含金属酞菁聚芳醚酮的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过化学(后成环)和物理(溶液掺杂)两种方法将功能化的金属酞菁引入高性能的聚芳醚酮体系,制备了一系列含金属酞菁的聚芳醚酮。通过红外、紫外、核磁、元素分析等等手段对其进行了表征,确定其结构。用化学方法制备的含金属酞菁聚芳醚酮显示良好热稳定性和溶解性,由于所含金属不同,它们氯仿溶液在可见光范围内显示出不同吸收峰,从而展现不同的颜色。研究还发现含钴酞菁聚芳醚酮在降解三氯苯酚(TCP)过程中显示较好的催化性能,该材料可能成为苛刻条件下催化降解TCP的催化剂。可以将四氨基锌酞菁和铜酞菁齐聚物通过溶液掺杂的方法制备了一系列金属酞菁/聚芳醚酮复合材料,通过电镜研究了这些复合材料的形貌变化、形貌的形成过程以及复合材料的形貌变化与介电性能的关系。另外还考察了复合材料的电导率、热性能、力学性能等与实际应用相关的性能。研究发现,铜酞菁齐聚物/磺化聚芳醚酮复合材料显示良好的介电性能、以及力学性能和热性能,是一种非常有潜力的高介电常数材料,具有良好的应用前景。
Poly(Aryl ether ketone) (PAEK) has achieved remarkable positions among other thermoplastic polymers because of their unique chemical stability, thermo- oxidative stability, mechanical properties at high temperatures and radiant resistance. At first, considerable effort was made to modify their chemical structure, essentially in order to improve their thermal properties. In recent years, more attention was paid to their functionalization. This could be achieved either by chemical modification (graft and copolymerization) or by physical method (blend) introducing functional groups into PAEK. Metallophthalocyanine (MtPc) is a kind of important functional material, already obtaining the application in many aspects, such as, the high dielectric constant materials, the catalyzed material, the information storage material, the electroluminescence material and the nonlinear optics material and so on. At the same time, it has the high thermo-stability and the good chemical stability, which is just match with PAEK. Introducing MtPc into PAEK, it does not only realize PAEK functionalization, but also maintain their respective outstanding performance, and the final product will be one kind of extremely outstanding functional material.
     In recent years, the MtPc and its derivatives have made high dielectric constant materials to be as the hot spot for people. High dielectric constant materials own the widespread applications such as chip capacitor, the electrically operated installment, including the man-made muscle and so on, and it is required to be with high dielectric constant, and low dielectric loss. Because MtPc has the big conjugate structure, the easy displacement of the electrons under electric fields from the conjugatedπ-bonds within the entire molecule results in high dielectric response. Furthermore, the weak Van der Waals intermolecular forces render the molecular solids with an elastic modulus not much higher than the polymer matrix. In addition, MtPc solids are difficult to process and show high dielectric loss owing to long-range intermolecular hopping of electron. Therefore the people have already introduced MtPc into polymer system by grafting or blending to prepare dielectric constant materials. On the one hand the grafting method MtPc is restricted in the system content, but blend often causes the MtPc to disperse in the polymer substrate, which is not good and leads to the poor use; on the other hand the polymer substrate material performance is not good, and it has limited the material application above.
     In our works, we have prepared a series of PAEK containing cyano pendants, after under the different metal chloride existence condition, prepared a series of PAEK containing MtPc, and discussed their performance. We also prepared some MtPc/PAEKs compound materials by solution composite. We studied the morphologies of MtPc/PAEKs compound materials, and discussed the contacts between the morphologies and the dielectric properties of MtPc/PAEKs compound materials. Moreover, we reported these materials conductivity, thermal properties, mechanical performance and so on. The main results are summarized as follows:
     1. We synthesized two kinds of novel bisphenol monomers containing cyano pendants: (3,4-dicyano) phenylhydroquinone and (4-cyano) phenylhydroquinone, through MS, FTIR, NMR and the ultimate analysis has determined their structure. A series of cyanophenyl-substituted poly(aryl ether ketone)s (PAEKs) have been successfully synthesized from these bisphenol monomers. All these polymers exhibited high glass transition temperatures and excellent thermal stability. All polymers demonstrate better solubility, and the CN-PAEKs solubility is better than 2CN-PAEKs. Those polymers with high molecular weight show good mechanical properties. All the polymers exhibit amorphous patterns.
