基于磷酸钙的有机—无机复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料的仿生制备是近年来材料学、化学、生物医学等重要领域的研究热点之一。在自然界中,通过精巧的有序结构设计,生命体可以将有机分子和无机矿物复合形成具有特殊力学或光学性能的功能材料。值得注意的是,在生物材料形成中,有机基质和无机矿物两相紧密结合并有序排列,而这种结构的有序性赋予了生物材料超乎寻常的性能。在人工合成仿生复合材料中,通过有机-无机自组装形式从下至上的合成途径被认为是最为接近生命体的合成路线,也是最有效率的合成路径之一。然而,自组装的方法需要有机分子之间,以及有机-无机相之间能够在分子及微纳尺度上紧密结合并排列组装。但是,如何在如此小尺度上引入有序的有机相和无机相的分布是目前难以逾越的挑战。在本工作中,我们仔细分析了生物材料形成中有机分子和无机相之间有序性排列需要的条件,并以此仿生设计了含有两亲分子和模型蛋白质的一个简单体系,在磷酸钙的过饱和溶液中实现了在纳米尺度上有序排列的有机-无机复合材料的制备,并且该材料具有类骨的力学特征。我们还研究了溶液组分对所形成的有机-无机复合材料的形貌和结构的影响,并进一步获得了由相同手性所构成的纳米螺旋材料聚集体。结合自然界中手性矿物材料的演变过程,我们利用有机分子手性和弹性自由能的关系,从物理化学的角度理解了手性材料的原因和手性繁殖扩增的过程。全文共分五章,每章内容介绍如下
     第一章作为绪论简要地介绍了生物材料的典型特征。着重论述了生物材料中“组成-结构-功能”间的紧密联系并介绍了生物材料中的生物矿物沉积结晶的基本知识及最新的研究进展。随后综述了有机基质在生物材料的形成过程中的作用,特别是框架大分子和结晶调控分子的功能。接着通过仿生合成研究中的有机物和无机物如何能够进行有序复合的讨论提出了我们的仿生模型体系。
     第二章中我们设计了简单而又有效的仿生体系,通过两亲分子琥珀辛酯磺酸钠(Bis(2-ethylhexyl) sulfosuccinate, AOT),牛血清蛋白(Bovine serum albumin,BSA)和无机磷酸钙(Calcium phosphate,CaP)的相互协同作用在溶液中自发形成了具有菱形晶体结构特征的有机-无机复合体。这种复合体在纳米层次上具有有机相-无机相层层交叠的结构,其模量和硬度十分接近于人体骨骼,是一种具有弹性特征的磷酸钙基类骨材料。
     第三章我们研究了反应溶液中不同组分,包括AOT、BSA和钙磷离子浓度对所形成的有机-无机复合片的形貌的影响。改变AOT、BSA和钙磷离了浓度对复合片的长径比有较大的影响,但依然保持有机相-无机相层层交叠的精细结构。增加AOT的浓度使得复合片的长径比减小,而增加BSA和钙磷离子浓度的趋势与AOT则相反。
     第四章中我们研究了这种类骨的有机-无机复合片的形成机理,认为它们是有机相-无机相共同复合生长而形成的介晶。从复合介晶表面台阶结构特征可知该复合晶体是通过类似于传统的晶体台阶生长的机制所得到的。由两个AOT双分子层与两个磷酸钙层组成的复合台阶通过台阶生长巧妙地将有机物AOT和无机相磷酸钙有序地安置在周期性结构中。BSA则可能通过各向异性的吸附作用来调节复合片的形貌。
     第五章中我们通过降低了反应体系中AOT的浓度并成功合成了手性的有机-无机复合纳米螺旋,该复合纳米螺旋和前面所提的“类骨”晶体一样具有有机-无机复合交替结构。其中一个十分特别的现象是,具有相问手性特征的复合螺旋可以组成一个较大的同手性聚集体。我们发现且这种同手性聚集体是通过一个初始的螺旋作为“母体”不断地自我复制扩增而来,并提出了一个基于AOT手性和弹性自由能的关系式来解释这一个手性扩增的行为。这一发现揭示了有机-无机复合物可以通过自我繁殖将手性结构进行遗传扩增,这和自然界进化过程贝壳的手性选择性扩增情况十分类似。
     第六章总结了我们在仿生合成有机-无机复合物中的体会,并对本工作中存在的不足进行了分析,提出改进的建议为后续的研究提供参考。
The synthesis of biomimetic materials has become the emerging areas in the fields of materials, chemistry and biomedicine et.al. With the excellent structure design procedure, the general organic component and inorganic phase can be well integrated to ensure amazing functions like mechanical, optic properties. It should be noted that the ordered arrangement of organic and inorganic component is the key fact to bring attractive functions to biomaterials. In the artificial design of biometic materials, the bottom-up strategy through the assembly of both organic and inorganic phase is considered as one of the most efficient ways which are close to the biological condition. However, the strict requirement of assembly needs the tight integration between organic molecule itself and organic-inorganic phase at nano or micro-scale. Accordingly, the essential issue that the ordered arrangement of organic phase and inorganic phase at such small scale is a great chellagen for fabrication of biomimetic materials. In this work, we investigate the biological conditions that give rise to the order of distinc organic and inorganic phase and design a simple model system containing amphiphilic molecules and model protein. After adding additional calcium ions and phosphate ions, organic-inorganic hybrid plates and helix spontennously generats in the solution via self-assembly process. Both organic and inorganic phase are tightly integrated at nanoscle with ordered arrangement.We note that thse hybrid plates have interesting mechanical properties as bone. We also invesitigate the influence of different concentrations of reaction components on the morphology of hybrid plates, and synthesize the homochial nano-helix clusters consisted with organic-inorganic hybrid helix with same chiratlity. A physicochemicalmodel based on the chirality of organic molecules and the elastic free energy is suggested to explain the formation of chiral helix and the proliferation of chirality. The thesis is composed of five chapters:
     In chapter1, we briefly introduce the typical properties of biomaterials and their. We focus on the composition-structure-function relationship of biomaterials. Then, the fundamental mechanisms and the recent developments during the crystallization and growth model of biominerals are also described. We review the essencial role of organic molecules, especially matrix macromolecules and molecules in the crystallization process. Finally, we suggest the crucial relationship of organic molecules and inorganic phase in the assembly of high order structure and inspire us to design reasonable reaction system to achieve the goal.
     In chapter2, we design a model system to mimic the special relationships of organic molecules and inorganic phase. Here a model amphiphilic molecules Bis(2-ethylhexyl) sulfosuccinate (AOT) and Bovine Serum Albumin (BSA) in a supersatuated calcium phosphate solution. Organic-inorganic hybrid plates can spontaneously form and own alternative stacking of ultrathin organic layers and inorganic layers.Interestingly, the modulus and hardness is close to the natural bone in human body, which can be considered as a calcium phosphate based bone-like materaisl.
