.; Wang, X.; Hao Z.; Lu, G. Q. Adv. Funct. Mater.2008,18,3203.
    20 Liu, J.; Sun, Z.; Deng, Y.; Zou, Y.; Li, C.; Guo, X.; Xiong, L.; Gao, Y.; Li, F.; Zhao, D. Y Angew. Chem. Int. Ed.,2009,48,5875.
    21 Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Chem. Rev.,2008,108,2064.
    22 Liu, J.; Sun, Z.; Deng, Y.; Zou, Y.; Li, C.; Guo, X.; Xiong, L.; Gao, Y.; Li, F.; Zhao, D. Angew. Chem. Int. Ed.2009,48,5875.
    23 Latham, A. H.; Williams, M. E. Acc. Chem. Res.2008,41,411.
    24 Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y Angew. Chem. Int. Ed.2007,46, 4342.
    25 Zhu, J. J.; Palchik, O.; Chen, S.; Gedanken, A. J. Phys. Chem. C 2000,104,7344.
    26 Liao, X. H.; Zhu, J. M.; Zhu, J. J.; Xu, J. Z.; Chen, H. Y Chem. Commun.,2001,937.
    27 Zhu, D.; Jiang, X.; Zhao, C.; Sun, X. L.; Zhang, J. R.; Zhu, J. J. Chem. Commun.2010, 5226.
    28 Wang, H.; Zhu, J. M.; Zhu, J. J.; Yuan, L. M.; Chen, H. Y Langmuir 2003,19,10993.
    29 Wang, H.; Zhu, J. J.; Zhu, J. M.; Liao, X. H.; Xu, S.; Ding, T.; Chen, H. Y. Phys. Chem. Chem. Phys.2002,4,3794.
    30 Zhou, B.; Zhu, J. J. Nanotech.2009,20,6.
    31 Yang, L.; Xing, R. M; Shen, Q. M.; Jiang, K.; Ye, F.; Wang, J. Y.; Ren, Q. S. J. Phys. Chem. B 2006,110,10534.
    32 Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M. Appl. Surf. Sci. 2000,165,288.
    33 Liu, S. H.; Xing, R. M.; Lu, F.; Rana, R. K.; Zhu, J. J. J. Phys. Chem. C 2009,113,21042.
    34 Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T. Chem. Mater.2004,16, 3489.
    35 Woo, K.; Hong, J.; Choi, S.; Lee, H. W.; Ahn, J. P.; Kim, C. S.; Lee, S. W. Chem. Mater. 2004,76,2814.
    36 N. Bao, L. Shen, Y Wang, P. Padhan and A. Gupta, J. Am. Chem. Soc,2007,129,12374.
    37 Hui, C.; Shen, C.; Yang, T.; Bao, L.; Tian, J.; Ding, H.; Li, C.; Gao, H. J. J. Phys. Chem. C 2008,112,11336.
    38 Chen, W. J.; Tsai, P. J.; Chen, Y. C. Small 2008,4,485.
    39 Hirsch, R.; Katz, E.; Willner, I. J. Am. Chem. Soc.2000,122,12053.
    40 Dyal, A.; Loos, K.; Noto, M.; Chang, S. W.; Spagnoli, C.; Shafi, K. V. P. M.; Ulman, A.; Cowman, M.; Gross, R. A. J. Am. Chem. Soc.2003,125,1684.
    1 Gao,L.;Zhuang,J.;Nie,L.;Zhang,J.;Zhang,Y;Gu,N.;Wng,T.;Feng,J.;Yang,D.; Perrett,S.;Yan,X.Nar Nano 2007,2,577.
    2 Perez,J.M.Nat Nano 2007,2,535.
    3 Banholzer,M.J.;Millstone,J.E.;Qin,L.,+Mirkin,C.A.Chemical Society Reviews 2008, 37,885.
    4 Zhang,L.;Zhang,Q.;Li,J.H.Adv.Funct.Mater.2007,17,1958.
    5 Wei,H.;Wang,E.Anal.Chem.2008,80,2250.
    6 Nath,S.;Kaittanis,C.;Ramachandran,V;Dalal,N.S.;Perez,J.M.Chemistry of Materials 2009,21,1761.
    7 Yu, F.; Huang, Y.; Cole, A. J.; Yang, V. C. Biomaterials 2009,30,4716.
    8 Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Chem. Eur. J.2010,16, 3617.