     2. A series of novel PAEK copolymer with metallophthalocyanine (MtPc) units was synthesized by the reaction of PAEK containing dicyanophenyl with excess amounts of 1, 2-dicyanobenzene and different metal chloride in quinoline. The series of polymer demonstrates the higher glass transition temperature, the good thermal stability and the good solubility. The chloroform solution of these PAEK copolymer containing MtPc, along with contains the metal the difference, appears the different absorption in the visible light scope, thus the solution show the different color. Along with MtPc in polymer content different, the absorption peak intensity also along with it change, this and NMR, the ultimate analysis result is consistent. The chloroform solution of these PAEK copolymer containing MtPc with different metal content, the fluorescence spectrum is nearly invariable, and only intensity has the slight change, which explains the different central metal having little influence on copolymers.
     3. We discuss the catalyzed degeneration trichlorophenol (TCP) performance of PAEK containing cobalt phthalocyanine with side chain (P-PAEK-CoPc) and PAEK terminated with cobalt phthalocyanine (T-PAEK-CoPc).The research showed, under the oxidant KHSO5 condition, two kinds of catalysts have the obvious catalyzed effect, and TCP conversion rate increases along with the time increasing, and P-PAEK-CoPc showed the better catalyzed effect, after 6 hours, the TCP conversion rate achieves 70%. As to these two kinds of catalysts, the oxidant KHSO5 is better than H2O2. This material has the possibility to become the catalyst of catalyzed degradation TCP under the harsh condition.
     4. A series of compound material (CN-ZnPc25%, 2CN-ZnPc25%, S-ZnPc25%, S-ZnPc40%) (wt%) were prepared using the amino substitution zinc phthalocyanine (ZnPc-NH2) separately with CN-PEEK, 2CN-PEEKNK and SPAEK. We discussed the relations between the morphologies and the dielectric properties of ZnPc-NH2/PAEKs compound materials. The series of compound materials dielectric constant reached as high as 23 mostly, but dielectric loss was only about 0.7.
     5. A series of compound material (CN-CuPc25%, 2CN-CuPc25%, S-CuPc25%, S-CuPc40%) (wt%) were prepared using the copper phthalocyanine oligomer (o-CuPc) separately with CN-PEEK, 2CN-PEEKNK and SPAEK. We discussed the relations between the morphologies and the dielectric properties of o-CuPc /PAEKs compound materials. The experiment proved with the compatible increase, the dielectric layer size is small as far as possible and the metallophthalocyanine content increase is advantageous to enhance compound material dielectric properties. The dielectric constant of a series of compound material mostly reaches as high as to about 800, which is higher than that of the ZnPc-NH2 series of compound material obviously, but dielectric loss is no more than 0.8. This indicated the increase lies between the electricity level conjugate structure, which is advantageous the conjugateπ-bonds electrons were very easy to have the displacement under the electric field function in the molecular, causing high dielectric response in the entire molecular.
     6. Through a series of research, we have proposed the S-CuPc system morphology form process. Firstly, the sulfonic acid of SPAEK and carboxylic acid of the copper phthalocyanine oligomer form the hydrogen bonds, under the stirring condition, metallophthalocyanine nanometer pellets packaged by SPAEK form, and then the structures closely packed by spherules form in the process of drying membrane preparation.
引文
1. 马德柱,何平笙. 高聚物的结构与性能[M], 北京: 科学出版社, 1995: 448-453.