     In chapter3, we further investigate the role of different reaction components (AOT. BSA and calcium/phosphate ions) on the morphology of resulted hybrid plates, which can be considered as a kind of hybrid mesocrystal. We suggest the different concentration of AOT, BSA and calcium/phosphate ions have various effects on the morphology especially the aspect ratio of hybrid plates. However, the internal lamellar structure maintains inspite of the change of reaction components. The increase of AOT leads to smaller aspect ratio while the larger BSA concentrations give rise to elongated ones. Apart from the organic components, the aspect ratio can also increase with more calcium/phosphate ions in reaction solutions.
     In chapter4we investigate the formation mechanism of these bone-like organic-inorganic hybrid mesocrystal. With the observation of the morphology of surface steps on the hybrid mesocrystal, we suggest that the classical step growth model of crystals dominate its formation process. The growth step is hybrid consisted by two AOT bilayers and two thin CaP layers. Through the movement of hybrid steps, the AOT molecules and CaP phase are carefully arranged into ordered structure while the anisotropic absorbtion behavior of BSA can control the morphology of steps and then the morphology of hybrid mesocrystal.
     In chapter5, we obain chiral organic-inorganic hybrid helix by decreasing the concentration of AOT molecules with similar internal structure as above hybrid plates. Interestingly, the helix with same chirality can form homochiral clusters, and these homochiral clusters are proliferated from single chiral helix as matrix. We suggest that the chirality determined free elastic energy ensure the homichiral proliferation process. This means the biomimetic hybrid materials can spontenneously amplify their chiral strucrures to later generations. This is very similar as the chiral selection of mollusk shell and proliferation process.
     In chapter6, we sumerize the key points for biomimetic fabrication of hybrid mateirals. Our investigation of hybrid crystal formation via co-assembly of organic and inorganic phase in a classical step growth of inorganic crystals offer a new strategy to orderly integrate organic-inorganic phase at nanoscale. In addition, we also indicate that materials-based spontenneous amplification can occure in our simple model system. This interesting phenomenon offers a novel insight in the synthesis of highly regulated or self-similar materials. Finally, we also describe the shortages of our work and unsolved issues for further investigation.
引文
[1].崔福斋;冯庆玲,生物材料学.清华大学出版社有限公司:2004.
    [2]. Mann, S., Biomineralization:principles and concepts in bioinorganic materials chemistry. Oxford University Press on Demand:2001; Vol.5.
    [3]. Bejan, A., Shape and structure, from engineering to nature. Cambridge University Press:2000.
    [4]. Hou, X.; Jiang, L., Learning from nature:building bio-inspired smart nanochannels. ACS nano 2009,3(11),3339-3342.
    [5].崔福斋;冯庆玲;唐睿康;张天蓝;欧阳健明;王爱华;王夔,生物矿化:Biomineralization.青华大学出版社:2007.
    [6]. Gower, L. B., Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chemical Reviews 2008,108 (11),4551-4627.
    [7]. Weiner, S.; Traub, W.; Wagner, H. D., Lamellar bone:structure-function relations. Journal of structural biology 1999,126 (3),241-255.
    [8]. de Leeuw, N. H.; Parker, S. C., Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite:an atomistic approach. The Journal of Physical Chemistry B 1998,102 (16),2914-2922.
    [9]. Dimasi, E.; Sarikaya, M., Synchrotron X-ray microbeam diffraction from abalone shell. Journal of materials research 2004,19 (05),1471-1476.
    [10]. Evans, J. S., "Tuning in" to Mollusk Shell Nacre-and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic-Organic Composites. Chemical Reviews 2008,108 (11),4455-4462.
    [11]. Wang, R.; Suo, Z.; Evans, A.; Yao, N.; Aksay, I., Deformation mechanisms in nacre. J. Mater. Res 2001,16 (9),2485-2493.
    [12]. Jackson, A.; Vincent, J.; Turner, R., The mechanical design of nacre. Proceedings of the Royal society of London. Series B. Biological sciences 1988,234 (1277),415-440.
    [13]. Currey, J., Mechanical properties of mother of pearl in tension. Proceedings of the Royal society of London. Series B. Biological sciences 1977,196 (1125),443-463.
    [14]. Song, F.; Soh, A.; Bai, Y., Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003,24 (20),3623-3631.
    [15]. Rousseau, M.; Lopez, E.; Stempfle, P.; Brendle, M.; Franke, L.; Guette, A.; Naslain, R.; Bourrat, X., Multiscale structure of sheet nacre. Biomaterials 2005,26 (31),6254-6262.
    [16]. Driessens, F., The mineral in bone, dentin and tooth enamel. Bulletin des societes chimiques belges 1980,89 (8),663-689.
    [17]. Meckel, A.; Griebstein, W.; Neal, R., Structure of mature human dental enamel as observed by electron microscopy. Archives of Oral Biology 1965,10 (5), 775-783.
    [18]. Tang, R.; Wang, L.; Orme, C. A.; Bonstein, T.; Bush, P. J.; Nancollas, G. H., Dissolution at the Nanoscale:Self-Preservation of Biominerals. Angewandte Chemie 2004,116(20),2751-2755.
    [19]. Zamiri, A.; De, S., Mechanical properties of hydroxyapatite single crystals from nanoindentation data. Journal of the mechanical behavior of biomedical materials 2011,4 (2),146-152.
    [20]. Weiner, S.; Wagner, H. D., The material bone:structure-mechanical function relations. Annual Review of Materials Science 1998,28 (1),271-298.
    [21]. Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I., Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews 2008,108 (11),4754.
    [22]. Gao, H.; Ji, B.; Jager, I. L.; Arzt, E.; Fratzl, P., Materials become insensitive to flaws at nanoscale:Lessons from nature. Proceedings of the National Academy of Sciences 2003,100 (10),5597-5600.
    [23]. Jager, I.; Fratzl, P., Mineralized collagen fibrils:a mechanical model with a staggered arrangement of mineral particles. Biophysical journal 2000,79 (4), 1737-1746.
    [24]. (a) Gupta, H. S.; Wagermaier, W.; Zickler, G. A.; Raz-Ben Aroush, D.; Funari, S. S.; Roschger, P.; Wagner, H. D.; Fratzl, P., Nanoscale deformation mechanisms in bone. Nano Letters 2005,5 (10),2108-2111; (b) Peterlik, H.; Roschger, P.; Klaushofer, K.; Fratzl, P., From brittle to ductile fracture of bone. Nature materials 2005,5 (1), 52-55.
    [25]. (a) Boskey, A. L., Biomineralization:conflicts, challenges, and opportunities. Journal of cellular biochemistry 1998,72 (S30 31),83-91; (b) Estroff, L. A., Introduction:Biomineralization. Chemical Reviews 2008,108 (11),4329.
