表面等离子体共振技术及其在光子晶体光纤传感中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振因其对环境折射率变化非常敏感的特性,在光学传感领域有着诸多优点和广阔的应用前景;近十多年来,光子晶体光纤的研究飞速发展,已经在光纤传感领域展现出了巨大的潜能;将结构灵活的光子晶体光纤和高灵敏度的表面等离子体共振技术相结合,为光学传感带来了一股新的活力,吸引了越来越多学者的关注。论文主要围绕表面等离子体共振以及光子晶体光纤在光学传感中的应用开展理论和实验研究。主要内容包括:
     1、对金属介电常数随温度变化的计算进行了修正,提出利用表面等离子体共振实现温度控制反射率的方法。在Kretschmann结构中的金属膜上涂覆高热光系数的聚合物材料,考虑结构中各种材料折射率以及金属膜厚度随温度的变化,利用特征矩阵法进行了数值计算,得到表面等离子体共振反射率曲线随温度的变化。计算结果显示,波长为532nm的p偏振光分别以70o角和75o角入射时,在10~90oC范围内调节温度,可实现反射率在52.8%~41.5%和31.1%~18.8%范围内的调节。
     2、建立模型推导得到了同轴电介质-金属薄膜-电介质结构中表面等离子体激元的色散方程。在这种结构中各阶模式都发生了分裂,形成了高折射率高损耗和低折射率低损耗的两种模式,该模型为理解同轴电介质-金属薄膜-电介质结构表面等离子体激元模式的传播提供了直观的图像。用色散方程计算了0.5~1.5μm波长范围内各阶模式的等效折射率以及传输损耗,并将结果与有限元法数值模拟得到的结果进行对比分析,两者吻合得很好。根据计算结果,文章还进一步分析了色散方程的适用范围。
     3、设计了三种基于光子晶体光纤的表面等离子体共振传感器。前两种为包层外镀膜结构,一种金属膜与待测介质直接接触,用于折射率传感,另外一种金属膜外涂覆高热光系数的敏感层,用于温度传感;第三种为光子晶体光纤空气孔内壁选择性镀膜的温度传感器。在包层外镀膜结构中,可以通过控制光子晶体光纤中空气孔塌缩程度来控制纤芯模式与金属表面等离子体激元模式的耦合。采用有限元法模拟计算了光纤外所镀金属膜厚度、空气孔塌缩程度等参数对传感器损耗谱的影响,模拟计算结果表明,采用波长检测的工作方式,这种类型的传感器对水性介质折射率测量灵敏度能够达1700nm·RIU-1,采用含氟聚合物作为热敏材料,其温度传感灵敏度能够达到200pm/oC以上。第三种传感器中,光纤包层的第二层孔中填充了高热光系数的液体,其中部分孔内壁镀上了金属膜。温度的变化将影响纤芯基模与表面等离子体模式之间的耦合,从而使光纤的损耗谱发生改变。讨论了传感器各部分材料,包括金属膜、填充液体和熔融石英,介电常数随温度的变化,通过数值计算分析了传感器的模场分布和损耗谱,模拟表明该结构温度传感的灵敏度能达到720pm/oC。
     4、提出并实现了一种基于选择性液体填充光子晶体光纤的温度传感器。研究了一种放射状混合光子晶体光纤(radially hybrid photonic crystal fiber)结构,光子晶体光纤中环绕纤芯的第一圈孔内填充了高折射率的溶液,外圈仍为空气孔。分析了这种结构光纤的传输特性,重点讨论了最内圈高折射率柱的类带隙作用,研究发现光纤吸收损耗对填充液体折射率非常敏感。模拟计算了注入光纤中金溶胶的吸收谱及其随温度的变化,结果表明温度对其影响很小。利用光子晶体光纤的选择性空气孔塌缩技术和液体填充技术,制作了最内圈孔填充高折射率二甲基亚砜和水性金溶胶混合溶液的光子晶体光纤。搭建了光纤热光特性的测量系统,实验测量了选择性液体填充PCF损耗谱随温度的变化,在538nm和666nm附近分别有两个损耗峰,峰值波长与温度之间基本成线性关系,在20~28oC范围内,得到了高达-5.5nm/oC的灵敏度。该实验同时首次证实了放射状混合光子晶体光纤中类带隙作用的存在。
As the surface plasmon resonance (SPR) is highly sensitive to the variations in therefractive index of the surrounding dielectrics, it has many advantages and wide rangeof applications in optical sensing. With the rapid development of photonic crystal fibers(PCF) in the recent decade, it has shown great potential in fiber optic sensing.Combining of the highly sensitive SPR technology with PCF bings new vitality to theoptical sensing and has attracted increasing attentions. The applications of surfaceplasmon resonance and photonic crystal fiber in optical sensing are investigated intheory and experiment in this thesis. The primary contents are presented as follows:
     1. The calculation of the temperature dependence of the dielectric function of metalis modified. A method for controlling the reflection index of mirror by using the surfaceplasmon resonance is proposed. A polymer film with high thermooptic coefficient iscoated on the metal film in the Kretschmann configuration. The variation of metal filmthickness and dielectric constants for all layers with temperature are calculated, and thedevice proposed is numerically simulated by using the characteristic matrix method.The results of the simulation show that when the incident wavelength is532nm, and thetemperature is controlled between10oC and90oC, the reflection index can becontrolled from52.8%to41.5%for70oincident angle and31.1%to18.8%for75oincident angle.
     2. The dispersion equation of coaxial dielectric-metal-dielectric structure isestablished. Each mode splits into a high effective refractive index branch and a loweffective refractive index branch. An intuitive picture that allows for a qualitativeunderstanding is provide in this model. The effective refractive indexes and propagationlosses of the modes are calculated by using the analytical dispersion expression. They fitwell with the numerical simulation results obtained by using finite element method from0.5μm to1.5μm. According to the simulation results, the applicability of the dispersionrelation is analyzed.