    9 Chen, Z. Y.; Xu, L.; Liang, Y.; Zhao, M. P. Adv. Mater.2010,22,1488.
    10 Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Angew. Chem. Int. Ed.2009,48, 2308.
    11 Fan, H. M.; Yi, J. B.; Yang, Y.; Kho, K. W.; Tan, H. R.; Shen, Z. X.; Ding, J.; Sun, X. W.; Olivo, M. C.; Feng, Y P. ACS Nano 2009,3,2798.
    12 Sun, Y.; Xia, Y Science 2002,298,2176.
    13 Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y. Science 2007,316,732.
    14 Zeng, Y.; Hao, R.; Xing, B.; Hou, Y L.; Xu, Z. Chem. Commun.2010,3920.
    15 Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Nature 2009,458,746.
    16 Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. J. Am. Chem. Soc.2008,131, 454.
    17 Lee, Y.; Loew, A.; Sun, S. H. Chem. Mater.2010,22,755.
    18 Xu, T.; Zhou, X.; Jiang, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Cryst. Growth Des.2008,9, 192.
    19 Han, X.; Jin, M.; Xie, S.; Kuang, Q.; Jiang, Z.; Jiang, Y.; Xie, Z.; Zheng, L. Angew. Chem.2009,121,9344.
    20 Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc.2009,131,4078.
    21 Fan, D.; Thomas, P. J.; O'Brien, P. J. Am. Chem. Soc.2008,130,10892.
    22 Hu, L. H.; Peng, Q.; Li, Y D. J. Am. Chem. Soc.2008,130,16136.
    23 Xie, T.; Gong, M.; Niu, Z.; Li, S.; Yan, X.; Li, Y D. Nano Res.2010,3,174.
    24 Narayanan, R.; E1-Sayed, M. A. J. Phys. Chem. B 2005,109,12663.
    25 Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G A.; Yang, P. Angew. Chem. 2006,118,7988.
    26 Liu, S.; Xing, R.; Lu, F.; Rana, R. K.; Zhu, J. J. J. Phys. Chem. C 2009,113,21042.
    27 Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y Adv. Funct. Mater.2009, 19,189.
    28 Zhao, L.; Zhang, H.; Xing, Y.; Song, S.; Yu, S.; Shi, W.; Guo, X.; Yang, J.; Lei, Y.; Cao, F. Chem. Mater.2007,20,198.
    29 Wang, Z. L. J. Phys. Chem. B 2000,104,1153.
    30 Zhang, X.; Dong, C.; Zapien, J.; Ismathullakhan, S.; Kang, Z.; Jie, J.; Zhang, X.; Chang, J.; Lee, C. S.; Lee, S. T. Angew. Chem. Int. Ed.2009,48,9121.
    31 Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Adv. Mater.2010,22, 2729.
    32 Hong, X.; Li, J.; Wang, M. J.; Xu, J. J.; Guo, W.; Li, J. H.; Bai, Y. B.; Li, T. J. Chem. Mater.2004,16,4022.
    33 Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. J. Catal.2005,229,206.
    34 Ding, Y.; Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Small 2009,5,2812.
    1 Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Adv. Mater.2010,22,2729.
