钽酸盐与钒酸盐光催化材料的设计合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从太阳能多元化利用角度考虑,已经有许多种类的太阳能转化体系被广泛深入的研究和开发,光催化体系就是其中之一。通过光催化体系可以利用太阳能实现光解水制氢或光降解有机污染物。因此,如何获得高性能低成本的光催化材料引起人们的广泛重视。钽、钒酸盐光催化材料在光解水制氢及光降解有机污染物方面性能优异,具有重要的研究价值和实际应用前景。本论文利用简单的一步法设计合成了具有不同结构的钽、钒酸盐材料,通过系统的表征研究了不同因素对催化性能的影响,得到了一系列性能优异的光催化剂。
     采用固相法制备了具有烧绿石构型Bi_(1.5)ZnTa_(1.5)O_7(α-BZT)及Bi_2Zn_(2/3)Ta_(4/3)O_7(β-BZT)光催化材料,并通过Zn位Cu的掺杂进行了能带调控。在紫外光照射下,掺杂Cu的α-BZT催化活性相比于α-BZT提高了五倍。在可见光照射下,掺杂了Cu的催化剂在可见光下也表现出了较高的催化活性。通过基于密度泛函理论(DFT)的计算发现Cu掺杂导致催化剂能隙变窄的原因是在催化剂的导带和价带之间引入了由Cu3d轨道构成的杂质能级。进一步利用固相法制备了β-BZT并对其进行了Cu掺杂改性研究,发现0.01Cu掺杂后催化活性提高了近10倍,同时Cu掺杂后的β-BZT产生了可见光响应,表现出可见光分解水制氢性能。
     通过熔盐法制备了钽酸钠钾(NKT)系列单晶纳米立方催化剂,在牺牲剂甲醇存在的条件下,无需负载助催化剂,产氢活性高达19.9mmol·h~(-1);在分解纯水制氢方面,NKT的产氢速率也高达2.51mmol·h~(-1),较高的催化活性是因为Ta-O-Ta键的调控作用所致,但催化剂在分解纯水时氢氧并不按比例产生,且光稳定性较差。对NKT进行了B位Zr及Hf掺杂得到了单分散的纳米立方结构。将改性后的NKT用于分解纯水,最高产氢活性分别高达4.65mmol·h~(-1)和4.96mmol·h~(-1),同时氢气和氧气的产生速率比值接近理论值(2:1),光稳定性也得到明显改善。
     利用熔盐法制备了钽酸钠锶(SNT)介晶光催化材料,比表面积最高达到40.6m~2·g~(-1),产氢速率最高可达27.5mmol·h~(-1);在分解纯水的情况下,产氢和产氧速率分别可达4.89mmol·h~(-1)和1.25mmol·h~(-1)。高活性的原因主要是由于表面纳米台阶结构的存在,台阶的凸处可以作为产氢活性位,凹处可以作为产氧活性位。
     采用水热法制备了m-BiVO_4分级结构光催化剂,最佳制备工艺为pH=3条件下180℃水热反应6h。利用尿素作为模板剂制备了具有空心球状结构的m-BiVO_4分级结构催化剂,这种分级结构的构筑单元为m-BiVO_4的截角八面体,形成机制为气泡模板机制。空心球状结构的m-BiVO_4催化剂具有最优异的光催化性能。无需负载助催化剂,50min内可以在不添加双氧水的条件下降解超过80%的RhB,降解过程符合一级动力学方程,反应速率常数为0.035min~(-1)。空心球状结构的m-BiVO_4的降解机制为空穴降解,且在催化氧化异丙醇情况下具有较高的活性,同时催化剂具有优异的催化循环稳定性,循环4次后活性无明显降低。
     采用简单的一步熔盐法合成BiVO_4及BiVO_4/BiOCl光催化材料。利用LiNO_3/NaNO_3作为反应熔盐时的最佳熔盐与原料质量比为15:1,反应时间2h。制备的BiVO_4为片状结构,在未负载任何助催化剂条件下,50min对RhB的去除率可超过90%,降解过程符合一级动力学方程,反应速率常数为0.050min~(-1)。利用LiCl/KCl作为反应熔盐得到了BiVO_4/BiOCl异质结构,最佳熔盐与原料质量比为10:1,反应时间2h。BiVO_4/BiOCl呈现由纳米片组成的花状结构,纳米片的尺寸为200-500nm,厚度为5nm左右。HRTEM及元素面扫测试发现花状主体为BiOCl,BiVO_4以纳米晶的形式附着在片状结构上。催化剂30min对RhB的去除率超过了90%,反应速率常数相对于BiVO_4提高了60%。
Various kinds of photon energy conversion systems have been extensivelystudied for solar energy utilization. In photocatalytic system, H2can be obtained andorganic pollutants can be decomposed by using sunlight. How to achievehigh-efficiency and low-cost phtocatalysts has attracted wide attention. Due to theiroutstanding performance in water splitting and photodegradation, tantalates andvanadates are considered to be suitable for basic research and practical application.In our study, several tantalates and vanadates materials have been synthesized viaone-step method. Series of tantalates and vanadates with excellent photocatalyticmaterials are obtained by studying the effects of conditions to their properties.
     Bi_(1.5)ZnTa_(1.5)O_7(α-BZT) and Bi_2Zn_(2/3)Ta_(4/3)O_7(β-BZT) with pyrochlore structureare synthesized by the solid state method and the band structure are adjusted bycooper doping in B site. Under UV light irradiation, the photocatalytic activity of Cudopped α-BZT is about5times higher than that of α-BZT. Under visible lightirradiation, Cu dopping in α-BZT makes it caplable of hydrogen generation. Themechanism is that the impure level forms revealed by Cu3d by DFT calculation.Furthermore, same effect is found for β-BZT. The activity of β-BZT is about10times higher than that of β-BZT.
     NKT nanocrystal is synthesized by the molten salt method. The rate ofhydrogen generation reaches up to19.9mmol·h~(-1)in the presence of CH3OH whilethe rate is2.51mmol·h~(-1)for pure water splitting. The high activity is due to thecontrol of Ta-O-Ta bond by A site adjustment. However, it is found that oxygenevolution rate is low and the ratio of hydrogen to oxygen deviats far from thedesired value of2:1. To improve the stability of the catalyst, tetravalent cations ofZr4+and Hf4+are doped. The as-synthesized NKZT and NKHT nanocrystals aremonodispersed and the rates of hydrogen generation reach up to4.65mmol·h~(-1)and4.96mmol·h~(-1)for pure water splitting. Furthermore, the ratio of hydrogen to oxygenis close to2:1with improved photostability.
     SNT mesocrystal is synthesized by the molten salt method, and the surface areais as high as to40.6m~2·g~(-1). The rate of hydrogen generation reaches up to27.5mmol·h~(-1)in the presence of CH3OH while the rates of hydrogen and oxygen is4.89mmol·h~(-1)and1.25mmol·h~(-1)for pure water splitting. The outstanding activity ismainly due to the enhanced charge separation facilited by the formation ofnanosteps. At the edges of the reduction sites, water can be efficiently reduced to H2and the grooves of the nanostep structure provide the catalytic active sites for O2formation.
     m-BiVO_4hierarchical structure is synthesized via the hydrothermal method andthe optimized conditions are pH=3, T=180℃andt=6h. Hollow monoclinic scheeliteBiVO_4spheres are facile synthesized by using urea as guiding surfactant. Theforming process consists of incorporation of bubble guiding, oriented attachmentand Ostwald ripening. The hollow spheres are built up with truncated octahedrons asconfirmed though theoretical calculation. It is found out that the m-BiVO_4withhollow structure shows the optimalizing activity and the reaction rate constantreaches up to0.035min~(-1)without H2O2as hydroxyl radicals donor. The degradationof RhB is attributed to intrinsically strong photo-oxidation ability rather thanphotosensitization and the synthesized samples also show efficient photocatalyticactivity for the degradation of2-propanol.Samples sbow high stability and durability,after four runs of RhB photodegradation, the photocatalytic ability of as-synthesizedm-BiVO_4did not show any loss.