     3. Three kinds of surface plasmon resonance sensor based on the photonic crystalfiber are proposed. The first two kinds are based on the photonic crystal fiber withmetallic coating on the cladding. One with the metal film directly contacting with theanalyte for refractive index sensing, another with a sensing layer with largethermo-optic coefficient coating on the metal film for temperature sensing. The thirdone is a temperature sensor based on the photonic crystal fiber with selectively metalliccoating in the air holes. In the cladding coated structure, the coupling of fiber coremodes and surface plasmon modes can be controlled by the air holes collapsing inphotonic crystal fiber. The effects of metal film thickness and air hole diameter on theloss spectrum of the sensor are simulated by using finite element method. With a spectrum based detection methods,respectively, the refractive index sensitivity1700nm/RIU (refractive index unit) can be achieved for an aqueous analyte, and temperaturesensitivity above200pm/oC can be achieved for a fluoropolymer temperature sensinglayer. In the third sensor, the air holes of the second layer are filled with a largethermo-optic coefficient liquid and some of those air holes are selectively coated withmetal. Temperature variations will induce changes of coupling efficiencies between thefundamental core mode and the plasmonic mode, thus leading to different loss spectrathat will be recorded. In this paper, variations of the dielectric constants of allcomponents, including the metal, the filled liquid and the fused silica, are considered.We conduct numerical calculations to analyze the mode profile and evaluate the powerloss, demonstrating a temperature sensitivity as high as720pm/oC.
     4. A temperature sensor based on a selective liquid filled photonic crystal fiber isproposed and demonstrated. A radially hybrid photonic crystal fiber is studied. The firstring around the core is filled with liquids of higher refractive index than the matrix, theouter rings being composed by air holes. The propagation properties of the fiber andbandgap-like effect of the high refractive index ring are analyzed. Absorption lossspectra of the fiber are found to be quite sensitive to the refractive index of liquid. Theabsorption spetrum of the gold colloids and the temperature effect on it are calculated,and the temperature effect is found to be very small. compact temperature sensor basedon a selectively-liquid-filled PCF is proposed. A photonic crystal fiber with the firstring around the core filling with a mixture of dimethyl sulphoxide and aqueous goldcolloids is fabricated, with the controlled hole collapse and liquid injecting technologyof photonic crystal fiber. A experiment system for measuring the thermo-opticproperties of the fiber is set up. The variations of the loss spectrum with thetemperatures are measured. Two loss peaks appears on the loss spectrum near538nmand666nm. The relationship between the maximum loss wavelength and temperature isapproximately linear.Temperature sensitivity up to-5.5nm/oC is achieved. Thebandgap-like effects are also confirmed in the experiment.