    2. W. H. Bonner, US pat., 3065205, 1962
    3. Berezin et al., Br pat., 3219679, 1965
    4. Goodman I., et al., Br pat. 871227, 1964
    5. J. B. Rose, US pat., 4320224
    6. J. B. Rose, Br pat., 1558671, 1976
    7. J. B. Rose, Br pat., 1414422, 1975
    8. J. B. Rose, Br pat., 1414423, 1975
    9. J. B. Rose, Br pat., 1414424, 1975
    10. V. Lakshmana Rao, J Macromol. Sci. Rev. Macromol. Chem. Phys. 1995, C35, 661
    11. T. E. Attwood, P. C. Dawson, J. L. Freeman, R. J. Hoy, J. B. Rose, P. A. Staniland, Polymer 1981, 22, 1096
    12. P. C. Dawson, D. J. Blundell, Polymer 1980, 21, 577
    13. D. P. Jones, D. C. Leach, D. R. Moore, Polymer 1985, 26, 1385
    14. K. H. Gardner, B. S. Hsiao, K. L. Faron, Polymer 1994, 35, 2290
    15. J. H. Clark, J. E. Denness, Polymer 1994, 35, 5124
    16. G. S. Bennett, R. J. Farris, J. Ploy. Sci., Part A: Polym. Chem. 1994, 32, 73
    17. F. Wang, J. Roovers, P. M. Toporowske, Macromolecules 1993, 26, 5205
    18. F. Wang, J. Roovers, J. Ploy. Sci., Part A: Polym. Chem. 1994, 32, 2413
    19. W. Risse, D. Y. Sogah., Macromolecules 1990, 23, 4029
    20. M. D. Guiver, G. P. Robertson, Macromolecules 1995, 28, 294
    21. M. D. Guiver, G. P. Robertson, S. Foley, Macromolecules 1995, 28, 7612
    22. V. L. Rao, P. Sivadasan, Eur. Polym. J. 1994, 30, 1381
    23. S. Zhang, L. Fu, J. Liu, D. Yang, Z. Gao, M, Jia, Y. Zheng, Z. Wu. Macromol. Chem. Phy. 2000, 201, 649.
    24. Pierr Moulinie, R. M. Parou, Z. Y. Wang, J. Ploy. Sci., Part A: Polym. Chem. 1995, 33, 2741
    25. M. G. Zolotukhin, H. M. Colquhoun, L. G. Sestiaa, D. R. Rueda, D. Flot, Macromolecules 2003, 36, 4766
    26. C. Shu, C. Leu, F. Huang, Polymer 1999, 40, 6591
    27. C. Shu, C. Leu, Macromolecules 1999, 32, 100
    28. H. M. Colquhoun, D. F. Lewis, P. L. Herbertson, K. Wade, Polymer 1997, 38, 4539
    29. J. Baek, H. Qin, P. T. Mather, L. Tan, Macromolecules 2002, 35, 4951
    30. C. Hamciuc, E. Hamciuc, M. Bruma, M. Klapper, T. Pakula, Polymer Bulletin 2001, 47, 1
    31. S. K. Park, S. Y. Kim, Macromolecules 1998, 31, 3385
    32. J. Baek, L. Tan, Polymer 2003, 44, 3451
    33. S. Kwak, H. Y. Lee, Macromolecules 2000, 33, 5536
    34. N. Yonezawa, S. Mori, S. Miyata, Y. Ueha-Anyashiki, K. Maeyama, Reactive & Functional Polymers 2002, 53, 11
    35. O. Noiset, C. Henneuse, Y. Schneider, J. Marchand-Brynaert, Macromolecules 1997, 30, 540
    36. S. A. Patel, M. V. Patel, A. Ray, R. M. Patel, J. Ploy. Sci., Part A: Polym. Chem.2003, 41, 2335
    37. C. Henneuse-Boxus, A. De Ro, P. Bertrand, J. Marchand-Brynaert, Polymer 2000, 41, 2339
    38. S. Giancaterina, S. Ben Amor, G. Baud, J. L. Gardette, M. Jacquet, C. Perrin, A. Rivaton, Polymer 2002, 43, 6397
    39. C. Henneuse-Boxus, T. Boxus, E. Duliére, C. Pringalle, L. Tesolin, Y. Adriaensen, J. Marchand-Brynaert, Polymer 1998, 39, 5359
    40. C. Fougnies, M. Dosiere, M. H. J. Koch, J. Roovers, Macromolecules 1998, 31, 6266
    41. C. Fougnies, M. Dosiere, M. H. J. Koch, J. Roovers, Macromolecules 1999, 32, 8133
    42. U. Hoffmann, F. Helmer-Metzmann, M. Klapper, K. Müllen, Macromolecules 1994, 27, 3575
    43. P. M. Hergenrother, J. G. Simith Ir, Polymer 1994, 35, 4857
    44. N. Tanaka, T. Iijima, W. Fkuda, M. Tomoi, Polym. Inter. 1997, 42, 95
    45. S. Matsuo, T. Murakami, R. Takasawa, J .Polym. Sci., Polym. Chem. 1993, 31, 3439.
    46. A. R. Hlil, Y. Meng, A. S. Hay, I. A. Abu-yousef, J. Polym. Sci., Polym. Chem. Ed.2000, 38, 1318.
    47. T. Takekoshi, J. G. Wirth, D. R. Heath, J. E. Kochanowski, J. S. Manello, M. J. Webber, J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 3096.