     BiVO_4and BiVO_4/BiOCl phtocatalysts are synthesized via the one-step moltensalt method. The optimized conditions for LiNO_3/NaNO_3are w=15:1and t=2h. Theas-synthesized BiVO_4shows sheet-like morphology. Without cocatalyts loading,90%of RhB is removed in50min, and the photodegradation process agrees with thefirst order kinetics equation, the value of k is0.050min~(-1). BiVO_4/BiOClheterostructure is obtained by using LiCl/KCl as molten salt and the optimizedconditions are w=10:1and reaction for t=2h. BiVO_4/BiOCl heterostructure showsthe morphology of flower-like which is built up of nanosheets. The size of nanosheetis200-500nm in diameter and5nm in thickness. HRTEM and element mappingshow that the body of nanosheet is BiOCl and BiVO_4exists as nanocrystal.90%ofRhB can be removed in30min and the value of k is60%higher that of BiVO_4. Theenhanced photocatalytic activity is due to high charge separation effect inducedheterojunctions.
引文
[1] D. E. Wang; R. G. Li; J. Zhu; J. Y. Shi; J. F. Han; X. Zong; C. Li, PhotocatalyticWater Oxidation on BiVO4with the Electrocatalyst as an Oxidation Cocatalyst:Essential Relations between Electrocatalyst and Photocatalyst. J. Phys. Chem.C2012,116,5082-5089.
    [2] Z. J. Zhou; M. C. Long; W. M. Cai; J. Cai, Synthesis and photocatalyticperformance of the efficient visible light photocatalyst Ag-AgCl/BiVO4. J.Molec. Catal. A-Chem.2012,353,22-28.
    [3] X. B. Chen; S. H. Shen; L. J. Guo; S. S. Mao, Semiconductor-basedPhotocatalytic Hydrogen Generation. Chem. Rev.2010,110,6503-6570.
    [4] A. Kudo; Y. Miseki, Heterogeneous photocatalyst materials for water splitting.Chem. Soc. Rev.2009,38,253-278.
    [5] T. F. Yeh; J. M. Syu; C. Cheng; T. H. Chang; H. S. Teng, Graphite Oxide as aPhotocatalyst for Hydrogen Production from Water. Adv. Funct. Mater.2010,20,2255-2262.
    [6]温福宇,杨金辉,李灿.太阳能光催化制氢研究进展.化学进展.2009,21,2285-2302
    [7] J. H. Huang; R. Ma; Y. Ebina; K. Fukuda; K. Takada; T. Sasaki, Layer-by-LayerAssembly of TaO3Nanosheet/Polycation Composite Nanostructures:Multilayer Film, Hollow Sphere, and Its Photocatalytic Activity for HydrogenEvolution. Chem. Mater.2010,22,2582-2587.
    [8] S. Murcia-Lopez; M. C. Hidalgo; J. A. Navio, Photocatalytic activity of singleand mixed nanosheet-like Bi2WO6and TiO2for Rhodamine B degradationunder sunlike and visible illumination. Appl. Catal. A-Gen.2012,423,34-41.
    [9] H. B. Fu; L. W. Zhang; W. Q. Yao; Y. F. Zhu, Photocatalytic properties ofnanosized Bi2WO6catalysts synthesized via a hydrothermal process. Appl.Catal. B-Environ.2006,66,100-110.
    [10] A. Fujishima; K. Honda, Electrochemical photolysis of water at asemiconductor electrode. Nature1972,238,37-38.
    [11] J. H. Carey; L. Lawrence; H. M. Tosine, Photodechlorination of PCB's in thePres ence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ.Contam. Toxicol.1976,16,697-701.
    [12] Z. Q. Li; X. T. Chen; Z. L. Xue, Bi2MoO6microstructures: controllablesynthesis, growth mechanism, and visible-light-driven photocatalyticactivities. CrystEngComm2013,15,498-508.
    [13]闫世成,罗文俊,李朝升,邹志刚.新型光催化材料探索和研究进展.中国材料进展.2010,29,1-9
    [14] H. J. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitridewith enhanced photocatalytic H2evolution under visible light. Chem.Commun.2012,48,3430-3432.
    [15] H. Tong; S. Ouyang; Y. Bi; N. Umezawa; M. Oshikiri; J. Ye,Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater.2012,24,229-251.
    [16] A. Kudo; Y. Miseki, Heterogeneous photocatalyst materials for water splitting.Chem. Soc. Rev.2009,38,253.
    [17] Y. X. Li; G. Chen; Q. Wang; X. Wang; A. K. Zhou; Z. Y. Shen, HierarchicalZnS-In2S3-CuS Nanospheres with Nanoporous Structure: Facile Synthesis,Growth Mechanism, and Excellent Photocatalytic Activity. Adv. Funct. Mater.2010,20,3390-3398.
    [18]上官文峰.太阳能光解水制氢的研究进展.无机化学学报2001,17,619-626
    [19] U. I. Gaya; A. H. Abdullah, Heterogeneous photocatalytic degradation oforganic contaminants over titanium dioxide: A review of fundamentals,progress and problems. J. Photoch. Photobio. C2008,9,1-12.
    [20] J. Zhang; Q. Xu; Z. Feng; M. Li; C. Li, Importance of the relationship betweensurface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed.2008,47,1766-1769.
    [21]许云波,延卫,刘湘鄂,张耀君,郭烈锦.电喷法合成TiO2纳米纤维与微米球及其光催化制氢性能.功能材料.2002,33,246-249.
    [22] Q. C. Xu; Y. H. Ng; Y. Zhang; J. S. C. Loo; R. Amal; T. Y. T. Timothy, Athree-way synergy of triple-modified Bi2WO6/Ag/N-TiO2nanojunction filmfor enhanced photogenerated charges utilization. Chem. Commun.2011,47,8641-8643.
    [23]沈伟韧,赵文宽,郭烈锦. TiO2光催化反应及其在废水处理中的应用.西安交通大学学报.2005,7,349-361.
    [24] B. Abramovic; D. Sojic; V. Despotovic; D. Vione; M. Pazzi; J. Csanadi, Acomparative study of the activity of TiO2Wackherr and Degussa P25in thephotocatalytic degradation of picloram. Appl. Catal. B-Environ.2011,105,191-198.
    [25] M. Janus; A. W. Morawski, New method of improving photocatalytic activityof commercial Degussa P25for azo dyes, decomposition. Appl. Catal.B-Environ.2007,75,118-123.
    [26] R. Asahi; T. Morikawa; T. Ohwaki; K. Aoki; Y. Taga, Visible-lightphotocatalysis in nitrogen-doped titanium oxides. Science2001,293,269-271.
    [27] Q. Wang; M. A. Zhang; C. C. Chen; W. H. Ma; J. C. Zhao, PhotocatalyticAerobic Oxidation of Alcohols on TiO2: The Acceleration Effect of a BronstedAcid. Angew. Chem. Int. Ed.2010,49,7976-7979.
    [28] J. Zhang; Q. Xu; Z. Feng; M. Li; C. Li, Importance of the relationship betweensurface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed.2008,47,1766-1769.
    [29] K. Domen; A. Kudo; T. Onishi, Mechanism of Photocatalytic Decompositionof Water into H2and O2over NiO-SrTiO3. J. Catal.1986,102,92-98.
    [30] Y. Qin; G. Y. Wang; Y. J. Wang, Study on the photocatalytic property ofLa-doped CoO/SrTiO3for water decomposition to hydrogen. Catal. Commun.2007,8,926-930.
    [31] M. Shibata; A. Kudo; A. Tanaka; K. Domen; K. Maruya; T. Onishi,Photocatalytic Activities of Layered Titanium Compounds and TheirDerivatives for H-2Evolution from Aqueous Methanol Solution. Chem. Lett.1987,1017-1018.
    [32] K. Iizuka; T. Wato; Y. Miseki; K. Saito; A. Kudo, Photocatalytic Reduction ofCarbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15(A=Ca, Sr, and Ba)Using Water as a Reducing Reagent. J. Am. Chem. Soc.2011,133,20863-20868.
    [33] A. Iwase; W. Y. Teoh; R. Amal, Photocatalytic Overall Water Splitting overALi2Ti6O14(A:2Na and Sr) with Tunneling Structure. Chem. Lett.2011,40,108-110.
    [34] V. M. Yuwono; N. D. Burrows; J. A. Soltis; R. L. Penn, Oriented Aggregation:Formation and Transformation of Mesocrystal Intermediates Revealed. J. Am.Chem. Soc.2010,132,2163-2167
    [35] V. R. Reddy; D. W. Hwang; J. S. Lee, Photocatalytic water splitting over ZrO2prepared by precipitation method. Korean J. Chem. Eng.2003,20,1026-1029.
    [36] Y. P. Yuan; Z. Y. Zhao; J. Zheng; M. Yang; L. G. Qiu; Z. S. Li; Z. G. Zou,Polymerizable complex synthesis of BaZr1-xSnxO3photocatalysts: Role of Snin the band structure and their photocatalytic water splitting activities. J.Mater. Chem.2010,20,6772-6779.