    [26]. Frankel, R. B.; Bazylinski, D. A., Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry 2003,54 (1),95-114.
    [27]. Addadi, L.; Weiner, S., Control and design principles in biological mineralization. Angewandte Chemie International Edition in English 1992,31 (2), 153-169.
    [28]. Mann, S., Mineralization in biological systems. In Inorganic Elements in Biochemistry, Springer:1983; pp 125-174.
    [29].陈留美,新淘金者——细菌.科技文萃1994,6,109.
    [30]. Weiner, S.; Dove, P. M., An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry 2003,54 (1), 1-29.
    [31]. Pulgarin, C.; Invernizzi, M.; Parra, S.; Sarria, V.; Polania, R.; Peringer, P., Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catalysis Today 1999,54 (2), 341-352.
    [32]. Navrotsky, A., Energetic clues to pathways to biomineralization:Precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (33),12096-12101.
    [33].潘永信;邓成龙;刘青松;朱日祥,趋磁细菌磁小体的生物矿化作用和磁学性质研究进展.科学通报2004,49(24),2505-2510.
    [34]. Watabe, M.; Kingsley, R. J., Extra-, inter-, and intracellular mineralization in invertebrates and algae. Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Crick RE (ed) Plenum, New York 1989,209-223.
    [35]. Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K., Microstructure and silica mineralization in the formation of silicified woods. I:Species identification of silicified woods and observations with a scanning electron microscope. Mokuzai Gakkaishi 1986,32 (6),387-400.
    [36]. Sayegh, F. S.; Solomon, G. C.; Davis, R. W., Ultrastructure of intracellular mineralization in the deer's antler. Clinical Orthopaedics and Related Research 1974, 99,267-284.
    [37]. Mann, S., Biomineralization and biomimetic materials chemistry. J. Mater. Chem.1995,5(7),935-946.
    [38]. Matthews. J.; Martin, J., Intracellular transport of calcium and its relationship to homeostasis and mineralization:An electron microscope study. The American Journal of Medicine 1971,50 (5),589-597.
    [39]. Mahamid, J.; Sharir, A.; Gur, D.; Zelzer, E.; Addadi, L.; Weiner, S., Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles:a cryo-electron microscopy study. Journal of structural biology 2011,174 (3),527-535.
    [40]. Mahamid, J.; Sharir, A.; Addadi, L.; Weiner, S., Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish:indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences 2008, 105(35),12748-12753.
    [41]. Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P., Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences 2008,105 (45),17362-17366.
    [42]. Raz, S.; Testeniere, O.; Hecker, A.; Weiner, S.; Luquet, G., Stable Amorphous Calcium Carbonate Is the Main Component of the Calcium Storage Structures of the Crustacean Orchestia cavimana. The Biological Bulletin 2002,203 (3),269-274.
    [43]. Markov, I. V.; Markov. I. V., Crystal growth for beginners:fundamentals of nucleation, crystal growth and epitaxy. World Scientific Singapore:2003.
    [44], Habraken, W. J.; Tao, J.; Brylka, L. J.; Friedrich, H.; Bertinetti, L.; Schenk, A. S.; Verch, A.; Dmitrovic, V.; Bomans, P. H.; Frederik, P. M., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature communications 2013,4,1507.
    [45]. De Yoreo, J. J.; Vekilov, P. G., Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry 2003,54 (1),57-93.
    [46]. Addadi, L.; Raz, S.; Weiner, S., Taking advantage of disorder:amorphous calcium carbonate and its roles in biomineralization. Advanced Materials 2003,15 (12),959-970.
    [47]. Meyer, J.; Eanes, E., A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcified tissue research 1978,25 (1), 59-68.
    [48]. Johannes, W.; Puhan, D., The calcite-aragonite transition, reinvestigated. Contributions to Mineralogy and Petrology 1971,31 (1),28-38.
    [49]. Lang, M.; Grzesiak, A. L.; Matzger, A. J., The use of polymer heteronuclei for crystalline polymorph selection. Journal of the American Chemical Society 2002,124 (50),14834-14835.
    [50]. (a) Oaki, Y.; Imai, H., The hierarchical architecture of nacre and its mimetic material. Angewandte Chemie International Edition 2005,44 (40),6571-6575; (b) Wang, R.; Addadi, L.; Weiner, S., Design strategies of sea urchin teeth:structure, composition and micromechanical relations to function. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences 1997,352 (1352),469-480.
    [51]. Han, Y. H.; Li, H.; Wong, T. Y.; Bradt, R. C., Knoop Microhardness Anisotropy of Single-Crystal Aragonite. Journal of the American Ceramic Society 1991,74(12),3129-3132.
    [52]. (a) Wulff, G., On the question of speed of growth and dissolution of crystal surfaces. Z. Kristallogr 1901,34,449-530; (b) Penn, R. L.; Banfield, J. F., Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am. Mineral 1998,83 (9-10),1077-1082.
    [53]. Penn, R. L.; Banfield, J. F., Imperfect oriented attachment:dislocation generation in defect-free nanocrystals. Science 1998,281 (5379),969-971.
    [54]. Lee, E. J.; Ribeiro, C.; Longo, E.; Leite, E. R., Oriented attachment:An effective mechanism in the formation of anisotropic nanocrystals. The Journal of Physical Chemistry B 2005,109 (44),20842-20846.
    [55]. Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J., Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012,336 (6084),1014-1018.
    [56]. Song, R. Q.; Colfen, H., Mesocrystals-Ordered nanoparticle superstructures. Advanced Materials 2010,22 (12),1301-1330.
    [57]. Jager, C.; Colfen, H., Fine structure of nacre revealed by solid state 13C and 1H NMR. CrystEngComm 2007,9 (12),1237-1244.
    [58]. Zhou, L.; O'Brien, P., Mesocrystals:a new class of solid materials. Small 2008, 4(10),1566-1574.
    [591. Niederberger, M.; Colfen, H., Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics 2006,8 (28),3271-3287.
    [60]. Zhou, L.; O'Brien, P., Mesocrystals Properties and Applications. The Journal of Physical Chemistry Letters 2012,3 (5),620-628.
    [61]. Zhang, C.; Zhang, R., Matrix proteins in the outer shells of molluscs. Marine Biotechnology 2006,8 (6),572-586.
    [62]. Inoue, H.; Ohira, T.; Ozaki, N.; Nagasawa, H., A novel calcium-binding peptide from the cuticle of the crayfish,< i> Procambarus clarkii. Biochemical and biophysical research communications 2004,318 (3),649-654.
    [63]. Arias, J. L.; Fernandez, M. a. S., Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization. Chemical Reviews 2008,108 (11), 4475-4482.
    [64]. (a) Ehrlich, H., Chitin and collagen as universal and alternative templates in biomineralization. International Geology Review 2010,52 (7-8),661-699; (b) Wegst, U.; Ashby, M., The mechanical efficiency of natural materials. Philosophical Magazine 2004,84 (21),2167-2186.