引文
[1] V. M. Agranovich,D. L. Mills. Surface polaritons: electromagnetic waves atsurfaces and interfaces [M]. Amsterdam: North-Holland,1982.
    [2] H. Raether. Surface Plasmons on Smooth and Rough Surface and on Gratings
    [M]. Berlin: Springer-Verlag,1988:8~13.
    [3] S. A. Maier. Plasmonics: Fundamentals and Applications [M]. New York:Springer,2007.
    [4] R. W. Wood. On a remarkable case of uneven distribution of light in adiffraction grating spectrum [J], Phil. Mag.1902,4(21):396~402.
    [5] R. H. Ritchie. Plasma losses by fast electrons in thin films [J], Phys. Rev.1957,106(5):874~881.
    [6] C. J. Powell,J. B. Swan. Effect of oxidation on the characteristic loss spectra ofaluminum and magnesium [J], Physical Review.1960,118(3):640~643.
    [7] E. A. Stern,R. A. Ferrell. Surface plasma oscillations of a degenerate electrongas [J], Phys. Rev.1960,120(1):130~136.
    [8] A. Otto. Excitation of nonradiative surface plasma waves in silver by themethod of frustrated total reflection [J], Z. Physik.1968,216(4):398~410.
    [9] E. Kretschmann. The determination of the optical constants of metals byexcitation of surface plasmons [J], Z. Physik.1971,241(4):313~324.
    [10] J. Homola, S. S. Yee,G. Gauglitz. Surface plasmon resonance sensors:review [J], Sens. Actuators B.1999,54(1):3~15.
    [11]顾铮,冯仕猛,梁培辉等.表面等离子体激元共振溶胶-凝胶薄膜传感器[J],光学学报.2001,21(1):83~87.
    [12]万艳,梁大开,曾捷等.基于偏振分光棱镜的表面等离子体波传感系统[J],光学学报.2010,(5):1354~1357.
    [13]曹庄琪.导波光学[M].北京:科学出版社,2007:131~132.
    [14] M. Dressel,G. Grner. Electrodynamic of Solids: Optical Properties ofElectrons in Matter [M]. Cambridge: Cambridge University Press,2002:93~106.
    [15] W. L. Barnes, A. Dereux,T. W. Ebbesen. Surface plasmon subwavelengthoptics [J], Nature.2003,424(6950):824~830.
    [16] J. B. Pendry. Negative refraction makes a perfect lens [J], Phys. Rev. Lett.2000,85(18):3966~3969.
    [17] N. Fang, H. Lee, C. Sun, et al. Sub-diffraction-limited optical imaging witha silver superlens [J], Science.2005,308(5721):534~537.
    [18] D. Sarid. Long-range surface-plasma waves on very thin metal films [J],Phys. Rev. Lett.1981,47(26):1927~1930.
    [19] P. Berini. Plasmon-polariton waves guided by thin lossy metal films offinite width: Bound modes of symmetric structures [J], Physical Review B.2000,61(15):10484~10503.
    [20] P. Berini, R. Charbonneau, N. Lahoud, et al. Characterization oflong-range surface-plasmon-polariton waveguides [J], J. Appl. Phys.2005,98(4):043109~043109-12.
    [21] A. V. Zayats, I. I. Smolyaninov,A. A. Maradudin. Nano-optics of surfaceplasmon polaritons [J], Phys. Rep.2005,408(3):131~314.
    [22] L. Salomon, G. Bassou, H. Aourag, et al. Local excitation of surfaceplasmon polaritons at discontinuities of a metal film: Theoretical analysis and opticalnear-field measurements [J], Phys. Rev. B.2002,65(12):125409.
    [23] B. Hecht, H. Bielefeldt, L. Novotny, et al. Local excitation, scattering, andinterference of surface plasmons [J], Phys. Rev. Lett.1996,77(9):1889~1892.