    [37] N. A. Dhas; K. C. Patil, Combustion Synthesis and Properties of Fine-ParticleRare-Earth-Metal Zirconates, Ln2zr2o7. J. Mater. Chem.1993,3,1289-1294.
    [38] X. Y. Chen; T. Yu; X. X. Fan; H. T. Zhang; Z. S. Li; J. H. Ye; Z. G. Zou,Enhanced activity of mesoporous Nb2O5for photocatalytic hydrogenproduction. Appl. Surf. Sci.2007,253,8500-8506.
    [39] K. Domen; A. Kudo; M. Shibata; A. Tanaka; K. Maruya; T. Onishi, NovelPhotocatalysts, Ion-Exchanged K4Nb6O17, with a Layer Structure. J. Chem.Soc. Chem. Comm.1986,1706-1707.
    [40] T. Takata; K. Shinohara; A. Tanaka; M. Hara; J. N. Kondo; K. Domen, Ahighly active photocatalyst for overall water splitting with a hydrated layeredperovskite structure. J. Photochem. Photobio.1997,106,45-49.
    [41] A. Kudo; A. Tanaka; K. Domen; K. Maruya; K. Aika; T. Onishi, PhotocatalyticDecomposition of Water over Nio-K4Nb6O17Catalyst. J. Catal.1988,111,67-76.
    [42] S. Ikeda; A. Tanaka; K. Shinohara; M. Hara; J. N. Kondo; K. I. Maruya; K.Domen, Effect of the particle size for photocatalytic decomposition of wateron Ni-loaded K4Nb6O17. Microporous Mater.1997,9,253-258.
    [43] K. Sayama; A. Tanaka; K. Domen; K. Maruya; T. Onishi, PhotocatalyticDecomposition of Water over Platinum-Intercalated K4Nb6O17. J. Phys. Chem.1991,95,1345-1348.
    [44] C. Zhou; G. Chen; Q. Wang, High photocatalytic activity of porous K4Nb6O17microsphere with large surface area prepared by homogeneous precipitationusing urea. J. Molec. Catal. A-Chem.2011,339,37-42.
    [45] J. R. Fang; J. F. Ma; Y. Sun; Z. S. Liu; C. Gao, Electrochemical synthesis ofnanocrystalline SrNb2O6powders and characterization of their photocatalyticproperty. Mater Sci Eng B-Adv2011,176,701-705.
    [46] D. Chen; J. H. Ye, Selective-Synthesis of High-PerformanceSingle-Crystalline Sr2Nb2O7Nanoribbon and SrNb2O6NanorodPhotocatalysts. Chem. Mater.2009,21,2327-2333.
    [47] X. P. Lin; F. Q. Huang; J. C. Xing; W. D. Wang; F. F. Xu, Heterojunctionsemiconductor SnO2/SrNb2O6with an enhanced photocatalytic activity: Thesignificance of chemically bonded interface. Acta Mater.2008,56,2699-2705.
    [48] J. Nisar; B. Pathak; R. Ahuja, Screened hybrid density functional study onSr2Nb2O7for visible light photocatalysis. Appl. Phys. Lett.2012,100.
    [49] B. T. Lin; J. F. Ma; Y. Yao; J. Liu; Y. Ren; X. H. Jiang; Y. Sun; Z. S. Liu,Morphology-controlled synthesis and characterization of Sr2Nb2O7nanocrystalline powders by a hydrothermal process. J. Am. Ceram. Soc.2008,91,1329-1331.
    [50] H. F. Zhou; H. Wang; M. H. Zhang; H. B. Yang, Microwave dielectricproperties and compatibility with silver of low-fired Ba5Nb4O15ceramics byBaCu(B2O5) addition. J. Mater. Res.2010,25,1793-1798.
    [51] S. Y. Wu; X. M. Chen; H. Y. Yu, Hydrothermal synthesis of Ba5Nb4O15ultrafine powders. J. Eur. Ceram. Soc.2006,26,1973-1976.
    [52] R. Haugsrud; T. Risberg, Protons in Acceptor-Doped La3NbO7and La3TaO7. J.Electrochem. Soc.2009,156, B425-B428.
    [53] A. Kahnharari; L. Mazerolles; D. Michel; F. Robert, Structural Description ofLa3NbO7. J. Solid State Chem.1995,116,103-106.
    [54] K. Sayama; H. Arakawa; K. Domen, Photocatalytic water splitting on nickelintercalated A4TaxNb6-xO17(A=K, Rb). Catal. Today1996,28,175-182.
    [55] H. Kato; A. Kudo, New tantalate photocatalysts for water decomposition intoH2and O2. Chem. Phys. Lett.1998,295,487-492.
    [56] Y. Takahara; J. N. Kondo; T. Takata; D. L. Lu; K. Domen, Mesoporoustantalum oxide.1. Characterization and photocatalytic activity for the overallwater decomposition. Chem. Mater.2001,13,1194-1199.
    [57] M. Wiegel; M. H. J. Emond; E. R. Stobbe; G. Blasse, Luminescence of AlkaliTantalates and Niobates. J. Phys. Chem. Solids1994,55,773-778.
    [58] H. Kato; A. Kudo, Water splitting into H2and O2on alkali tantalatephotocatalysts ATaO3(A=Li, Na, and K). J. Phys. Chem. B2001,105,4285-4292.
    [59] A. Kudo; H. Kato; S. Nakagawa, Water splitting into H2and O2on newSr2M2O7(M=Nb and Ta) photocatalysts with layered perovskite structures:Factors affecting the photocatalytic activity. J. Phys. Chem. B2000,104,571-575.
    [60] H. Kato; K. Asakura; A. Kudo, Highly efficient water splitting into H2and O2over lanthanum-doped NaTaO3photocatalysts with high crystallinity andsurface nanostructure. J. Am. Chem. Soc.2003,125,3082-3089.
    [61] A. Iwase; H. Kato; A. Kudo, The Effect of Alkaline Earth Metal Ion Dopantson Photocatalytic Water Splitting by NaTaO3Powder. Chemsuschem2009,2,873-877.
    [62] J. F. Chen; L. Hu; J. L. Zhao; C. C. Tang; Y. X. Li, Synthesis andcharacterization of nanocrystalline NaTaO3. Rare Met.2006,25,69-72.
    [63] X. Li; J. L. Zang, Facile Hydrothermal Synthesis of Sodium Tantalate(NaTaO3) Nanocubes and High Photocatalytic Properties. J. Phys. Chem. C2009,113,19411-19418.
    [64] C. C. Hu; C. C. Tsai; H. Teng, Structure Characterization and Tuning ofPerovskite-Like NaTaO3for Applications in Photoluminescence andPhotocatalysis. J. Am. Ceram. Soc.2009,92,460-466.
    [65] Z. B. Wu; M. Yoshimura, The formation of pyrochlore potassium tantalate thinfilms by soft solution processing. Thin Solid Films2000,375,46-50.
    [66] J. A. Nelson; M. J. Wagner, Synthesis of sodium tantalate nanorods by alkalidereduction. J. Am. Chem. Soc.2003,125,332-333.
    [67] O. Vazquez-Cuchillo; A. Manzo-Robledo; R. Zanella; N. Elizondo-Villareal; A.Cruz-Lopez, Characterization of NaTaO3synthesized by ultrasonic method.Ultrason. Sonochem.2013,20,498-501.
    [68] C. Zhou; G. Chen; Y. X. Li; H. J. Zhang; J. A. Pei, Photocatalytic activities ofSr2Ta2O7nanosheets synthesized by a hydrothermal method. Int. J. HydrogenEnergy2009,34,2113-2120.
    [69] C. Zhou; G. Chen; H. J. Zhang; Q. Wang, Efficient Photocatalytic Degradationof Methyl Orange over Hydrothermally Synthesized Sr2Ta2O7Nanosheets.Chinese J. Inorg. Chem.2009,25,2031-2035.
    [70] Y. X. Li; G. Chen; H. J. Zhang; Z. H. Li, Photocatalytic water splitting ofLa2AlTaO7and the effect of aluminum on the electronic structure. J. Phys.Chem. Solids2009,70,536-540.
    [71] Y. X. Li; G. Chen; H. J. Zhang; Z. H. Li; J. X. Sun, Electronic structure andphotocatalytic properties of ABi2Ta2O9(A=Ca, Sr, Ba). J. Solid State Chem.2008,181,2653-2659.
    [72] Y. X. Li; G. Chen; C. Zhou; Z. H. Li, Photocatalytic water splitting over aprotonated layered perovskite tantalate H1.81Sr0.81Bi0.19Ta2O7. Catal. Lett.2008,123,80-83.