    [65]. Manoli, F.; Koutsopoulos, S.; Dalas, E., Crystallization of calcite on chitin. Journal of Crystal Growth 1997,182 (1),116-124.
    [66]. Li, H.; Xin, H. L.; Muller, D. A.; Estroff, L. A., Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 2009,326 (5957),1244-1247.
    [67]. Ramachandran. G.; Chandrasekharan, R., Interchain hydrogen bonds via bound water molecules in the collagen triple helix. Biopolymers 1968,6 (11), 1649-1658.
    [68]. Gardner, K.; Blackwell, J., Refinement of the structure of β-chitin. Biopolymers 1975,14 (8).1581-1595.
    [69]. Butt, H.-J., Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophysical journal 1991,60 (6),1438-1444.
    [70]. Mo. H.; Tay, K. G.; Ng, H. Y., Fouling of reverse osmosis membrane by protein (BSA):Effects of pH, calcium, magnesium, ionic strength and temperature. Journal of Membrane Science 2008,315 (1),28-35.
    [71]. (a) Kameda, T.; Miyazawa, M.; Ono, H.; Yoshida, M., Hydrogen Bonding Structure and Stability of α-Chitin Studied by 13C Solid-State NMR. Macromolecular bioscience 2005,5 (2),103-106; (b) Ramachandran, G.; Bansal, M.; Bhatnagar, R., A hypothesis on the role of hydroxyproline in stabilizing collagen structure. Biochimica et Biophysica Acta (BBA)-Protein Structure 1973,322 (1), 166-171.
    [72]. (a) Rich, A.; Crick, F., The structure of collagen.1955; (b) Cabib, E., Chitin: structure, metabolism, and regulation of biosynthesis. In Plant Carbohydrates Ⅱ, Springer:1981; pp 395-415.
    [73]. Finkelstein, A. V.; Ptitsyn. O., Protein physics:a course of lectures. Academic Press:2002.
    [74]. (a) Cardenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P., Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of applied polymer science 2004,93 (4),1876-1885; (b) Price, R. I.; Lees, S.; Kirschner, D. A., X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures:role of hydration. International journal of biological macromolecules 1997,20 (1),23-33.
    [75]. Marchessault, R.; Morehead, F.; Walter, N., Liquid crystal systems from fibrillar polysaccharides.1959.
    [76]. Cartwright, J. H.; Checa, A. G.; Escribano, B.; Sainz-Diaz, C. I., Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences 2009, 106(26),10499-10504.
    [77]. Cartwright, J. H.; Checa, A. G., The dynamics of nacre self-assembly. Journal of the Royal Society Interface 2007,4 (14),491-504.
    [78]. Rich, A.; Crick, F., The molecular structure of collagen. Journal of molecular biology 1961,3 (5),483-IN4.
    [79]. Goh, M.; Paige, M.; Gale, M.; Yadegari, I.; Edirisinghe, M.; Strzelczyk, J., Fibril formation in collagen. Physica A:Statistical Mechanics and its Applications 1997,239(1),95-102.
    [80]. Hulmes, D. J., Building collagen molecules, fibrils, and suprafibrillar structures. Journal of structural biology 2002,137(1),2-10.
    [81]. Eglin, D.; Mosser, G.; Giraud-Guille, M.-M.; Livage, J.; Coradin, T., Type I collagen, a versatile liquid crystal biological template for silica structuration from nano-to microscopic scales. Soft Matter 2005,1 (2),129-131.
    [82]. Weiner, S.; Traub, W.; Parker, S., Macromolecules in mollusc shells and their functions in biomineralization [and Discussion]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 1984,304 (1121),425-434.
    [83]. Weiner, S., Aspartic acid-rich proteins:major components of the soluble organic matrix of mollusk shells. Calcified tissue international 1979,29 (1),163-167.
    [84]. (a) Weiner, S., Organization of organic matrix components in mineralized tissues. American zoologist 1984,24 (4),945-951; (b) Weiner, S.; Traub, W.; Lowenstam, H., Organic matrix in calcified exoskeletons. In Biomineralization and biological metal accumulation, Springer:1982; pp 205-224.
    [85]. Addadi, L.; Weiner, S., Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences 1985,82 (12),4110-4114.
    [86]. Mann, S.; Heywood, B.; Rajam, S.; Wade, V., Molecular recognition in biomineralization. In Mechanisms and phylogeny of mineralization in biological systems. Springer:1991; pp 47-55.
    [87]. Hope, H., Cryocrystallography of biological macromolecules:a generally applicable method. Acta Crystallographica Section B:Structural Science 1988,44 (1), 22-26.
    [88]. Tao, J.; Zhou, D.:Zhang, Z.; Xu, X.; Tang, R., Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proceedings of the National Academy of Sciences 2009,106 (52),22096-22101.
    [89]. Fincham, A.; Belcourt, A.; Termine, J.; Butler, W.; Cothran, W., Amelogenins. Sequence homologies in enamel-matrix proteins from three mammalian species. Biochemical Journal 1983,211(1),149.
    [90]. Fincham, A.; Moradian-Oldak, J.; Diekwisch, T.; Lyaruu, D.; Wright, J.; Bringas, P.; Slavkin, H., Evidence for amelogenin" nanospheres" as functional components of secretory-stage enamel matrix. Journal of structural biology 1995,115 (1),50-59.
    [91]. Moradian-Oldak, J.; Simmer, J.; Lau, E.; Sarte, P.; Slavkin, H.; Fincham, A., Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers 1994,34 (10),1339-1347.
    [92]. Du, C.; Falini, G.; Fermani, S.; Abbott, C.; Moradian-Oldak, J., Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 2005,307 (5714),1450-1454.
    [93]. Chen, H.; Clarkson, B. H.; Sun, K.; Mansfield, J. F., Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. Journal of colloid and interface science 2005,288 (1),97-103.
    [94]. Fincham, A.; Moradian-Oldak, J.; Simmer, J., The structural biology of the developing dental enamel matrix. Journal of structural biology 1999,126 (3), 270-299.
    [95]. Li, W.; Liu, Y.; Perez, T.; Gunton, J.; Sorensen, C.; Chakrabarti, A., Kinetics of nanochain formation in a simplified model of amelogenin biomacromolecules. Biophysical journal 2011,101 (10),2502-2506.
    [96]. Fang, P.; Beniash, E.; Conway, J.; Margolis, H.; Simmer, J., Cryo-TEM Study on Hierarchical Self-assembly of Amelogenin and Regulation of Biomineralization at the Nanoscale. Microscopy and Microanalysis 2012,18 (S2),1588-1589.