    [24] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics andelectronics [J], Phys. Rev. Lett.1987,58(20):2059~2062.
    [25] S. John. Strong localization of photons in certain disordered dielectricsuperlattices [J], Phys. Rev. Lett.1987,58(23):2486~2489.
    [26] P. S. J. Russell. Photonic band gaps [J], Phys. World.1992,5(8):37~42.
    [27] J. C. Knight, T. A. Birks, P. S. J. Russell, et al. All-silica single-modeoptical fiber with photonic crystal cladding [J], Opt. Lett.1996,21(19):1547~1549.
    [28] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance inoptical fibers [J], Science.1998,282(5393):1476~1478.
    [29] T. A. Birks, J. C. Knight,P. S. J. Russell. Endlessly single-mode photoniccrystal fiber [J], Opt. Lett.1997,22(13):961~963.
    [30] C. Kerbage, P. Steinvurzel, P. Reyes, et al. Highly tunable birefringentmicrostructured optical fiber [J], Opt. Lett.2002,27(10):842~844.
    [31] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highlybirefringent photonic crystal fibers [J], Opt. Lett.2000,25(18):1325~1327.
    [32] Z. Yusoff, J. H. Lee, W. Belardi, et al. Raman effects in a highly nonlinearholey fiber: amplification and modulation [J], Opt. Lett.2002,27(6):424~426.
    [33] J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photoniccrystal fibre [J], Electron. Lett.1998,34(13):1347~1348.
    [34] J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersion inphotonic crystal fiber [J], IEEE Photon. Technol. Lett.2000,12(7):807~809.
    [35] W. H. Reeves, J. C. Knight, P. S. J. Russell, et al. Demonstration ofultra-flattened dispersion in photonic crystal fibers [J], Opt. Express.2002,10(14):609~613.
    [36] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, et al. Supercontinuumgeneration in photonic crystal fibers and optical fiber tapers: a novel light source [J], J.Opt. Soc. Am. B.2002,19(9):2148~2155.
    [37] J. M. Dudley,J. R. Taylor. Supercontinuum generation in optical fibers [M].Cambridge University Press,2010.
    [38] F. Luan, A. K. George, T. D. Hedley, et al. All-solid photonic bandgapfiber [J], Opt. Lett.2004,29(20):2369~2371.
    [39] P. Russell. Photonic crystal fibers [J], Science.2003,299(5605):358-62.
    [40] B. W. Liu, M. L. Hu, X. H. Fang, et al. Tunable bandpass filter withsolid-core photonic bandgap fiber and Bragg fiber [J], IEEE Photon. Technol. Lett.2008,20(8):581~583.
    [41] A. Isom ki,O. G. Okhotnikov. Femtosecond soliton mode-locked laserbased on ytterbium-doped photonic bandgap fiber [J], Opt. Express.2006,14(20):9238~9243.
    [42] S. Konorov, A. Zheltikov,M. Scalora. Photonic-crystal fiber as amultifunctional optical sensor and sample collector [J], Opt. Express.2005,13(9):3454~3459.
    [43] T. Ritari, H. Ludvigsen, J. C. Petersen, et al. Gas sensing using air-guidingphotonic bandgap fibers [J], Opt. Express.2004,12(17):4080~4087.
    [44] B. Eggleton, C. Kerbage, P. Westbrook, et al. Microstructured optical fiberdevices [J], Opt. Express.2001,9(13):698~713.
    [45] F. Benabid, J. C. Knight, G. Antonopoulos, et al. Stimulated Ramanscattering in hydrogen-filled hollow-core photonic crystal fiber [J], Science.2002,298(5592):399~402.
    [46] S. O. Konorov, C. J. Addison, H. G. Schulze, et al. Hollow-core photoniccrystal fiber-optic probes for Raman spectroscopy [J], Opt. Lett.2006,31(12):1911~1913.
    [47] F. Couny,F. Benabid. Optical frequency comb generation in gas-filledhollow core photonic crystal fibres [J], J. Opt. A.2009,11:103002.