    [73] L. J. He; D. Zhang; S. H. Feng; B. Zou; G. Chen, Hydrothermal Synthesis andCharacterization of Perovskite Oxide AgTaO3. Chem. Res. Chin. Univ.2012,28,760-763.
    [74] J. Y. Kim; A. M. Grishin, AgTaO3and AgNbO3thin films by pulsed laserdeposition. Thin Solid Films2006,515,615-618.
    [75] R. Ullah; H. Q. Sun; H. M. Ang; M. O. Tade; S. B. Wang, Photocatalyticoxidation of water and air contaminants with metal doped BiTaO4irradiatedwith visible light. Catal. Today2012,192,203-212.
    [76] D. L. S. Maia; I. Pepe; A. F. da Silva; L. A. Silva, Visible-light-drivenphotocatalytic hydrogen production over dye-sensitized beta-BiTaO4. J.Photochem. Photo.2012,243,61-64.
    [77] J. Nisar; B. C. Wang; C. M. Araujo; A. F. da Silva; T. W. Kang; R. Ahuja,Band gap engineering by anion doping in the photocatalyst BiTaO4: Firstprinciple calculations. Int. J. Hydrogen Energy2012,37,3014-3018.
    [78] S. H. Wee; C. Cantoni; Y. L. Zuev; E. D. Specht; A. Goyal, Phase Stability ofCubic Pyrochlore Rare Earth Tantalate Pinning Additives in YBa2Cu3O7-deltaSuperconductor. J. Am. Ceram. Soc.2012,95,1174-1177.
    [79] R. Gao; S. X. Zhou; W. Li; M. Chen; L. M. Wu, Facile synthesis of uniformand well-defined single-crystal sodium tantalate cubes and their assembly intooriented two-dimensional nanofilm. CrystEngComm2012,14,7031-7035.
    [80] T. Ban; S. Yoshikawa; Y. Ohya, Synthesis of layered tantalate nanocrystals byaqueous process at room temperature. CrystEngComm2012,14,7709-7714.
    [81] L. M. Torres-Martinez; R. Gomez; O. Vazquez-Cuchillo; I. Juarez-Ramirez; A.Cruz-Lopez; F. J. Alejandre-Sandoval, Enhanced photocatalytic water splittinghydrogen production on RuO2/La NaTaO3prepared by sol-gel method. Catal.Commun.2010,12,268-272.
    [82] T. P. Sinha; A. Dutta; S. Saha; K. Tarafder; B. Sanyal; O. Eriksson; A.Mookerjee, Electronic structure and optical properties of ordered compoundspotassium tantalate and potassium niobate and their disordered alloys. PhysicaB-Con. Mat.2012,407,4615-4621.
    [83] Y. Q. Shen; Z. X. Zhou, Structure and electronic properties of lead-freeKTa1-xNbxO3: Accurate Wu-Cohen and screened-exchange study. Comput.Mater. Sci.2012,65,100-103.
    [84] I. Golovina; B. Shanina; S. Kolesnik; I. Geifman; A. Andriiko, Magneticdefects in KTaO3and KTaO3:Fe nanopowders. Phys. Status Solid2012,249,2263-2271.
    [85] H. R. Liu; Q. Li; J. Ma; X. C. Chu, Effects of Bi content and grain size onelectrical properties of SrBi2Ta2O9ceramic. Mater. Lett.2012,76,21-24.
    [86] W. L. Yang; Z. X. Zhou; B. Yang; Y. Y. Jiang; Y. B. Pei; H. G. Sun; Y. Wang,Effect of oxygen atmosphere on the structure and refractive index dispersivebehavior of KTa0.5Nb0.5O3thin films prepared by PLD on Si(001) substrates.Appl. Surf. Sci.2012,258,3986-3990.
    [87] Z. Zhao; Z. Li; Z. Zou, Electronic structure and optical properties ofmonoclinic clinobisvanite BiVO4. PhysChemChemPhys2011,13,4746-4753.
    [88] L. S. Zhang; W. Z. Wang; L. Zhou; H. L. Xu, Bi2WO6nano-andmicrostructures: Shape control and associated visible-light-drivenphotocatalytic activities. Small2007,3,1618-1625.
    [89] Z. Zhang; W. Wang; E. Gao; M. Shang; J. Xu, Enhanced photocatalyticactivity of Bi2WO6with oxygen vacancies by zirconium doping. J. HazardMater.2011,196,255-262.
    [90] W. Wang; W. Yang; R. Chen; X. Duan; Y. Tian; D. Zeng; B. Shan,Investigation of band offsets of interface BiOCl:Bi2WO6: a first-principlesstudy. PhysChemChemPhys2012,14,2450-2454.
    [91] L. Zhang; W. Wang; L. Zhou; H. Xu, Bi2WO6nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities.Small2007,3,1618-1625.
    [92] L. P. Zhang; S. Yuan; F. Hu; X. F. Chang, Bismuth (V)-ContainingSemiconductor Compounds and Their Applications in HeterogeneousPhotocatalysis. Prog. Chem.2010,22,1729-1734.
    [93] W. Zou; W. C. Hao; X. Xin; T. M. Wang, Visible-Light PhotocatalyticDegradation of RhB by Bi2O3Polymorphs. Chinese J. Inorg. Chem.2009,25,1971-1976.
    [94] L. Zhou; W. Z. Wang; H. L. Xu; S. M. Sun; M. Shang, Bi2O3HierarchicalNanostructures: Controllable Synthesis, Growth Mechanism, and theirApplication in Photocatalysis. Chem. A-Euro. J.2009,15,1776-1782.
    [95] L. F. Yin; J. F. Niu; Z. Y. Shen; Y. Sun, The electron structure andphotocatalytic activity of Ti(IV) doped Bi2O3. Sci. China-Chem.2011,54,180-185.
    [96] X. H. Wu; W. Qin; L. Li; Y. Guo; Z. Y. Xie, Photocatalytic property ofnanostructured Fe-doped Bi2O3films. Catal. Commun.2009,10,600-604.
    [97] L. Zhu; B. Wei; L. L. Xu; Z. Lu; H. L. Zhang; H. Gao; J. X. Che, Ag2O-Bi2O3composites: synthesis, characterization and high efficient photocatalyticactivities. CrystEngComm2012,14,5705-5709.
    [98] L. Chen; Q. Zhang; R. Huang; S. F. Yin; S. L. Luo; C. T. Au, Porouspeanut-like Bi2O3-BiVO4composites with heterojunctions: one-step synthesisand their photocatalytic properties. Dalton Trans.2012,41,9513-9518.
    [99] J. A. Yang; J. T. Li; J. A. Miao, Visible Light Photocatalytic Performance ofBi2O3/TiO2Nanocomposite Particles. Chinese J. Inorg. Chem.2011,27,547-555.
    [100] L. G. Wang; J. Y. Zhang; C. Z. Li; H. L. Zhu; W. W. Wang; T. M. Wang,Synthesis, Characterization and Photocatalytic Activity of TiO2Film/Bi2O3Microgrid Heterojunction. J. Mater. Sci. Technol.2011,27,59-63.
    [101] F. Yao; Q. Q. Yang; C. Yin; S. M. Zhu; D. Zhang; W. J. Moon; Y. S. Kim,Biomimetic Bi2WO6with hierarchical structures from butterfly wings forvisible light absorption. Mater. Lett.2012,77,21-24.
    [102] Y. L. Min; K. Zhang; Y. C. Chen; Y. G. Zhang, Enhanced photocatalyticperformance of Bi2WO6by graphene supporter as charge transfer channel. Sep.Purif. Technol.2012,86,98-105.
    [103] J. Q. Li; Z. Y. Guo; H. G. Yu; H. Liu; D. F. Wang; Z. F. Zhu,Visible-light-induced degradation of methylene blue by mesoporous Bi2WO6plates with worm-like structure. Micro. Nano. Lett.2012,7,52-55.
    [104] X. C. Song; Y. F. Zheng; R. Ma; Y. Y. Zhang; H. Y. Yin, Photocatalyticactivities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres.J. Hazard. Mater.2011,192,186-191.
    [105] J. Y. He; W. M. Wang; F. Long; Z. G. Zou; Z. Y. Fu; Z. Xu, Hydrothermalsynthesis of hierarchical rose-like Bi2WO6microspheres with highphotocatalytic activities under visible-light irradiation. Mater. Sci. Eng. B-Adv.2012,177,967-974.