    48. D. R. Heath, J. G. Wirth, US Patent 3, 730, 946, 1973.
    49. Blinne, Gerd, Bender, Herbert, Neumann, Peter. US Patent 4, 567, 248, Jan 28, 1986.
    50. Shinode, Jitsuo, Yamasaki, Hirataka, Takizawa, Toshiharu, US Patent 5, 239, 107, Aug 24,1993.
    51. M.-A. Shimizu, K. K. Higashi Shimbashi, M.-A. Kakimoto, Y. Imai, J. Polym. Sci., Polym. Chem.1987, 25, 2385.
    52. Matsuo, Shigeru, Murakami, Tomoyooshi(Idemitsu Kosan Co. Ltd. ) Jpn. Kokai Tokky Koho JP 60, 161, 428, (85,161,428) (CL C08G65140),Aug 3, 1985. Appl.
    84/1367, Jan 10, 1984; p. 4.
    53. V. L. Rao, A. Saxena, K. N. Ninan, J. Macro. Sci., Part C, Polymer Reviews, 2002, C42, 513.
    54. A. Parthiban, A. L. Guen, Y. Yansheng, U. Hoffamnn, M. Klapper, K. Mullen, Macromolecules 1997, 30, 2238
    55. G. S. Bennett, J. Farris, J. Ploy. Sci., Part A: Polym. Chem. Ed. 1994, 32, 73.
    56. T. Koch, H. Ritter, Macromolecules 1995, 28, 4806.
    57. 王怡山 硕士学位论文 吉林大学化学学院 2003
    58. 王贵宾,王东, 姜振华,陈春海,张万金,吴忠文,高等学校化学学报,2001, 22, 1053.
    59. 王贵宾,陈春海, 周宏伟, 姜振华,张万金,吴忠文,高等学校化学学报,2000, 21, 1325.
    60. B. J. Liu, W, Hu, Y. H. Jin, C. H. Chen, Z. H. Jiang, Z. W. Wu, Macro. Chem. Phy. 2004, 205, 1677.
    61. B. J. Liu, W, Hu, C. H. Chen, Z. H. Jiang, W. J. Zhang, Z. W. Wu, Polymer, 2004, 45, 3241.
    62. B. J. Liu, W, Hu, C. H. Chen, Z. H. Jiang, W. J. Zhang, Z. W. Wu, Polymers For Advanced Technologies, 2003, 14, 221
    63. B. J. Liu, G. B. Wang, W, Hu, Y. H. Jin, C. H. Chen, Z. H. Jiang, W. J. Zhang, Z. W. Wu, J. Polym. Sci., Polym. Chem. 2002, 40, 3392.
    64. 刘伯军, 陈春海, 呼微, 孙辉,赵爽, 姜振华, 张万金,吴忠文,高等学校化学学报,2002, 23, 321
    65. C. C. Lezenoff, S. GreenBerg, S. M. Macuccio, P. C. Minor, P. Seymour, L. B. P. Lever, K. B. Tomer, Inorg. Chim. Acta 1984, 89, L35