    [48] F. M. Cox, A. Argyros, M. C. Large, et al. Surface enhanced Ramanscattering in a hollow core microstructured optical fiber [J], Opt. Express.2007,15(21):13675~13681.
    [49] H. Yan, C. Gu, C. Yang, et al. Hollow core photonic crystal fibersurface-enhanced Raman probe [J], Appl. Phys. Lett.2006,89(20):204101~204101-3.
    [50] N. M. Litchinitser, A. K. Abeeluck, C. Headley, et al. Antiresonantreflecting photonic crystal optical waveguides [J], Opt. Lett.2002,27(18):1592~1594.
    [51] G. Renversez, P. Boyer,A. Sagrini. Antiresonant reflecting opticalwaveguide microstructured fibers revisited: a new analysis based on leaky modecoupling [J], Opt. Express.2006,14(12):5682~5687.
    [52] T. A. Birks, G. Kakarantzas, P. S. J. Russell, et al. Photonic crystal fiberdevices [C]. SPIE,2002,4943:142~151.
    [53] K. Lai, S. G. Leon-Saval, A. Witkowska, et al. Wavelength-independentall-fiber mode converters [J], Opt. Lett.2007,32(4):328~330.
    [54] A. Witkowska, S. G. Leon-Saval, A. Pham, et al. All-fiber LP11modeconvertors [J], Opt. Lett.2008,33(4):306~308.
    [55]陈子伦,侯静,姜宗福.光子晶体光纤的后处理技术[J],激光与光电子学进展.2010,47(2):020602.
    [56] S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, et al. Supercontinuumgeneration in submicron fibre waveguides [J], Opt. Express.2004,12(13):2864~2869.
    [57] W. Wadsworth, A. Witkowska, S. Leon-Saval, et al. Hole inflation andtapering of stock photonic crystal fibres [J], Opt. Express.2005,13(17):6541~6549.
    [58] C. Xiong, A. Witkowska, S. G. Leon-Saval, et al. Enhanced visiblecontinuum generation from a microchip1064nm laser [J], Opt. Express.2006,14(13):6188~6193.
    [59] A. Witkowska, K. Lai, S. G. Leon-Saval, et al. All-fiber anamorphiccore-shape transitions [J], Opt. Lett.2006,31(18):2672~2674.
    [60] T. A. Birks,Y. W. Li. The shape of fiber tapers [J], J. Lightw. Technol.1992,10(4):432~438.
    [61] M. Lehtonen, G. Genty,H. Ludvigsen. Tapered microstructured fibers forefficient coupling to optical waveguides: a numerical study [J], Appl. Phys. B.2005,81(2):295~300.
    [62] J. K. Chandalia, B. J. Eggleton, R. S. Windeler, et al. Adiabatic coupling intapered air-silica microstructured optical fiber [J], IEEE Photon. Technol. Lett.2001,13(1):52~54.
    [63] Z. Chen, X. Xi, W. Zhang, et al. Low-Loss Fusion Splicing PhotonicCrystal Fibers and Double Cladding Fibers by Controlled Hole Collapse and Tapering[J], J. Lightw. Technol.2011,29(24):3744~3747.
    [64] R. C. Jorgenson,S. S. Yee. A fiber-optic chemical sensor based on surfaceplasmon resonance [J], Sens. Actuators B.1993,12(3):213~220.
    [65] B. Lee, S. Roh,J. Park. Current status of micro-and nano-structured opticalfiber sensors [J], Opt. Fiber Technol.2009,15(3):209~221.
    [66] M. Piliarik,J. Homola. Surface plasmon resonance (SPR) sensors:approaching their limits?[J], Opt. Express.2009,17(19):16505~16517.
    [67] A. V. Kabashin, S. Patskovsky,A. N. Grigorenko. Phase and amplitudesensitivities in surface plasmon resonance bio and chemical sensing [J], Opt. Express.2009,17(23):21191~21204.
    [68] J. Homola, R. Slavík,J. tyroky. Interaction between fiber modes andsurface plasmon waves: spectral properties [J], Opt. Lett.1997,22(18):1403~1405.