    2 Gao, J. H.; Zhang, W.; Huang, P. B.; Zhang, B.; Zhang, X. X.; Xu, B. J. Am. Chem. Soc. 2008,130,3710.
    3 Liu, S.; Xing, R.; Lu, F.; Rana, R. K.; Zhu, J. J. J. Phys. Chem. C 2009,113,21042.
    4 Selvaraju, T.; Das, J.; Han, S. W.; Yang, H. Biosens. Bioelectron.2008,23,932.
    5 Selvaraju, T.; Das, J.; Han, S. W.; Yang, H. Biosens. Bioelectron.2008,23,932.
    6 Fang, C. L.; Qian, K.; Zhu, J. H.; Wang, S. B.; Lv, X. X.; Yu, S. H. Nanotechnology 2008, 19,7.
    7 Wu, W.; He, Q. G.; Chen, H.; Tang, J. X.; Nie, L. B. Nanotechnology 2007,18,8.
    8 Wang, L. Y.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I. S.; Engelhard, M. H.; Lin, Y. H.; Kim, N.; Wang, J. Q.; Zhong, C. J. J. Phys. Chem. B 2005,109,21593.
    9 Guo, S.; Dong, S.; Wang, E. Chem. Eur. J.2009,15,2416.
    10 Xu, Z. C.; Hou, Y. L.; Sun, S. H. J. Am. Chem. Soc.2007,129,8698.
    11 Sun, X. M.; Li, Y. D. Angew. Chem. Int. Ed.2004,43,597.
    12 Deng, H. Angew. Chem. Int. Ed.2005,44,2782.
    13孙小明 低维功能纳米材料的液相合成、表征与性能研究 清华大学 2005.
    14 Cui, R. J.; Liu, C.; Shen, J. M.; Gao, D.; Zhu, J. J.; Chen, H. Y. Adv. Funct. Mater.2008, 18,2197.
    15沈清明 几种功能纳米材料的超声电化学合成及其应用 南京大学 2008.
    16 Liu, S.; Xing, R.; Lu, F.; Rana, R. K.; Zhu, J. J. J.Phys. Chem. C,2009,113,21042.
    17 Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M. Appl. Surf. Sci. 2000,165,288.
    18 Zhang, W. J.; Li, G. X. Anal. Sci.2004,20,603.
    19 Dai, Z. H.; Liu, S. Q.; Ju, H. X.; Chen, H. Y. Biosens. Bioeleetron.2004,19,861.
    1 F. Caruso, Adv. Mater.2001,13,11-22.
    2 Miao, J. J.; Jiang, L. P.; Liu, C; Zhu, J. M.; Zhu, J. J., Inorg Chem 2007,46,5673.
    3 Miao, J. J.; Ren, T.; Dong, L.; Zhu, J. J.; Chen, H. Y., Small 2005,1,802.
    4 Caruso, F.; Shi, X. Y.; Caruso, R. A.; Susha, A. Adv. Mater.2001,13,740.
    5 Qi, L. M. J. Li, J. M. Ma, Adv. Mater.2002,14,300.
    6 Liu, B.; Zeng, H. C. Small 2005,1,566.
    7 Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo,;Y. G.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Ed. 2004,43,1540.
    8 Wang, L. Y.; Park, H. Y.; Lim, S.I.i.; Schadt, M. J.; Mott, D.; Luo, J.; Wang, X.; Zhong, C. J. J Mater Chem 2008,18,2629.
    9 Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Nano Today 2007,2,18.
    10 Du, D.; Wang, M. H.; Qin, Y. H.; Lin, Y. H. JMater Chem 2010,20,1532.
    11 Guo, S. J.; Dong, S. J.; Wang, E. K. Adv. Mater.2010,22,1269.
    12 Huang, J. S.; Wang, D. W.; Hou, H. Q.; You, T. Y. Adv. Funct. Mater.2008,18,441.
    13 Cui, R. J.; Huang, H. P.; Yin, Z. Z.; Gao, D.; Zhu, J. J. Biosens. Bioelectron.2008,23, 1666.
    14 Zhu, H. M; Yang, B. F.; Xu, J.; Fu, Z. P.; Wen, M. W.; Guo, T.; Fu, S. Q.; Zuo, J.; Zhang, S. Y. Appl. Catal. B-Environ.2009,90,463.