    [97]. (a) Kalmar, L.; Homola, D.; Varga, G.; Tompa, P., Structural disorder in proteins brings order to crystal growth in biomineralization. Bone 2012; (b) Wojtas, M.; Dobryszycki, P.; Ozyhar, A., Intrinsically disordered proteins in biomineralization. Advanced topics in biomineralization. Intech 2012,1-32; (c) Evans, J. S., Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics 2012,28 (24),3182-3185.
    [98]. Keene, E. C.; Evans, J. S.;Estroff, L. A., Matrix Interactions in Biomineralization:Aragonite Nucleation by an Intrinsically Disordered Nacre Polypeptide, n16N, Associated with α β-Chitin Substrate. Crystal Growth & Design 2010,10(3),1383-1389.
    [99]. Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K., Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proceedings of the National Academy of Sciences 2010, 707(52),22425-22429.
    [100]. Hu, Y.-Y.; Liu, X.; Ma, X.; Rawal, A.; Prozorov, T.; Akinc, M.; Mallapragada, S.; Schmidt-Rohr, K., Biomimetic Self-Assembling Copolymer- Hydroxyapatite Nanocomposites with the Nanocrystal Size Controlled by Citrate. Chemistry of Materials 2011,23 (9),2481-2490.
    [101]. Wang, Y.; Azais, T.; Robin, M.; Vallee, A.; Catania, C.; Legriel, P.; Pehau-Arnaudet, G.; Babonneau, F.; Giraud-Guille, M.-M.; Nassif, N., The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nature materials 2012,11 (8),724-733.
    [102]. Nudelman. F.; Pieterse, K.; George, A.; Bomans, P. H.; Friedrich, H.; Brylka, L. J.; Hilbers, P. A.; Sommerdijk, N. A., The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature materials 2010,9 (12), 1004-1009.
    [103]. Aizenberg, J.; Fratzl, P., Biological and biomimetic materials. Advanced Materials 2009,21 (4),387-388.
    [104]. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T., Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society 1995,117 (22),6117-6123.
    [105]. (a) Podsiadlo, P.; Paternel, S.; Rouillard, J.-M.; Zhang, Z.; Lee, J.; Lee, J.-W.; Gulari, E.; Kotov, N. A., Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 2005,21 (25),11915-11921; (b) Wei, H.; Ma, N.; Shi, F.; Wang, Z.; Zhang, X., Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata. Chemistry of Materials 2007,19 (8),1974-1978; (c) Tang, Z.; Kotov, N. A.; Magonov, S.; Ozturk, B., Nanostructured artificial nacre. Nature materials 2003,2 (6),413-418.
    [106]. Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U., Biomimetic layer-by-layer assembly of artificial nacre. Nature communications 2012,3,966.
    [107]. Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O., Tough, Bio-Inspired Hybrid Materials. Science 2008,322 (5907),1516-1520.
    [108]. Srivastava, S.; Kotov, N. A., Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of chemical research 2008,41 (12), 1831-1841.
    [109]. Liu, K.; Jiang, L., Bio-inspired design of multiscale structures for function integration. Nano Today 2011,6 (2),155-175.
    [110]. Zhang, Y.; Venugopal, J. R.; El-Turki, A.; Ramakrishna, S.; Su, B.; Lim, C. T., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008,29 (32),4314-4322.
    [111]. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295(5564),2418-2421.
    [112]. Glotzer, S.; Solomon, M.; Kotov, N. A., Self-assembly:From nanoscale to microscale colloids. AIChE Journal 2004,50 (12),2978-2985.
    [113]. Bishop, K. J.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A., Nanoscale Forces and Their Uses in Self-Assembly. Small 2009,5(14),1600-1630.
    [114]. Yu, S.-H.; Colfen, H.; Tauer, K.; Antonietti, M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature materials 2004,4 (1),51-55.
    [115]. Gehrke, N.; Nassif, N.; Pinna, N.; Antonietti, M.; Gupta, H. S.; Colfen, H., Retrosynthesis of Nacre via Amorphous Precursor Particles. Chemistry of Materials 2005,17(26),6514-6516.
    [116]. Oh, H. H.; Ko, Y.-G.; Lu, H.; Kawazoe, N.; Chen, G., Preparation of Porous Collagen Scaffolds with Micropatterned Structures. Advanced Materials 2012,24 (31), 4311-4316.
    [1]Mann, S., Biomineralization:principles and concepts in bioinorganic materials chemistry. Oxford University Press on Demand:2001; Vol.5.
    [2](a) Kato, T.; Sugawara, A.; Hosoda, N., Calcium carbonate-organic hybrid materials. Advanced materials 2002,14 (12),869-877; (b) Lee, L. P.; Szema, R., Inspirations from biological optics for advanced photonic systems, science 2005,310 (5751),1148-1150; (c) Sanchez, C.; Arribart, H.; Guille, M. M. G., Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature materials 2005,4 (4),277-288; (d) Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired surfaces with special wettability. Accounts of Chemical Research 2005,38 (8), 644-652.
    [3](a) Watabe, N., Studies on shell formation:Ⅺ. Crystal-matrix relationships in the inner layers of mollusk shells. Journal of ultrastructure research 1965,12 (3), 351-370; (b) Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I., Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical reviews 2008,108 (11),4754; (c) Nikolov, S.; Petrov, M.; Lymperakis, L. Friak, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J., Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations:The Example of Lobster Cuticle. Advanced Materials 2010, 22(4),519-526.
    [4](a) Currey, J., Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London. Series B. Biological Sciences 1977,196 (1125), 443-463; (b) Jackson, A.; Vincent, J.; Turner, R., Comparison of nacre with other ceramic composites. Journal of Materials Science 1990,25 (7),3173-3178.
    [5]Burger, C.; Zhou, H.-w.; Wang, H.; Sics, I.; Hsiao, B. S.; Chu, B.; Graham, L. Glimcher, M. J., Lateral packing of mineral crystals in bone collagen fibrils. Biophysical journal 2008,95 (4),1985-1992.
    [6]Weiner, S.; Wagner, H. D., The material bone:structure-mechanical function relations. Annual Review of Materials Science 1998,28 (1),271-29.
    [7]Weiner, S.; Addadi, L.; Wagner, H. D., Materials design in biology. Materials Science and Engineering:C 2000,11 (1),1-8.
    [8]Meldrum, F. C.; Coelfen, H., Controlling mineral morphologies and structures in biological and synthetic systems. Chemical reviews 2008,108 (11),4332.
    [9](a) Falini, G.; Albeck, S.; Weiner, S.; Addadi, L., Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996,271 (5245),67-69; (b) Kniep, R.; Busch, S., Biomimetic Growth and Self-Assembly of Fluorapatite Aggregates by Diffusion into Denatured Collagen Matrices. Angewandte Chemie International Edition in English 1996,35 (22),2624-2626:(c) Aizenberg, J.; Black, A. J.:Whitesides, G. M., Control of crystal nucleation by patterned self-assembled monolayers. Nature 1999,398 (6727),495-498; (d) Sadasivan, S.; Khushalani, D.; Mann, S., Synthesis of calcium phosphate nanofilaments in reverse micelles. Chemistry of materials 2005,17(10),2765-2770.