    [106] Y. W. Mi; S. Y. Zeng; L. Li; Q. F. Zhang; S. N. Wang; C. H. Liu; D. Z. Sun,Solvent directed fabrication of Bi2WO6nanostructures with differentmorphologies: Synthesis and their shape-dependent photocatalytic properties.Mater. Res. Bull.2012,47,2623-2630.
    [107] S. Guo; X. F. Li; H. Q. Wang; F. Dong; Z. B. Wu, Fe-ions modifiedmesoporous Bi2WO6nanosheets with high visible light photocatalytic activity.J. Colloid Interface Sci.2012,369,373-380.
    [108] L. H. Song; G. Q. Tan; H. J. Ren; J. Yin; A. Xia, Bi2WO6Film Prepared bySol-Gel Method and Its Visible-light Inducing Degradation of RhB. RareMetal. Mat. Eng.2012,41,631-634.
    [109] Y. Liu; W. M. Wang; Z. Y. Fu; H. Wang; Y. C. Wang; J. Y. Zhang, Nest-likestructures of Sr doped Bi2WO6: Synthesis and enhanced photocatalyticproperties. Mater. Sci. Eng. B-Adv.2011,176,1264-1270.
    [110] Z. J. Zhang; W. Z. Wang; E. P. Gao; M. Shang; J. H. Xu, Enhancedphotocatalytic activity of Bi2WO6with oxygen vacancies by zirconium doping.J. Hazard. Mater.2011,196,255-262.
    [111] M. S. Gui; W. D. Zhang, Preparation and modification of hierarchicalnanostructured Bi2WO6with high visible light-induced photocatalytic activity.Nanotechnology2011,22.
    [112] S. Guo; X. Li; H. Wang; F. Dong; Z. Wu, Fe-ions modified mesoporousBi2WO6nanosheets with high visible light photocatalytic activity. J. ColloidInterface Sci.2012,369,373-380.
    [113] H. Ying; Z. Y. Wang; Z. D. Guo; Z. J. Shi; S. F. Yang, Reduced GrapheneOxide-Modified Bi2WO6as an Improved Photocatalyst under Visible Light.Acta Phys. Chim. Sin.2011,27,1482-1486.
    [114] Y. Li; X. Huang; J. Liu; H. Ai, Self-assembly of Bi2WO6square nanoplatesinto hierarchical structures. J. Nanosci. Nanotechnol.2009,9,1530-1534.
    [115] D. Q. He; L. L. Wang; H. Y. Li; T. Y. Yan; D. J. Wang; T. F. Xie,Self-assembled3D hierarchical clew-like Bi2WO6microspheres: Synthesis,photo-induced charges transfer properties, and photocatalytic activities.CrystEngComm2011,13,4053-4059.
    [116] W. C. Wang; W. J. Yang; R. Chen; X. B. Duan; Y. L. Tian; D. W. Zeng; B.Shan, Investigation of band offsets of interface BiOCl:Bi2WO6: afirst-principles study. PhysChemChemPhys2012,14,2450-2454.
    [117] Y. L. Min; K. Zhang; Y. C. Chen; Y. G. Zhang; W. Zhao, Synthesis ofnanostructured ZnO/Bi2WO6heterojunction for photocatalysis application.Sep. Purif. Technol.2012,92,115-120.
    [118] S. M. Lopez; M. C. Hidalgo; J. A. Navio; G. Colon, Novel Bi2WO6-TiO2heterostructures for Rhodamine B degradation under sunlike irradiation. J.Hazard. Mater.2011,185,1425-1434.
    [119] M. S. Gui; W. D. Zhang; Q. X. Su; C. H. Chen, Preparation and visible lightphotocatalytic activity of Bi2O3/Bi2WO6heterojunction photocatalysts. J.Solid State Chem.2011,184,1977-1982.
    [120] M. S. Gui; W. D. Zhang, A facile preparation strategy for hollow-structuredBi2O3/Bi2WO6heterojunction with high visible light photocatalytic activity. J.Phys. Chem. Solids2012,73,1342-1349.
    [121] X. F. Zhang; Y. Gong; X. L. Dong; X. X. Zhang; C. Ma; F. Shi, Fabricationand efficient visible light-induced photocatalytic activity of Bi2WO6/BiVO4heterojunction. Mater. Chem. Phys.2012,136,472-476.
    [122] P. Wollmann; J. Grothe; C. Ziegler; S. Kaskel, Highly Transparent Bi2MoO6-and Bi2WO6-Polymer Nanocomposites. J. Nanosci. Nanotechno.2011,11,3464-3469.
    [123] E. P. Gao; W. Z. Wang; M. Shang; J. H. Xu, Synthesis and enhancedphotocatalytic performance of graphene-Bi2WO6composite. PCCP2011,13,2887-2893.
    [124] M. Maczka; L. Macalik; K. Hermanowicz; L. Kepinski; J. Hanuza, Synthesisand phonon properties of nanosized Aurivillius phase of Bi2MoO6. J. RamanSpectro.2010,41,1289-1296.
    [125] A. Martinez-de la Cruz; S. O. Alfaro; E. L. Cuellar; U. O. Mendez,Photocatalytic properties of Bi2MoO6nanoparticles prepared by an amorphouscomplex precursor. Catal. Today2007,129,194-199.
    [126] H. G. Yu; Z. F. Zhu; J. H. Zhou; J. Wang; J. Q. Li; Y. L. Zhang, Self-assemblyand enhanced visible-light-driven photocatalytic activities of Bi2MoO6bytungsten substitution. Appl. Surf. Sci.2013,265,424-430.
    [127] L. J. Xie; J. F. Ma; G. J. Xu, Preparation of a novel Bi2MoO6flake-likenanophotocatalyst by molten salt method and evaluation for photocatalyticdecomposition of rhodamine B. Mater. Chem. Phys.2008,110,197-200.
    [128] M. Shang; W. Z. Wang; J. Ren; S. M. Sun; L. Zhang, Nanoscale Kirkendalleffect for the synthesis of Bi2MoO6boxes via a facile solution-phase method.Nanoscale2011,3,1474-1476.
    [129] M. Y. Zhang; C. L. Shao; J. B. Mu; X. M. Huang; Z. Y. Zhang; Z. C. Guo; P.Zhang; Y. C. Liu, Hierarchical heterostructures of Bi2MoO6on carbonnanofibers: controllable solvothermal fabrication and enhanced visiblephotocatalytic properties. J. Mater. Chem.2012,22,577-584.
    [130] Q. Fu; T. He; J. L. Li; G. W. Yang, Surface effect on electronic and opticalproperties of Bi2Ti2O7nanowires for visible light photocatalysis. J. Appl. Phys.2012,111.
    [131] Z. F. Bian; Y. N. Huo; Y. Zhang; J. Zhu; Y. F. Lu; H. X. Li, Aerosol-spayassisted assembly of Bi2Ti2O7crystals in uniform porous microspheres withenhanced photocatalytic activity. Appl. Catal. B-Environ.2009,91,247-253.
    [132] T. Kidchob; L. Malfatti; D. Marongiu; S. Enzo; P. Innocenzi, Sol-GelProcessing of Bi2Ti2O7and Bi2Ti4O11Films with Photocatalytic Activity. J.Am. Ceram. Soc.2010,93,2897-2902.
    [133] A. I. Akimov; G. K. Savchuk, Synthesis and sintering of Bi2Ti4O11. Inorg.Mater.2004,40,716-720.
    [134] Z. H. Zhao; J. Tian; D. Z. Wang; X. L. Kang; Y. H. Sang; H. Liu; J. Y. Wang;S. W. Chen; R. I. Boughton; H. D. Jiang, UV-visible-light-activatedphotocatalysts based on Bi2O3/Bi4Ti3O12/TiO2double-heterostructured TiO2nanobelts. J. Mater. Chem.2012,22,23395-23403.
    [135] W. S. Choi; H. N. Lee, Band gap tuning in ferroelectric Bi4Ti3O12byalloying with LaTMO3(TM=Ti, V, Cr, Mn, Co, Ni, and Al). Appl. Phys. Lett.2012,100.
    [136] J. G. Hou; Z. Wang; S. Q. Jiao; H. M. Zhu,3D Bi12TiO20/TiO2hierarchicalheterostructure: Synthesis and enhanced visible-light photocatalytic activities.J. Hazard. Mater.2011,192,1772-1779.
    [137] J. B. Lu; Y. Dai; Y. T. Zhu; B. B. Huang, Density Functional Characterizationof Pure and Alkaline Earth Metal-Doped Bi12GeO20, Bi12SiO20, andBi12TiO20Photocatalysts. ChemCatChem2011,3,378-385.