    15 Yang, Y.; Yang, R. B.; Fan, H. J.; Scholz, R.; Huang, Z. P.; Berger, A.; Qin, Y.; Knez, M.; Gosele, U. Angew. Chem. Int. Ed.2010,49,1442.
    16 Lo, P. K.; Altvater, F.; Sleiman, H. F. J. Am. Chem. Soc.2010,132,10212.
    17 Chang, S.; Singamaneni, S.; Kharlampieva, E.; Young, S. L.; Tsukruk, V. V., Macromolecules 2009,42,5781.
    18 Zhang, J. J.; Liu, Y. G.; Jiang, L. P.; Zhu, J. J., Electrochem. Commun.2008,10,355.
    19 Bao, S. J.; Li, C. M.; Zang, J. F.; Cui, X. Q.; Qiao, Y.; Guo, J. Adv. Funct. Mater.2008, 18,591.
    20 Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Nano Research 2009,2,210.
    21 Xiao, X. L.; Luan, Q. F.; Yao, X.; Zhou, K. B. Biosens. Bioelectron.2009,24,2447-.
    22 Zhang, L.; Zhang, Q.; Li, J. H. Adv. Funct. Mater.2007,17,1958.
    23 Zhang, L.; Zhang, Q.; Lu, X. B.; Li, J. H. Biosens. Bioelectron.2007,23,102.
    24 Yang, J.; Zhang, R. Y.; Xu, Y.; He, P. G.; Fang, Y. Z. Electrochem. Commun.2008,10, 1889.
    25 Chen, X.; Fu, C. L.; Wang, Y.; Yang, W. S.; Evans, D. G. Biosens. Bioelectron.2008,24, 356.
    26 Zhao, H. Y.; Xu, X. X.; Zhang, J. X.; Zheng, W.; Zheng, Y. F. Bioelectrochemistry 2010, 78,124.
    1 Brus, L.E. J. Chem. Phys.1984,80,4403.
    2 Wise, F. W. Acc. Chem. Res.2000,33,773.
    3 Xu, H.; Suslick, K. S. Adv. Mater.2010,22,1078.
    4 Henglein, A. Chem. Phys. Lett.1989,154,473.
    5 Treguer, M.; Rocco, F.; Lelong, G.; Nestour, A. L.; Cardinal, T.; Maali, A.; Lounis, B. Solid State Sci.2005,7,812.
    6 Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. J. Am. Chem. Soc.2004,126,5207.
    7 Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D. Fygenson, D. K. Adv. Mater. 2008,20,279.
    8 Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Science 2001,291,103.
    9 Makarava, N.; Parfenov, A.; Baskakov, I. V. Biophys. J.2005,89,572.
    10 Shen, Z.; Duan, H. W.; Frey, H. Adv. Mater.2007,19,349.
    11 Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Chem. Phys.Chem.2003,4,1101.
    12 Shang, L.; Dong, S. J.; Chem. Commun.2008,1088.
    13 Xu, H.; Suslick, K. S. ACS Nano 2010,4,3209.
    14 Figgitt, M.; Newson, R.; Leslie, I. J.; Fisher, J.; Ingham, E.; Case, C. P. Mutat. Res.-Fundam. Mol. Mech. Mutagen.2010,688,53.
    15 Rudolf, E.; Cervinka, M. Toxicol. Lett.2009,188,236.
    16 Xu, H.; Suslick, K. S. ACS Nano 2010,4,3209.
    17 Shen, Z.; Duan, H.; Frey, H. Adv. Mater.2007,19,349.
    18 Xing, R. M.; Wang, X. Y.; Yan, L. L.; Zhang, C. L.; Yang, Z.; Wang, X. H.; Guo, Z. J. Dalton Trans.2009,1710.
    19 Shang, L.; Dong, S. Chem. Commun.2008,1088.
    20 Zhang, J.; Xu, S.; Kumacheva, E. Adv. Mater.2005,17,2336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700