    [10](a) Mann. S., Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature materials 2009,8 (10).781-792:(b) Song, R. Q.; Colfen, H., Mesocrystals-Ordered nanoparticle superstructures. Advanced Materials 2010,22 (12),1301-1330.
    [11]Gao, H.; Ji, B.; Jager, I. L.; Arzt. E.; Fratzl, P., Materials become insensitive to flaws at nanoscale:lessons from nature. Proceedings of the national Academy of Sciences 2003.100 (10),5597-5600.
    [12]Xie, J.; Lee, J. Y.; Wang, D. I., Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. The Journal of Physical Chemistry C 2007,111 (28),10226-10232.
    [13]Fowler, C. E.; Li, M.; Mann, S.; Margolis, H. C., Influence of surfactant assembly on the formation of calcium phosphate materials-A model for dental enamel formation. Journal of Materials Chemistry 2005,15 (32),3317-3325.
    [14](a) i, L.; Li, J.; Ma, J., Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials 2002,14 (4),300; (b) Oaki, Y.; Imai, H., Hierarchically organized architecture of potassium hydrogen phthalate and poly (acrylic acid):toward a general strategy for biomimetic crystal design. Chemical communications 2005, (48), 6011-6013.
    [15](a) Turro, N. J.; Lei, X.-G.; Ananthapadmanabhan, K.; Aronson, M., Spectroscopic probe analysis of protein-surfactant interactions:the BSA/SDS system. Langmuir 1995,11 (7),2525-2533; (b) Ober, C. K.; Wegner, G., Polyelectrolyte-Surfactant Complexes in the Solid State:Facile building blocks for self-organizing materials. Advanced Materials 1997,9 (1),17-23; (c) De, S.; Girigoswami, A.; Das, S., Fluorescence probing of albumin-surfactant interaction. Journal of colloid and interface science 2005,285 (2),562-573; (d) Chodankar, S.; Aswal, V.; Hassan, P.; Wagh, A., Structure of protein-surfactant complexes as studied by small-angle neutron scattering and dynamic light scattering. Physica B:Condensed Matter 2007,398 (1), 112-117:(e) Pokroy, B.; Demensky, V.; Zolotoyabko, E., Nacre in mollusk shells as a multilayered structure with strain gradient. Advanced Functional Materials 2009,19 (7),1054-1059.
    [16](a) Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G., Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001,412 (6849), 819-822; (b) Pokroy, B.; Demensky, V.; Zolotoyabko, E., Nacre in mollusk shells as a multilayered structure with strain gradient. Advanced Functional Materials 2009,19 (7),1054-1059.
    [17](a) Tang, Z.; Kotov, N. A.; Magonov, S.; Ozturk, B., Nanostructured artificial nacre. Nature materials 2003,2 (6),413-418; (b) Bonderer, L. J.; Studart, A. R.; Gauckler, L. J., Bioinspired design and assembly of platelet reinforced polymer films. Science 2008,319 (5866),1069-1073.
    [18](a) Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A., Ultrastrong and stiff layered polymer nanocomposites. Science 2007,318 (5847),80-83; (b) Priolo, M. A.; Gamboa, D.; Grunlan, J. C., Transparent Clay-Polymer Nano Brick Wall Assemblies with Tailorable Oxygen Barrier. ACS Applied Materials & Interfaces 2009,2 (1), 312-320.
    [19]Van Dijk, H.; Hattu, N.; Prijs, K., Preparation, microstructure and mechanical properties of dense polycrystalline hydroxy apatite. Journal of Materials Science 1981, 16(6),1592-1598.
    [20]Oliver, W. C.; Pharr, G. M., Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research 1992,7 (6),1564-1583.
    [21](a) Rosato, V.; Guillope, M.; Legrand, B., Thermodynamical and structural properties of fee transition metals using a simple tight-binding model. Philosophical Magazine A 1989,59 (2),321-336; (b) Hochstetter. G.; Jimenez, A.; Cano, J.-P.; Felder, E.. An attempt to determine the true stress-strain curves of amorphous polymers by nanoindentation. Tribology international 2003,36 (12),973-985; (c) Roche, S.; Bee, S.; Loubet, J. In Analysis of the elastic modulus of a thin polymer film, MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, Cambridge Univ Press:2003; pp 117-122.
    [22]Rho, J.-Y.; Tsui. T. Y.; Pharr, G. M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 1997,18 (20), 1325-1330.
    [23]Antonietti. M.; Breulmann. M.:Goltner. C. G.; Colfen. H.; Wong, K. K.: Walsh, D.; Mann. S., Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chemistry-A European Journal 1998,4(12),2493-2500.
    [1]. Mann, S., Biomineralization:principles and concepts in bioinorganic materials chemistry. Oxford University Press on Demand:2001; Vol.5.
    [2]. Bedouet, L.; Rusconi, F.; Rousseau, M.; Duplat, D.; Marie, A.; Dubost, L.; Le Ny, K.; Berland, S.; Peduzzi, J.; Lopez, E., Identification of low molecular weight molecules as new components of the nacre organic matrix. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 2006,144 (4),532-543.
    [3]. Killian. C. E.; Wilt, F. H., Molecular aspects of biomineralization of the echinoderm endoskeleton. Chemical reviews 2008,108 (11),4463.
    [4]. Evans, J. S., "Tuning in" to Mollusk Shell Nacre-and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic-Organic Composites. Chemical reviews 2008,108 (11),4455.
    [5]. Busch, S.; Schwarz, U.; Kniep, R., Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites. Chemistry of materials 2001,13 (10),3260-3271.
    [6]. Watabe, N., Studies on shell formation:XI. Crystal-matrix relationships in the inner layers of mollusk shells. Journal of ultrastructure research 1965,12 (3), 351-370.
    [7]. Meldrum, F. C.; Coelfen, H., Controlling mineral morphologies and structures in biological and synthetic systems. Chemical reviews 2008,108 (11),4332.
    [8]. (a) Weiner, S.; Wagner, H. D., The material bone:structure-mechanical function relations. Annual Review of Materials Science 1998,28 (1),271-298; (b) Wang, R.: Suo. Z.:Evans, A.; Yao. N.; Aksay, I., Deformation mechanisms in nacre. J. Mater. Res 2001,16 (9),2485-2493; (c) Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl. P.. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences 2006,103 (47), 17741-17746.
    [9]. (a) Tang, Z.; Kotov, N. A.; Magonov, S.; Ozturk, B., Nanostructured artificial nacre. Nature materials 2003,2 (6),413-418; (b) Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.:Waas, A. M.; Shim, B. S.; Xu. J.; Nandivada. H.; Pumplin, B. G.;Lahann. J.; Ramamoorthy, A., Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 575(5847).80-83.