    [138] J. Wei; C. Zhang; S. C. Mao; Z. Xu; B. Dkhil, Structure evolution andphotocatalytic activity of BiFeO3powders synthesized by hydrothermaldecomposition of metal-EDTA complexes. J. Mater. Sci-Mater. El.2012,23,2145-2151.
    [139] J. Wei; H. Y. Li; S. C. Mao; C. Zhang; Z. Xu; B. Dkhil, Effect of particlemorphology on the photocatalytic activity of BiFeO3microcrystallites. JMater. Sci-Mater. El.2012,23,1869-1874.
    [140] S. M. Sun; W. Z. Wang; L. Zhang; M. Shang, Visible Light-InducedPhotocatalytic Oxidation of Phenol and Aqueous Ammonia in FlowerlikeBi2Fe4O9Suspensions. J. Phys. Chem. C2009,113,12826-12831.
    [141] M. M. Murshed; G. Nenert; M. Burianek; L. Robben; M. Muhlberg; H.Schneider; R. X. Fischer; T. M. Gesing, Temperature-dependent structuralstudies of mullite-type Bi2Fe4O9. J. Solid State Chem.2013,197,370-378.
    [142] A. K. Bhattacharya; K. K. Mallick; A. Hartridge, Phase transition in BiVO4.Mater. Lett.1997,30,7-13.
    [143] R. Strobel; H. J. Metz; S. E. Pratsinis, Brilliant Yellow, Transparent Pure, andSiO2-Coated BiVO4Nanoparticles Made in Flames. Chem. Mater.2008,20,6346-6351.
    [144] H. Y. Jiang; H. X. Dai; X. Meng; K. M. Ji; L. Zhang; J. G. Deng, Porousolive-like BiVO4: Alcoho-hydrothermal preparation and excellentvisible-light-driven photocatalytic performance for the degradation of phenol.Appl. Catal. B-Environ.2011,105,326-334.
    [145] H. M. Fan; D. J. Wang; L. L. Wang; H. Y. Li; P. Wang; T. F. Jiang; T. F. Xie,Hydrothermal synthesis and photoelectric properties of BiVO4with differentmorphologies: An efficient visible-light photocatalyst. Appl. Surf. Sci.2011,257,7758-7762.
    [146] J. Guo; Y. Zhu; Y. M. Zhang; M. Y. Li; J. Yang, Hydrothermal Synthesis andVisible-light Photocatalytic Properties of BiVO4with Different Structures andMorphologies. J. Inorg. Mate.2012,27,26-32.
    [147] S. Kohtani; M. Tomohiro; K. Tokumura; R. Nakagaki, Photooxidationreactions of polycyclic aromatic hydrocarbons over pure and Ag-loadedBiVO4photocatalysts. Appl. Catal. B-Environ.2005,58,265-272.
    [148] J. Q. Yu; Y. Zhang; A. Kudo, Synthesis and photocatalytic performances ofBiVO4by ammonia co-precipitation process. J. Solid State Chem.2009,182,223-228.
    [149] M. Shang; W. Wang; L. Zhou; S. Sun; W. Yin, Nanosized BiVO4with highvisible-light-induced photocatalytic activity: ultrasonic-assisted synthesis andprotective effect of surfactant. J. Hazard Mater.2009,172,338-344.
    [150] Y. F. Zhang; G. F. Li; X. H. Yang; H. Yang; Z. Lu; R. Chen, MonoclinicBiVO4micro-/nanostructures: Microwave and ultrasonic wave combinedsynthesis and their visible-light photocatalytic activities. J. Alloys Compd.2013,551,544-550.
    [151] J. B. Liu; H. M. Zhang; H. Wang; W. X. Zhang, Nanocrystalline BiVO4:Preparation by microwave irradiation and photocatalytic properties. Chinese J.Inorg. Chem.2008,24,777-780.
    [152] W. Liu; X. F. Wang; L. X. Cao; G. Su; L. Zhang; Y. G. Wang, Microemulsionsynthesis and photocatalytic activity of visible light-active BiVO4nanoparticles. Sci. China-Chem.2011,54,724-729.
    [153] L. Ge; X. H. Zhang, Synthesis of Novel Visible Light Driven BiVO4Photocatalysts via Microemulsion Process and its Photocatalytic Performance.J. Inorg. Mater.2009,24,453-456.
    [154] M. T. Li; L. A. Zhao; L. J. Guo, Preparation and photoelectrochemical studyof BiVO4thin films deposited by ultrasonic spray pyrolysis. Int. J. HydrogenEnergy2010,35,7127-7133.
    [155] S. S. Dunkle; R. J. Helmich; K. S. Suslick, BiVO4as a Visible-LightPhotocatalyst Prepared by Ultrasonic Spray Pyrolysis. J. Phys. Chem. C2009,113,11980-11983.
    [156] G. Hitoki; T. Takata; J. N. Kondo; M. Hara; H. Kobayashi; K. Domen, Anoxynitride, TaON, as an efficient water oxidation photocatalyst under visiblelight irradiation (lambda <=500nm). Chem. Commun.2002,1698-1699.
    [157] M. Higashi; K. Domen; R. Abe, Highly Stable Water Splitting on OxynitrideTaON Photoanode System under Visible Light Irradiation. J. Am. Chem. Soc.2012,134,6968-6971.
    [158] S. S. K. Ma; T. Hisatomi; K. Maeda; Y. Moriya; K. Domen, Enhanced WaterOxidation on Ta3N5Photocatalysts by Modification with Alkaline Metal Salts.J. Am. Chem. Soc.2012,134,19993-19996.
    [159] X. Zong; G. P. Wu; H. J. Yan; G. J. Ma; J. Y. Shi; F. Y. Wen; L. Wang; C. Li,Photocatalytic H2Evolution on MoS2/CdS Catalysts under Visible LightIrradiation. J. Phys. Chem. C2010,114,1963-1968.
    [160] W. F. Yao; C. P. Huang; N. Muradov; A. T-Raissi, A novel Pd-Cr2O3/CdSphotocatalyst for solar hydrogen production using a regenerable sacrificialdonor. Int. J. Hydrogen Energy2011,36,4710-4715.
    [161] I. Tsuji; H. Kato; H. Kobayashi; A. Kudo, Photocatalytic H2evolutionreaction from aqueous solutions over band structure-controlled AgInxZn2(1-x)S2solid solution photocatalysts with visible-light response and their surfacenanostructures. J. Am. Chem. Soc.2004,126,13406-13413.
    [162] I. Tsuji; H. Kato; H. Kobayashi; A. Kudo, Photocatalytic H-2evolution undervisible-light irradiation over band-structure-controlled CuInxZn2(1-x)S2solidsolutions. J. Phys. Chem. B2005,109,7323-7329.
    [163] I. Tsuji; H. Kato; A. Kudo, Visible-light-induced H2evolution from anaqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2solid-solution photocatalyst. Angew. Chem. Int. Ed.2005,44,3565-3568.
    [164] A. Hameed; M. A. Gondal; Z. H. Yamani, Effect of transition metal dopingon photocatalytic activity of WO3for water splitting under laser illumination:role of3d-orbitals. Catal. Commun.2004,5,715-719.
    [165] A. Kubacka; G. Colon; M. Fernandez-Garcia, Cationic (V, Mo, Nb, W)doping of TiO2-anatase: A real alternative for visible light-drivenphotocatalysts. Catal. Today2009,143,286-292.
    [166] Y. Q. Wu; G. X. Lu; S. B. Li, The Doping Effect of Bi on TiO2forPhotocatalytic Hydrogen Generation and Photodecolorization of Rhodamine B.J. Phys. Chem. C2009,113,9950-9955.
    [167] S. Q. Peng; R. An; Y. X. Li; G. X. Lu; S. B. Li, Remarkable enhancement ofphotocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Int. J.Hydrogen Energy2012,37,1366-1374.
    [168] A. Braun; K. K. Akurati; G. Fortunato; F. A. Reifler; A. Ritter; A. S. Harvey;A. Vital; T. Graule, Nitrogen Doping of TiO2Photocatalyst Forms a Seconde(g) State in the Oxygen1s NEXAFS Pre-edge. J. Phys. Chem. C2010,114,516-519.
    [169] B. Z. Tian; C. Z. Li; F. Gu; H. B. Jiang, Synergetic effects of nitrogen dopingand Au loading on enhancing the visible-light photocatalytic activity ofnano-TiO2. Catal. Commun.2009,10,925-929.