    66. 沈永嘉,酞菁的合成与应用,化学工业出版社,2002
    67. C. C. Lezenoff, A. B. P. Eds, Phthalocyanine, Properties and Application, VCH: New York, 1989, 1993, 1996, vols 1-4
    68. S. Dogo, J. P. Germain, C. Maleysson, A. Pauly. Thin Solid Films 1992, 219,251.
    69. A. K. Abass, A.R. Collins, A. Krier. J.Phys.Chem.1993, 54, 375.
    70. A. T. J. Parr, A. Krier, A.R.Collins. Thin Solid Films 1993, 230, 225.
    71. S. Dogo, J. P. Germain, C. Maleysson, A. Pauly. Thin Solid Films 1992, 219, 251.
    72. S. Wring, J. P. Hart, L. Bracey, B. Birch. J.Anal.Chem.Acta 1990, 231, 230.
    73. J. H. Weber, D. H. Busch. Inorg.Chem.1965, 4, 469.
    74. R.Bonnett. Chem.Soc.Rev. 1995, 19.
    75. J. R. Darwent, P. Douglas, A. Harrimann, G. Porter, M. C. Richoux. Coord.Chem.Rev. 1982, 44, 83.
    76. J. Zakrzewski, C. Giannotti. Inorg.Chim.Acta 1995, 232, 68.
    77. A. Sorokin, J. L.Seric, B. Meunier. Science 1995, 268, 1163.
    78. A. Sorokin, S. D. Suzzoni-Dezard, D. Poullain, J. P. Noel, B. Meunier. J.Am.Chem.Soc.1996, 118, 7410.
    79. B. Meunier, A. Sorokin. Acc.Chem.res.1997, 30, 470.
    80. M. Bressan, N. Celli, N. Alessandro, L. Liberatore, A. Morvillo, L. Tonicci. J.Organomet.Chem. 2000, 593, 416.
    81. I. H. Cho, Y. S. Lim. Chem.Lett.1987, 2107.
    82. O. E. Sielcken, J. Schram, R. J. M. Nolte, J. Schoonman, W. Drenth. J.Chem.Soc.,Chem.Commun.1988, 109.
    83. M. Hosoda, T. Wada, A. Yamada, A. F. Garito, H. Sassbe. Jpn.J.Appl.Phys.art 1991, 30, 1715.
    84. H. S. Nalwa, A. Kakuta. Thin Solid Films 1995, 254, 218.
    85. G. Pawlonski, H. W. Wollmann. Angew.Chem.Int.Ed.Engl. 1989, 28, 144.
    86. J. Simon, P. Bassoul, S. Norvez. New J.Chem.1989, 13, 13.
    87. M. K. Cassteveus, M. Samoc, J. Pfleger, P. N. Prasad. J.Chem.Phys.1990, 92, 2019.
    88 A. Grund, A. Kalbeitzel, A. Mathy, R. Sehwarz, C. Bubect, P. Vermehren, M. Hanack. J.Phys.Chem.1992, 96, 7450.
    89. M. Wang, H. Z. Chen, S. L. Yang, J. Photochem. Photobiol. A, Chem. 1990, 53, 437.
    90. K. Y. Law. Chem.Rev. 1993, 93, 449.
    91. Y. Lei, J. Z. Sun, M. Wang, R. S. Xu, Mater. Chem. Phys. 2003, 78, 852
    92. A. Ogunsipe, J. Y. Chen, T. Nyokong, New. J. Chem. 2004, 28, 822
    93. H. Z. Chen, K. J. Jiang, M. Wang, J. Photochem. Photobio., Part A, Chemistry, 1999, 120, 211
    94. R. Litran, E. Blanco, M. Ramirez-del-Solar, J. Non-Cryst. Solids. 2004, 333, 327
    95. H. Kaji, Y. H. Shimoyama, Thin Solid Films, 2002, 408, 245
    96. D. Woehrle, G. Kraeczyk, Makromol. Chem. 1986, 187, 2535
    97. J. Gitzel, H. Ohno, E. Tsuchida, D. Woehrle, Ploymer 1986, 27, 1781
    98. M. W. Woo, Mphil Thesis, The Chinese University of Hong Kong, 2001
    99. Y. Chen, M.Hanack, S. O’Flaherty, G. Bernd, A. Zeug, B. Roder, W. Blau, Macromolecules 2003, 36, 3786.