    [10]. Gehrke, N.; Nassif. N.:Pinna. N.; Antonietti. M.:Gupta, H. S.:Colfen. H., Retrosynthesis of nacre via amorphous precursor particles. Chemistry of materials 2005,77(26),6514-6516.
    [11]. Pouget, E. M.; Bomans, P. H.; Dey, A.; Frederik, P. M.; de With, G.; Sommerdijk, N. A., The development of morphology and structure in hexagonal vaterite. Journal of the American Chemical Society 2010,132 (33),11560-11565.
    [12]. Song, R. Q.; Colfen, H., Mesocrystals-Ordered nanoparticle superstructures. Advanced Materials 2010,22 (12),1301-1330.
    [13]. Li, M.; Colfen, H.; Mann, S., Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. Journal of Materials Chemistry 2004,14 (14),2269-2276.
    [14]. Mann, S., Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature materials 2009,5(10),781-792.
    [15]. Yadav, K.; Brown, P. W., Formation of hydroxyapatite in water, Hank's solution, and serum at physiological temperature. Journal of Biomedical Materials Research Part A 2003,65 (2),158-163.
    [16]. Zhai, H.; Jiang, W.; Tao, J.; Lin, S.; Chu, X.; Xu, X.; Tang, R., Self-Assembled Organic-Inorganic Hybrid Elastic Crystal via Biomimetic Mineralization. Advanced Materials 2010,22 (33),3729-3734.
    [17]. Fowler, C. E.; Li, M.; Mann, S.; Margolis, H. C., Influence of surfactant assembly on the formation of calcium phosphate materials-A model for dental enamel formation. Journal of Materials Chemistry 2005,75 (32),3317-3325.
    [18]. Falini, G.; Weiner, S.; Addadi, L., Chitin-silk fibroin interactions:relevance to calcium carbonate formation in invertebrates. Calcified tissue international 2003,72 (5),548-554.
    [19]. Gadaleta, S.; Paschalis, E.; Betts, F.; Mendelsohn, R.; Boskey, A., Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite:new correlations between X-ray diffraction and infrared data. Calcified tissue international 1996,58 (1),9-16.
    [20]. (a) Song, J.; Malathong, V.; Bertozzi, C. R., Mineralization of synthetic polymer scaffolds:a bottom-up approach for the development of artificial bone. Journal of the American Chemical Society 2005,127 (10),3366-3372; (b) Ethirajan, A.; Ziener, U.; Chuvilin. A.; Kaiser, U.; Colfen. H.; Landfester, K., Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Advanced Functional Materials 2008,18 (15),2221-2227.
    [21]. Xu, A. W.; Antonietti, M.:Yu. S. H.; Colfen, H., Polymer-Mediated Mineralization and Self-Similar Mesoscale-Organized Calcium Carbonate with Unusual Superstructures. Advanced Materials 2008,20 (7),1333-1338.
    [1]. Song, R. Q.; Colfen, H., Mesocrystals-Ordered nanoparticle superstructures. Advanced Materials 2010,22 (12),1301-1330.
    [2]. Zhou, L.; O'Brien, P., Mesocrystals Properties and Applications. The Journal of Physical Chemistry Letters 2012,3 (5),620-628.
    [3]. Zhou, L.; O'Brien, P., Mesocrystals:a new class of solid materials. Small 2008, 4(10),1566-1574.
    [4]. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001,294 (5547),1684-1688.
    [5]. Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nature materials 2007,6 (8),609-614.
    [6]. Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.; Bottcher, C., The first account of a structurally persistent micelle. Angewandte Chemie International Edition 2004,43 (22),2959-2962.
    [7]. Yin, G.; Liu, Z.; Zhan, J.; Ding, F.;Yuan, N., Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chemical Engineering Journal2002, 57(2),181-186.
    [8]. Gratz, A.; Hillner, P.; Hansma, P., Step dynamics and spiral growth on calcite. Geochimica et Cosmochimica Acta 1993,57 (2),491-495.
    [9]. (a) Smereka, P., Spiral crystal growth. Physica D:Nonlinear Phenomena 2000, 138 (3),282-301; (b) Burton, W.; Cabrera, N.; Frank, F., The growth of crystals and the equilibrium structure of their surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1951,299-358.
    [10]. Quan, Y.; Zhai, H.; Zhang, Z.; Xu, X.; Tang, R., Lamellar organic-inorganic architecture via classical screw growth. CrystEngComm 2012,14 (21),7184-7188.
    [11]. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564),2418-2421.
    [12]. De Yoreo, J. J.; Dove, P. M., Shaping crystals with biomolecules. Science 2004,506(5700),1301-1302.
    [13]. Zhai, H.; Quan, Y.; Li, L.; Liu, X.-Y.; Xu, X.; Tang, R., Spontaneously amplified homochiral organic-inorganic nano-helix complex via self-proliferation. Nanoscale 2013.
    [14]. Zou, A.; Liu, J.; Jin, Y.; Liu, F.; Mu. B., Interaction Between Surfactin and Bovine Serum Albumin. Journal of Dispersion Science and Technology 2013, (just-accepted).
    [15]. Zhuang, Z.; Aizawa, M., Protein adsorption on single-crystal hydroxyapatite particles with preferred orientation to a (b)-and c-axes. Journal of Materials Science: Materials in Medicine 2013,1-6.
    [1]. (a) French, M., Invention and evolution:design in nature and engineering. Cambridge University Press:1994; (b) Mann, S., Biomineralization:principles and concepts in bioinorganic materials chemistry. Oxford University Press on Demand: 2001; Vol.5; (c) Grande, C.; Patel, N. H., Nodal signalling is involved in left-right asymmetry in snails. Nature 2008,457 (7232),1007-1011; (d) Ueshima, R.; Asami, T., Evolution:single-gene speciation by left-right reversal. Nature 2003,425 (6959), 679-679.
    [2]. Schilthuizen, M.; Davison, A., The convoluted evolution of snail chirality. Naturwissenschaften 2005,92 (11),504-515.
    [3]. (a) Parkhaev, P. Y., Shell chirality in Cambrian gastropods and sinistral members of the genus Aldanella Vostokova,1962. Paleontological Journal 2007,41 (3), 233-240:(b) Vermeij, G. J., Natural History of Shells. Princeton University Press: 1995.
    [4]. (a) Asami, T.; Cowie, R. H.; Ohbayashi, K., Evolution of mirror images by sexually asymmetric mating behavior in hermaphroditic snails. The American Naturalist 1998,152 (2),225-236; (b) Johnson, M.; Murray, J.; Clarke, B., Independence of genetic subdivision and variation for coil in Partula suturalis. Heredity 1987,58 (2),307-313.