    [170] X. K. Li; N. Kikugawa; J. H. Ye, Nitrogen-doped Lamellar Niobic Acid withVisible Light-responsive Photocatalytic Activity. Adv. Mater.2008,20,3816-3821.
    [171] Y. Zhao; Y. Li; C. W. Wang; J. Wang; X. Q. Wang; Z. W. Pan; C. Dong; F.Zhou, Carbon-doped anatase TiO2nanotube array/glass and its enhancedphotocatalytic activity under solar light. Solid State Sci.2013,15,53-59.
    [172] Y. G. Lin; Y. K. Hsu; Y. C. Chen; L. C. Chen; S. Y. Chen; K. H. Chen,Visible-light-driven photocatalytic carbon-doped porous ZnOnanoarchitectures for solar water-splitting. Nanoscale2012,4,6515-6519.
    [173] W. J. Ren; Z. H. Ai; F. L. Jia; L. Z. Zhang; X. X. Fan; Z. G. Zou, Lowtemperature preparation and visible light photocatalytic activity ofmesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ.2007,69,138-144.
    [174] R. Asapu; V. M. Palla; B. Wang; Z. H. Guo; R. Sadu; D. H. Chen,Phosphorus-doped titania nanotubes with enhanced photocatalytic activity. J.Photochem.. Photo.2011,225,81-87.
    [175] H. Natori; K. Kobayashi; M. Takahashi, Preparation and PhotocatalyticProperty of Phosphorus-doped TiO2Particles. J Oleo Sci2009,58,389-394.
    [176] X. X. Lin; F. Rong; D. G. Fu; C. W. Yuan, Enhanced photocatalytic activityof fluorine doped TiO2by loaded with Ag for degradation of organicpollutants. Powder Technol.2012,219,173-178.
    [177] J. S. Wang; S. Yin; Q. W. Zhang; F. Saito; T. Sato, Synthesis andphotocatalytic activity of fluorine doped SrTiO3. J. Mater. Sci.2004,39,715-717.
    [178] K. Maeda; T. Takata; M. Hara; N. Saito; Y. Inoue; H. Kobayashi; K. Domen,GaN: ZnO solid solution as a photocatalyst for visible-light-driven overallwater splitting. J. Am. Chem. Soc.2005,127,8286-8287.
    [179] K. Maeda; K. Teramura; D. L. Lu; T. Takata; N. Saito; Y. Inoue; K. Domen,Photocatalyst releasing hydrogen from water-Enhancing catalytic performanceholds promise for hydrogen production by water splitting in sunlight. Nature2006,440,295-295.
    [180] T. Sasamura; K. Okazaki; A. Kudo; S. Kuwabata; T. Torimoto,Photosensitization of ZnO rod electrodes with AgInS2nanoparticles andZnS-AgInS2solid solution nanoparticles for solar cell applications. Rsc Adv.2012,2,552-559.
    [181] T. Torimoto; T. Adachi; K. Okazaki; M. Sakuraoka; T. Shibayama; B. Ohtani;A. Kudo; S. Kuwabata, Facile synthesis of ZnS-AgInS2solid solutionnanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc.2007,129,12388-12392.
    [182] T. Uematsu; T. Doi; T. Torimoto; S. Kuwabata, Preparation of LuminescentAgInS2-AgGaS2Solid Solution Nanoparticles and Their Optical Properties. J.Phys. Chem. Lett.2010,1,3283-3287.
    [183] X. H. Zhang; Y. C. Du; Z. H. Zhou; L. J. Guo, A simplified method forsynthesis of band-structure-controlled (CuIn)xZn2(1-x)S2solid solutionphotocatalysts with high activity of photocatalytic H(2) evolution undervisible-light irradiation. Int. J. Hydrogen Energy2010,35,3313-3321.
    [184] K. Zhang; D. W. Jing; Q. Y. Chen; L. J. Guo, Influence of Sr-doping on thephotocatalytic activities of CdS-ZnS solid solution photocatalysts. Int. J.Hydrogen Energy2010,35,2048-2057.
    [185] M. T. Li; J. G. Jiang; L. J. Guo, Synthesis, characterization, andphotoelectrochemical study of Cd1-xZnxS solid solution thin films depositedby spray pyrolysis for water splitting. Int. J. Hydrogen Energy2010,35,7036-7042.
    [186] I. Tsuji; H. Kato; A. Kudo, Photocatalytic hydrogen evolution onZnS-CuInS2-AgInS2solid solution photocatalysts with wide visible lightabsorption bands. Chem. Mater.2006,18,1969-1975.
    [187] X. Yang; X. J. Lian; S. J. Liu; G. Wang; C. P. Jiang; J. Tian; J. W. Chen; R. L.Wang, Enhanced photocatalytic performance: a beta-Bi2O3thin film bynanoporous surface. J. Phys. D-Appl.2013,46.
    [188] C. Reitz; K. Brezesinski; J. Haetge; J. Perlich; T. Brezesinski,Nanocrystalline NaTaO3thin film materials with ordered3D mesoporous andnanopillar-like structures through PIB-b-PEO polymer templating: towardshigh-performance UV-light photocatalysts. Rsc Adv.2012,2,5130-5133.
    [189] L. Wang; J. H. Zhan; W. L. Fan; G. W. Cui; H. G. Sun; L. H. Zhuo; X. A.Zhao; B. Tang, Microcrystalline sodium tungsten bronze nanowire bundles asefficient visible light-responsive photocatalysts. Chem. Commun.2010,46,8833-8835.
    [190] J. M. Wu; H. X. Xue, Photocatalytic Active Titania Nanowire Arrays on TiSubstrates. J. Am. Ceram. Soc.2009,92,2139-2143.
    [191] T. K. Jia; W. M. Wang; F. Long; Z. Y. Fu; H. Wang; Q. J. Zhang, Fabrication,characterization and photocatalytic activity of La-doped ZnO nanowires. J.Alloys Compd.2009,484,410-415.
    [192] L. Ye; L. Zan; L. Tian; T. Peng; J. Zhang, The {001} facets-dependent highphotoactivity of BiOCl nanosheets. Chem. Commun.2011,47,6951-6953.
    [193] D. Wang; H. Jiang; X. Zong; Q. Xu; Y. Ma; G. Li; C. Li, Crystal facetdependence of water oxidation on BiVO4sheets under visible light irradiation.Chem. Eur. J.2011,17,1275-1282.
    [194] S. X. Min; G. X. Lu, Dye-Sensitized Reduced Graphene Oxide Photocatalystsfor Highly Efficient Visible-Light-Driven Water Reduction. J. Phys. Chem. C2011,115,13938-13945.
    [195] R. Asahi; T. Morikawa; T. Ohwaki; K. Aoki; Y. Taga, Photocatalysts sensitiveto visible light-Response. Science2002,295,627-627.
    [196] A. H. Zyoud; N. Zaatar; I. Saadeddin; C. Ali; D. Park; G. Campet; H. S. Hilal,CdS-sensitized TiO2in phenazopyridine photo-degradation: Catalystefficiency, stability and feasibility assessment. J. Hazard. Mater.2010,173,318-325.
    [197] T. L. Li; Y. L. Lee; H. S. Teng, CuInS2quantum dots coated with CdS ashigh-performance sensitizers for TiO2electrodes in photoelectrochemical cells.J. Mater. Chem.2011,21,5089-5098.
    [198] G. P. Xu; S. L. Ji; C. H. Miao; G. D. Liu; C. H. Ye, Effect of ZnS and CdScoating on the photovoltaic properties of CuInS2-sensitized photoelectrodes. J.Mater. Chem.2012,22,4890-4896.
    [199] Y. Teraoka; T. Harada; T. Iwasaki; T. Ikeda; S. Kagawa, Selective Reductionof Nitrogen Monoxide with Hydrocarbons over SnO2Catalyst. Chem. Lett.1993,773-776.
    [200]张青红;高镰;郭景坤,四氯化钛水解法制备纳米氧化钦超细粉体.无机材料学报2000,15,21-25.
    [201] A. W. Schill; C. S. Gaddis; W. Qian; M. A. El-Sayed; Y. Cai; V. T. Milam; K.Sandhage, Ultrafast electronic relaxation and charge-carrier localization inCdS/CdSe/CdS quantum-dot quantum-well heterostructures. Nano Lett.2006,6,1940-1949.
    [202] S. F. Chen; X. L. Yu; H. Y. Zhang; W. Liu, Preparation, characterization andactivity evaluation of heterostructure In2O3/In(OH)3photocatalyst. J. Hazard.Mater.2010,180,735-740.