    100. M. Suzki, Y. Ohta, H. Nagae, T. Ichinohe, M. Kimura, K. Hanabusa, H. Shirai, D. Wohrle, Chem. Commun. 2000, 213.
    101. Y. Sakai, M. Ueda, A. Yahagi, N. Tanno, Polymer 2002, 43, 3497
    102. Y. H. Meng, I. A. Abu-yousel, A. R. Hlil, A. S. Hay, Macromolecules 2000, 36, 9185.
    103. W. Wan, Y. Z. Meng, Q. Zhu, S. C. Tjong, A. S. Hay, Polymer 2003, 44, 575.
    104. Y. Z. Meng, W. Wan, M. Xiao, A. S. Hay, Green Chem. 2004, 6, 249
    105. G. Meyer, M. Hartmann, D. Woehrle Makromol. Chem. 1975, 176, 1919
    106. M. Hartmann, G. Meyer, D. Woehrle Makromol. Chem. 1975, 176, 831
    107. H. Rengel, P. Gattinger, R. Silerova, D. Neher, J. Phys. Chem.B 1999,103,6858.
    108. G. J. Clarkson, N. B. Mckeown, K. E. Treacher, J. Chem. Soc. Perkin Trans. ?, 1995, 1817
    109. G. J. Clarkson, A. Cook, N. B. Mckeown, K. E. Treacher, Z. Ali-Adib, Macromolecules 1996, 29, 913.
    110. J. Fu, Z. Y. Li, D. K. Ng, C. Wu, Langmuir 2002, 18, 2843
    111. G. E. Moore, Progress in digital integrated electronics, IEEE IEDM Tech Dig, 1975: 11
    112. 邵天奇,任天令,李春晓,朱钧,固体电子学研究与进展,2002, 22, 312
    113. A. D. Hilton, B. W. Richetts, J Phys. 1996, 29, 1321
    114. 李杰, 韦平, 汪根林, 江平开,绝缘材料 2003, 5, 3
    115. 李晓和,电子元件与材料,1995, 10, 26
    116. J. Y. Li, N. Rao, Applied Physics Letter 2002, 9, 1869
    117. Y. Bai, Z.Y. Cheng, V. Bharti, H. S. Xu, Q. M. Zhang, Applied Physics Letter 2000, 1, 3804
    118. Y. Rao, S. Ogitani, P. Kohl, C. P. Wong, Journal of Applied Polymer Science 2002, 1, 1084.
    119. Y. Shen, Z. X. Yue, M. Li, C. W. Nan, Adv. Funct. Mater. 2005, 15, 1100.
    120. E. Itoh, K. Miyaivi, Thin. Solid. Films, 2005, 499, 95.
    121. Z. M. Dang, Y. H. Lin, C. W. Nan, Adv. Mater. 2003, 15, 1625.
    122. R. J. Klein, J. Runt, Q. M. Zhang, Macromolecular, 2003, 36, 7220.
    123. C. Huang, Q. M. Zhang, Appl. Phy. Lett. 2004, 84, 4391.
    124. C. Huang, Q. M. Zhang, A. Jakli, Adv. Funct. Mater. 2003, 13, 525.
    125. C. Huang, Q. M. Zhang, Appl. Phy. Lett. 2003, 82, 3502.
    126. S. H. Zhang, N. Y. Zhang, C, Huang, K. L. Ren, Q. M. Zhang, Adv. Mater. 2005, 17, 1879.
    127. R. E. Barker Jr, C. R. Thomas, J, Appl. Phys. 1964, 35, 3203.
    128. R. E. Barker Jr, A. H. Sharbaugh, J. Polym. Sci. C 1965, 139.
    129. P. C. Mehendru, S. Chand, K. Jain, Indian J. Pure Appl. Phys. 1980, 18, 183.
    130. K. Nakagawa, Y. Ishida, J. Polym. Sci.: Polym. Phys. Ed. 1973, 11,1503.
    131. J. Kulek, B. Hilczer, A. Szlaferek, Ferroelectrics 1988, 81, 365.
    132. T. Nakano, M. Fukuyama, Y. Ohki, Jpn, J. Appl. Phys., Part 1 1988, 27, 1042.
    133. X. Y. Yan, T. Gwdson Ⅲ, J.Phys. Chem. B, 2006, 110, 14667.
    134. M. Guo, X. Z. Yan, Y. Kwon, T Hayakawa, M. Kakimoto, T. Goodson Ⅲ, J. Am. Chem. Soc, 2006, 128, 14820.
    135. J. Bijwe, N. Phougat, J. Phorphy. Phthalocy. 1998, 2, 223.