    [69] R. Slav k, J. Homola, J. tyroky, et al. Novel spectral fiber optic sensorbased on surface plasmon resonance [J], Sens. Actuators B.2001,74(1):106~111.
    [70] M. Kanso, S. Cuenot,G. Louarn. Sensitivity of optical fiber sensor basedon surface plasmon resonance: modeling and experiments [J], Plasmonics.2008,3(2):49~57.
    [71] A. K. Sharma,G. J. Mohr. Theoretical understanding of an alternatingdielectric multilayer-based fiber optic SPR sensor and its application to gas sensing [J],New J. Phys.2008,10(2):023039.
    [72] D. Monzón-Hernández,J. Villatoro. High-resolution refractive indexsensing by means of a multiple-peak surface plasmon resonance optical fiber sensor [J],Sens. Actuators B.2006,115(1):227~231.
    [73] R. K. Verma, A. K. Sharma,B. D. Gupta. Modeling of tapered fiber-opticsurface plasmon resonance sensor with enhanced sensitivity [J], IEEE Photon. Technol.Lett.2007,19(22):1786~1788.
    [74] H. Suzuki, M. Sugimoto, Y. Matsui, et al. Effects of gold film thickness onspectrum profile and sensitivity of a multimode-optical-fiber SPR sensor [J], Sens.Actuators B.2008,132(1):26~33.
    [75] Y. J. Chang, Y. C. Chen, H. L. Kuo, et al. Nanofiber optic sensor based onthe excitation of surface plasmon wave near fiber tip [J], J. Biomed. Opt.2006,11(1):014032~014032-5.
    [76] A. K. Sharma,B. D. Gupta. Theoretical model of a fiber optic remotesensor based on surface plasmon resonance for temperature detection [J], Opt. FiberTechnol..2006,12(1):87~100.
    [77] L. Y. Shao, Y. Shevchenko,J. Albert. Intrinsic temperature sensitivity oftilted fiber Bragg grating based surface plasmon resonance sensors [J], Opt. Express.2010,18(11):11464~11471.
    [78] S. K. Srivastava,B. D. Gupta. Simulation of a localizedsurface-plasmon-resonance-based fiber optic temperature sensor [J], J. Opt. Soc. Am. A.2010,27(7):1743~1749.
    [79] C. G. Poulton, M. A. Schmidt, G. J. Pearce, et al. Numerical study ofguided modes in arrays of metallic nanowires [J], Opt. Lett.2007,32(12):1647~1649.
    [80] J. Hou, D. Bird, A. George, et al. Metallic mode confinement inmicrostructured fibres [J], Opt. Express.2008,16(9):5983~5990.
    [81] M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, et al. Waveguiding andplasmon resonances in two-dimensional photonic lattices of gold and silver nanowires[J], Phys. Rev. B.2008,77(3):033417~033417-4.
    [82] C. A. Pfeiffer, E. N. Economou,K. L. Ngai. Surface polaritons in acircularly cylindrical interface: surface plasmons [J], Phys. Rev. B.1974,10(8):3038~3051.
    [83] U. Schr ter,A. Dereux. Surface plasmon polaritons on metal cylinders withdielectric core [J], Phys. Rev. B.2001,64(12):125420.
    [84] H. W. Lee, M. A. Schmidt, H. K. Tyagi, et al. Polarization-dependentcoupling to plasmon modes on submicron gold wire in photonic crystal fiber [J], Appl.Phys. Lett.2008,93(11):111102~111102-3.
    [85] P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, et al. Microstructuredoptical fibers as high-pressure microfluidic reactors [J], Science.2006,311(5767):1583~1586.
    [86] X. Zhang, R. Wang, F. M. Cox, et al. Selective coating of holes inmicrostructured optical fiber and its application to in-fiber absorptive polarizers [J], Opt.Express.2007,15(24):16270~16278.
    [87] A. Hassani,M. Skorobogatiy. Design of the microstructured opticalfiber-based surface plasmon resonance sensors with enhanced microfluidics [J], Opt.Express.2006,14(24):11616~11621.
    [88] M. Hautakorpi, M. Mattinen,H. Ludvigsen. Surface-plasmon-resonancesensor based on three-hole microstructured optical fiber [J], Opt. Express.2008,16(12):8427~8432.