    [203] Y. Hu; D. Z. Li; Y. Zheng; W. Chen; Y. H. He; Y. Shao; X. Z. Fu; G. C. Xiao,BiVO4/TiO2nanocrystalline heterostructure: A wide spectrum responsivephotocatalyst towards the highly efficient decomposition of gaseous benzene.Appl. Catal. B-Environ.2011,104,30-36.
    [204] Y. L. Zhang; A. M. Schultz; P. A. Salvador; G. S. Rohrer, Spatially selectivevisible light photocatalytic activity of TiO2/BiFeO3heterostructures. J. Mater.Chem.2011,21,4168-4174.
    [205] S. Balachandran; M. Swaminathan, Facile Fabrication of HeterostructuredBi2O3-ZnO Photocatalyst and Its Enhanced Photocatalytic Activity. J. Phys.Chem. C2012,116,26306-26312.
    [206] J. Cao; B. D. Luo; H. L. Lin; B. Y. Xu; S. F. Chen, Thermodecompositionsynthesis of WO3/H2WO4heterostructures with enhanced visible lightphotocatalytic properties. Appl. Catal. B-Environ.2012,111,288-296.
    [207] H. Kato; A. Kudo, Photocatalytic water splitting into H2and O2over varioustantalate photocatalysts. Catal. Today2003,78,561-569.
    [208] A. Walsh; Y. Yan; M. N. Huda; M. M. Al-Jassim; S. H. Wei, Band EdgeElectronic Structure of BiVO4: Elucidating the Role of the Bi s and V dOrbitals. Chem. Mater.2009,21,547-551.
    [209] N. N. Kolpakova; P. P. Syrnikov; A. O. Lebedev; P. Czarnecki; W. Nawrocik;C. Perrot; L. Szczepanska,2-5pyrochlore relaxor ferroelectric Cd2Nb2O7andits Fe2+/Fe3+modifications. J. Appl. Phys.2001,90,6332-6340.
    [210] D. P. Cann; C. A. Randall; T. R. Shrout, Investigation of the dielectricproperties of bismuth pyrochlores. Solid State Commun.1996,100,529-534.
    [211] K. Chiang; R. Amal; T. Tran, Photocatalytic degradation of cyanide usingtitanium dioxide modified with copper oxide. Adv. Environ. Res.2002,6,471-485.
    [212] H. Husin; H. M. Chen; W. N. Su; C. J. Pan; W. T. Chuang; H. S. Sheu; B. J.Hwang, Green fabrication of La-doped NaTaO3via H2O2assisted sol-gel routefor photocatalytic hydrogen production. Appl. Catal. B-Environ.2011,102,343-351.
    [213] J. W. Liu; G. Chen; Z. H. Li; Z. G. Zhang, Hydrothermal synthesis andphotocatalytic properties of ATaO3and ANbO3(A=Na and K). Int. J.Hydrogen Energy2007,32,2269-2272.
    [214] R. M. de Almeida; J. R. Li; C. Nederlof; P. O'Connor; M. Makkee; J. A.Moulijn, Cellulose Conversion to Isosorbide in Molten Salt hydrate Media.Chemsuschem2010,3,325-328.
    [215] X. L. Tian; J. Li; K. Chen; J. Han; S. L. Pan, Template-Free and ScalableSynthesis of Core-Shell and Hollow BaTiO3Particles: Using Molten HydratedSalt as a Solvent. Cryst Growth Des2009,9,4927-4932.
    [216] F. Madaro; R. Saeterli; J. R. Tolchard; M. A. Einarsrud; R. Holmestad; T.Grande, Molten salt synthesis of K4Nb6O17, K2Nb4O11and KNb3O8crystalswith needle-or plate-like morphology. CrystEngComm2011,13,1304-1313.
    [217] P. M. Rorvik; T. Lyngdal; R. Saeterli; A. T. J. van Helvoort; R. Holmestad; T.Grande; M. A. Einarsrud, Influence of volatile chlorides on the molten saltsynthesis of ternary oxide nanorods and nanoparticles. Inorg. Chem.2008,47,3173-3181.
    [218] D. G. Nocera; M. W. Kanan, In situ formation of an oxygen-evolving catalystin neutral water containing phosphate and Co2+. Science2008,321,1072-1075.
    [219] J. H. Ye; Z. G. Yi; N. Kikugawa; T. Kako; S. X. Ouyang; H. Stuart-Williams;H. Yang; J. Y. Cao; W. J. Luo; Z. S. Li; Y. Liu; R. L. Withers, Anorthophosphate semiconductor with photooxidation properties undervisible-light irradiation. Nat. Mater.2010,9,559-564.
    [220] J. Du; X. Y. Lai; N. L. Yang; J. Zhai; D. Kisailus; F. B. Su; D. Wang; L. Jiang,Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and TheirEnhanced Photocatalytic Activities. Acs Nano2011,5,590-596.
    [221] Z. H. Li; A. Gessner; J. P. Richters; J. Kalden; T. Voss; C. Kubel; A. Taubert,Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP). Adv.Mater.2008,20,1279-+.
    [222] H. Colfen; M. Antonietti, Mesocrystals: Inorganic superstructures made byhighly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed.2005,44,5576-5591.
    [223] R. Q. Song; H. Colfen, Mesocrystals-Ordered Nanoparticle Superstructures.Adv. Mater.2010,22,1301-1330.
    [224]M. Niederberger; H. Colfen, Oriented attachment and mesocrystals:Non-classical crystallization mechanisms based on nanoparticle assembly.Phys. Chem. Chem. Phys.2006,8,3271-3287.
    [225] B. Hu; L. H. Wu; S. J. Liu; H. B. Yao; H. Y. Shi; G. P. Li; S. H. Yu,Microwave-assisted synthesis of silver indium tungsten oxide mesocrystalsand their selective photocatalytic properties. Chem. Commun.2010,46,2277-2279.
    [226]V. M. Yuwono; N. D. Burrows; J. A. Soltis; R. L. Penn, Oriented Aggregation:Formation and Transformation of Mesocrystal Intermediates Revealed. J. Am.Chem. Soc.2010,132,2163-2167.
    [227]D. Wang; J. Li; X. A. Cao; G. S. Pang; S. H. Feng, Hexagonal mesocrystalsformed by ultra-thin tungsten oxide nanowires and their electrochemicalbehaviour. Chem. Commun.2010,46,7718-7720.
    [228] S. Disch; E. Wetterskog; R. P. Hermann; G. Salazar-Alvarez; P. Busch; T.Bruckel; L. Bergstrom; S. Kamali, Shape Induced Symmetry inSelf-Assembled Mesocrystals of Iron Oxide Nanocubes. Nano Lett.2011,11,1651-1656.
    [229] L. Zhou; P. O'Brien, Mesocrystals: A New Class of Solid Materials. Small2008,4,1566-1574.
    [230] H. Ye; J. Lee; J. S. Jang; A. J. Bard, Rapid Screening of BiVO4-BasedPhotocatalysts by Scanning Electrochemical Microscopy (SECM) and Studiesof Their Photoelectrochemical Properties. J. Phys. Chem. C2010,114,13322-13328.
    [231] A. Iwase; A. Kudo, Photoelectrochemical water splitting usingvisible-light-responsive BiVO4fine particles prepared in an aqueous aceticacid solution. J. Mater. Chem.2010,20,7536-7542.
    [232] W. Z. Yin; W. Z. Wang; L. Zhou; S. M. Sun; L. Zhang, CTAB-assistedsynthesis of monoclinic BiVO4photocatalyst and its highly efficientdegradation of organic dye under visible-light irradiation. J. Hazard. Mater.2010,173,194-199.
    [233] Y. Hu; D. Li; Y. Zheng; W. Chen; Y. He; Y. Shao; X. Fu; G. Xiao,BiVO4/TiO2nanocrystalline heterostructure: A wide spectrum responsivephotocatalyst towards the highly efficient decomposition of gaseous benzene.Appl. Catal., B2011,104,30-36.
    [234] J. Hernandez-Fernandez; A. Aguilar-Elguezabal; S. Castillo; B. Ceron-Ceron;R. D. Arizabalo; M. Moran-Pineda, Oxidation of NO in gas phase by Au-TiO2photocatalysts prepared by the sol-gel method. Catal. Today2009,148,115-118.
    [235] H. J. Yan; J. H. Yang; G. J. Ma; G. P. Wu; X. Zong; Z. B. Lei; J. Y. Shi; C. Li,Visible-light-driven hydrogen production with extremely high quantumefficiency on Pt-PdS/CdS photocatalyst. J. Catal.2009,266,165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700