    [5]. (a) Colfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition 2003,42 (21),2350-2365; (b) Mann, S.; Ozin, G. A., Synthesis of inorganic materials with complex form. Nature 1996,382 (6589),313-318; (c) Zhang, S., Fabrication of novel biomaterials through molecular self-assembly. Nature biotechnology 2003,21 (10),1171-1178.
    [6]. (a) Cartwright. J. H.; Checa. A. G., The dynamics of nacre self-assembly. Journal of the Royal Society Interface 2007,4 (14),491-504; (b) Cartwright, J. H.; Checa, A. G.; Escribano, B.; Sainz-Diaz, C. I., Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences 2009,106 (26),10499-10504.
    [7]. Kuroda, R.; Endo, B.; Abe, M.; Shimizu, M., Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 2009,462 (7274), 790-794.
    [8]. Gebauer. D.:Colfen, H.; Verch. A.; Antonietti. M., The multiple roles of additives in CaCO3 crystallization:A quantitative case study. Advanced Materials 2009,21 (4), 435-439.
    [9]. (a) Antonietti, M.; Breulmann. M.; Goltner, C. G.; Colfen. H.; Wong, K. K.;Walsh, D.; Mann, S., Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chemistry-A European Journal 1998,4 (12),2493-2500; (b) Bigi, A.; Bracci, B.:Panzavolta, S., Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004,25 (14),2893-2899; (c) Orme, C.; Noy, A.; Wierzbicki, A.; McBride, M.; Grantham, M.; Teng, H.; Dove, P.; DeYoreo, J., Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001,411 (6839),775-779; (d) Wang, L.; Nancollas, G. H., Calcium orthophosphates:crystallization and dissolution. Chemical reviews 2008,108 (11),4628.
    [10]. Kunitake, T.; Yamada, N., Helical superstructures of a bilayer-forming, single-chain ammonium amphiphile. Journal of the Chemical Society, Chemical Communications 1986, (9),655-656.
    [11]. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society 2009,131 (3),888-889.
    [12]. Fowler, C. E.; Li, M.; Mann, S.; Margolis, H. C., Influence of surfactant assembly on the formation of calcium phosphate materials桝 model for dental enamel formation. Journal of Materials Chemistry 2005,15 (32),3317-3325.
    [13]. (a) Xie, J.; Lee, J. Y.; Wang, D.I., Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. The Journal of Physical Chemistry C 2007,111 (28),10226-10232; (b) Yin, G.; Liu, Z.: Zhan, J.; Ding, F.; Yuan, N., Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chemical Engineering Journal 2002,87 (2),181-186.
    [14]. Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A. C., X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications 2009,149 (43), 1919-1923.
    [15]. Bujan, M.; Sikiric, M.; Filipovic-Vincekovic, N.; Vdovic, N.; Garti, N.; Furedi-Milhofer, H., Effect of anionic surfactants on crystal growth of calcium hydrogen phosphate dihydrate. Langmuir 2001,17 (21),6461-6470.
    [16]. (a) Hellsing, M. S.; Rennie, A. R.; Hughes, A. V., Adsorption of aerosol-OT to sapphire:lamellar structures studied with neutrons. Langmuir 2011,27 (8),4669-4678; (b) Li, Z.; Weller, A.; Thomas, R.; Rennie, A.; Webster, J.; Penfold, J.; Heenan, R.; Cubitt, R., Adsorption of the lamellar phase of aerosol-OT at the solid/liquid and air/liquid interfaces. The Journal of Physical Chemistry B 1999,103 (49). 10800-10806; (c) Sarda, S.; Heughebaert, M.; Lebugle, A., Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems. Chemistry of materials 1999,11(10),2722-2727.
    [17]. Li, Z.; Lu, J.; Thomas, R.; Weller, A.; Penfold. J.; Webster, J.; Sivia, D.; Rennie, A., Conformal Roughness in the Adsorbed Lamellar Phase of Aerosol-OT at the Air-Water and Liquid-Solid Interfaces. Langmuir 2001,17(19),5858-5864.
    [18]. Seddon, A. M.; Patel, H. M.; Burkett, S. L.; Mann, S., Chiral Templating of Silica-Lipid Lamellar Mesophase with Helical Tubular Architecture. Angewandte Chemie International Edition 2002,41 (16),2988-2991.
    [19]. Selinger, J.; MacKintosh. F.:Schnur, J., Theory of cylindrical tubules and helical ribbons of chiral lipid membranes. Physical Review E 1996,53 (4),3804.
    [20]. Nelson, P.; Powers, T., Renormalization of chiral couplings in titled bilayer membranes. Journal De Physique li 1993,3 (10),1535-1569.
    [21]. (a) Singh, A.; Burke, T. G.; Calvert, J. M.; Georger, J. H.; Herendeen, B.; Price, R. R.; Schoen, P. E.; Yager, P., Lateral phase separation based on chirality in a polymerizable lipid and its influence on formation of tubular microstructures. Chemistry and physics of lipids 1988,47 (2),135-148; (b) Spector. M. S.; Selinger. J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M., Controlling the morphology of chiral lipid tubules. Langmuir 1998,14 (13),3493-3500; (c) Olsson, U.; Wong, T. C.; Soederman, O., Deuteron NMR study of sodium bis (2-ethylhexyl) sulfosuccinate in liquid crystals:acyl chain packing and effects of molecular chirality on quadrupolar splitting patterns. Journal of Physical Chemistry 1990,94 (13), 5356-5361.
    [22]. (a) De Feyter, S.; Gesquiere, A.; Grim, P.; De Schryver, F.; Valiyaveettil, S.; Meiners, C.; Sieffert, M.; Mullen, K., Expression of chirality and visualization of stereogenic centers by scanning tunneling microscopy. Langmuir 1999,15 (8), 2817-2822; (b) Eckhardt, C.; Peachey, N.; Swanson, D.; Takacs, J.; Khan, M.; Gong, X.; Kim, J.-H.; Wang, J.; Uphaus, R., Separation of chiral phases in monolayer crystals of racemic amphiphiles.1993; (c) Fang, H.; Giancarlo, L. C.; Flynn, G. W., Direct determination of the chirality of organic molecules by scanning tunneling microscopy. The Journal of Physical Chemistry B 1998,102 (38),7311-7315.
    [23]. Larpent, C.; Chasseray, X., Optically active surfactants-I-the first synthesis and properties of sodium bis [(S)] ethyl-2-hexyl] sulfosuccinates ("aerosal ot"). Tetrahedron 1992,48 (19),3903-3914.
    [24]. Selinger, J. V.; Spector, M. S.; Schnur, J. M., Theory of self-assembled tubules and helical ribbons. The Journal of Physical Chemistry B 2001,105 (30),7157-7169.
    [25]. Blinov, L. M., Structure and properties of liquid crystals. Springer Science+ Business Media:2011; Vol.123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700