    [89] X. Yu, Y. Zhang, S. Pan, et al. A selectively coated photonic crystal fiberbased surface plasmon resonance sensor [J], J. Opt.2010,12:015005.
    [90] S. Smolka, M. Barth,O. Benson. Selectively coated photonic crystal fiberfor highly sensitive fluorescence detection [J], Appl. Phys. Lett.2007,90(11):111101.
    [91] L. Kai-Qun, W. Lai-Ming, Z. Dou-Guo, et al. Temperature effects onprism-based surface plasmon resonance sensor [J], Chin. Phys. Lett.2007,24(11):3081~3084.
    [92] K. Lin, Y. Lu, Z. Luo, et al. Numerical and experimental investigation oftemperature effects on the surface plasmon resonance sensor [J], Chin. Opt. Lett.2009,7(5):428~431.
    [93] S. Herminghaus,P. Leiderer. Surface plasmon enhanced transientthermoreflectance [J], Appl. Phys. A.1990,51(4):350~353.
    [94]季家镕,冯莹,张广军.高等光学教程:光学的基本电磁理论[M].北京:科学出版社,2007:18~22.
    [95] H. P. Chiang, Y. C. Wang,P. T. Leung. Effect of temperature on theincident angle-dependence of the sensitivity for surface plasmon resonancespectroscopy [J], Thin Solid Films.2003,425(1):135~138.
    [96] H. P. Chiang, P. T. Leung,W. S. Tse. Optical properties of compositematerials at high temperatures [J], Solid State Commun.1997,101(1):45~50.
    [97] R. T. Beach,R. W. Christy. Electron-electron scattering in the intrabandoptical conductivity of Cu, Ag, and Au [J], Phys. Rev. B.1977,16(12):5277~5284.
    [98] W. E. Lawrence. Electron-electron scattering in the low-temperatureresistivity of the noble metals [J], Phys. Rev. B.1976,13:5316~5319.
    [99] T. Holstein. Optical and infrared volume absorptivity of metals [J], Phys.Rev.1954,96(2):535~536.
    [100] J. A. McKay,J. A. Rayne. Temperature dependence of the infraredabsorptivity of the noble metals [J], Phys. Rev. B.1976,13(2):673~685.
    [101] P. B. Johnson,R. W. Christy. Optical constants of the noble metals [J],Phys. Rev. B.1972,6(12):4370~4379.
    [102] M. J. Weber. Handbook of optical materials [M]. Boca Raton: CRC Press,2003.
    [103] G. Ghosh, M. Endo,T. Iwasaki. Temperature-dependent Sellmeiercoefficients and chromatic dispersions for some optical fiber glasses [J], J. Lightw.Technol.1994,12(8):1338~1342.
    [104] F. Brechet, J. Marcou, D. Pagnoux, et al. Complete analysis of thecharacteristics of propagation into photonic crystal fibers, by the finite element method[J], Opt. Fiber Technol.2000,6(2):181~191.
    [105] S. Guenneau, A. Nicolet, F. Zolla, et al. Modeling of photonic crystaloptical fibers with finite elements [J], IEEE Trans. Magn.2002,38(2):1261~1264.
    [106] M. Koshiba,K. Saitoh. Numerical verification of degeneracy in hexagonalphotonic crystal fibers [J], IEEE Photon. Technol. Lett.2001,13(12):1313~1315.
    [107]曾捷,梁大开,曾振武等.反射式光纤表面等离子体波共振传感器特性研究[J],光学学报.2007,27(3):404~409.
    [108]关春颖,苑立波,史金辉.微孔光纤表面等离子体共振传感特性分析[J],光学学报.2011,31(2):0206003.
    [109] S. J. Al-Bader,M. Imtaar. Azimuthally uniform surface-plasma modes inthin metallic cylindrical shells [J], IEEE J. Quantum Electron.1992,28(2):525~533.
    [110] S. J. Al-Bader,M. Imtaar. Optical fiber hybrid-surface plasmon polaritons[J], J. Opt. Soc. Am. B.1993,10(1):83~88.