    136. A. Furusawa, K. Horie, K. Kuroki, I. Mita, J. Appl. Phys. 1989, 66, 6041.
    137. G. W. Bak, Phys. Status Solidi. A: 1986, 93, K195.
    138. M. Hanack, S. Deger, A. Lange, Coord. Chem. Rev. 1988, 83, 115.
    139. H. Schultz, H. Lehmann, M. Rein, M. Hanack, Struct. Bond. 1990, 74, 41.
    140. C. P. Chang, C. D. Liu, S. W. Huang, D. T. Chao, S. N. Lee, Synthetic Metals, 2004, 142, 275.
    141. Y. Haba, E. Segal, M. Narkis, G. I. Titelman, A. Siegmann, Synthetic Metals, 2000, 110, 189.
    142. H. S. Nalwa, L. Dalon, P. Vasudevan, Eur. Polym. J., 1985, 21, 943.
    143. Z. Bao, A. Lovinger, A. Dodabalapur, Adv. Mater. 1997, 9, 42
    144. T. Tominaga, K. Hayashi, A. Toshima, Appl. Phys. Lett. 1997, 70, 762
    145. P. D. Gould, Chem. Rev. 1984, 22, 1439
    146. Q. M. Zhang, H. Li, M. Poh, H. X, Z. Y. Cheng, F. Xia, C. Huang, Nature, 2002, 419, 284
    147. H. S. Xu, Y. Bai, V. Bharti, Z. Y. Cheng, J Appl. Polym. Sci. 2001,82, 70.
    148. J. W. Wang, Q. D. Shen, H. M. Bao, C. Z. Yang, Q. M. Zhang, Macromolecular, 2005, 38, 2247.
    149. J. W. Wang, Q. D. Shen, C. Z. Yang, Q. M. Zhang, Macromolecular, 2004, 37, 2294.
    150. C. Huang, Q. M. Zhang, Adv. Mater. 2005, 17, 1153.
    151. C. Huang, Q. M. Zhang, Adv. Funct. Mater. 2004, 14, 501.
    152. Y. Bai, Z. Y. Cheng, V. Bharti, H. Xu, Q. M. Zhang, Appl. Phys. Lett. 2000, 76, 3804
    153. J. Li, N. Rao, Appl. Phys. Lett. 2002, 81, 1860
    154. F.Ciardelli、E.Tsuchida、D.Wohrle 编著 张志奇、张举贤 译,高分子金属络合物,北京大学出版社,1999.
    155. A. Sorkin, J. L. Seris, B. Meunier, Science 1995, 268, 1163
    156. A. Sorkin, S. De Suzzoni-Dezard, D. Poullain, J. P. Noel, B. Meunier, J. Am. Chem. Soc, 1996, 118, 7410.
    157 A. Sorkin, B. Meunier, Chem. Eur. J. 1995, 268, 1163
    158. M. Bernard, S. Alexander, Acc. Chem. Res. 1997, 30, 470
    159. T. Ichinohe, H. Miyasaka, A. Isoda, M. Kimura, K. J. Hanabusa, H. F. Shirai, Reactive & Functional Polymers 2000, 43, 63–70
    160. G. Labat, J. L. Seris, B. Meunier, Angew. Chem. Int. Ed. Engl. 1990, 29, 1471
    161. 丛方地,杜锡光,赵宝中,刘 群,陈 彬,高等学校化学学报,2002, 23, 2221
    162. J. Y. Li, Rev. Lett. 2003, 90, 217601
    163. 高燕,蹇锡高,宣英男,徐志勇,尚蕾,崔宇辉,反应型共聚醚酮酮及其环状产物的合成与表征,高分子学报,2001. 6 403
    164. 王洋 硕士学位论文 吉林大学化学学院 2003
    165. Y. Liu, N. Wang, Y. J. Li, H. B. Liu, Y. L. Li, J. C. Xiao, X. H. Xu, C. H. Huang, S. Cui, D. B. Zhu, Macromolecular, 2005, 38, 4880.
    166. C. H. Huang, N. Wang, Y. L. Li, C. H. Li, J. B. Li, H. B. Liu, D. B. Zhu, Macromolecular, 2006, 39, 5319.
    167. F. H. Lu, S. Q. Xiao, Y. L. Li, H. B. Liu, H. M. Li, J. P. Zhuang, Y. Liu, N. Wang, X. R. He, X. F. Li, L. B. Gan, D. B. Zhu, Macromolecular, 2004, 37, 7444.
    168. 牛亚明 博士学位论文 吉林大学化学学院 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700