    [111] M. A. Schmidt,P. S. Russell. Long-range spiralling surface plasmon modeson metallic nanowires [J], Opt. Express.2008,16(18):13617~13623.
    [112] P. B. Catrysse,S. Fan. Understanding the dispersion of coaxial plasmonicstructures through a connection with the planar metal-insulator-metal geometry [J],Appl. Phys. Lett.2009,94(23):231111.
    [113]曹迪,张惠芳,陶峰.三层不对称人工电磁材料界面处表面等离子体激元的理论研究[J],光学学报.2009,28(8):1601~1610.
    [114] D. R. Lide. CRC handbook of chemistry and physics [M]. Boca Raton:CRC press,2004.
    [115] I. H. Malitson. Interspecimen comparison of the refractive index of fusedsilica [J], J. Opt. Soc. Am.1965,55(10):1205~1209.
    [116] J. Laegsgaard,A. Bjarklev. Reduction of coupling loss to photonic crystalfibers by controlled hole collapse: a numerical study [J], Opt. Commun.2004,237(4-6):431~435.
    [117]王彦斌,陈子伦,侯静等.光子晶体光纤模场直径增加方法[J],强激光与粒子束.2010,22(7):1491~1494.
    [118] G. E. Town,J. T. Lizier. Tapered holey fibers for spot-size andnumerical-aperture conversion [J], Opt. Lett.2001,26(14):1042~1044.
    [119] M. J. Gander, R. McBride, J. C. Jones, et al. Measurement of thewavelength dependence of beam divergence for photonic crystal fiber [J], Opt. Lett.1999,24(15):1017~1019.
    [120] G. Ghosh. Temperature dispersion of refractive indexes in some silicatefiber glasses [J], IEEE Photon. Technol. Lett.1994,6(3):431~433.
    [121] S. J. Qiu, Y. Chen, F. Xu, et al. Temperature sensor based on anisopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractiveindex sensitivity [J], Opt. Lett.2012,37(5):863~865.
    [122] N. Liu, Y. Li, Y. Wang, et al. Bending insensitive sensors for strain andtemperature measurements with Bragg gratings in Bragg fibers [J], Opt. Express.2011,19(15):13880~13891.
    [123] L. J. Sherry, S. H. Chang, G. C. Schatz, et al. Localized surface plasmonresonance spectroscopy of single silver nanocubes [J], Nano Lett.2005,5(10):2034~2038.
    [124] R. Vasantha Jayakantha Raja, A. Husakou, J. Hermann, et al.Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinearresponse [J], J. Opt. Soc. Am. B.2010,27(9):1763~1768.
    [125] R. Zhang, J. Teipel,H. Giessen. Theoretical design of a liquid-corephotonic crystal fiber for supercontinuum generation [J], Opt. Express.2006,14(15):6800~6812.
    [126] F. Du, Y.-Q. Lu,S.-T. Wu. Electrically tunable liquid-crystal photoniccrystal fiber [J], Appl. Phys. Lett.2004,85(12):2181~2183.
    [127] L. Wei, T. T. Alkeskjold,A. Bjarklev. Electrically tunable bandpass filterusing solid-core photonic crystal fibers filled with multiple liquid crystals [J], Opt. Lett.2010,35(10):1608~1610.
    [128] M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, et al. Electricallytunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber [J],IEEE Photon. Technol. Lett.2005,17(4):819~821.
    [129] J. J. Hu, P. Shum, G. Ren, et al. Investigation of thermal influence on thebandgap properties of liquid-crystal photonic crystal fibers [J], Opt. Commun.2008,281(17):4339~4342.
    [130] Y. Yu, X. Li, X. Hong, et al. Some features of the photonic crystal fibertemperature sensor with liquid ethanol filling [J], Opt. Express.2010,18(15):15383~15388.
    [131] W. Qian, C. L. Zhao, S. He, et al. High-sensitivity temperature sensorbased on an alcohol-filled photonic crystal fiber loop mirror [J], Opt. Lett.2011,36(9):1548~1550.
    [132] H. Yan, J. Liu, C. Yang, et al. Novel index-guided photonic crystal fibersurface-enhanced Raman scattering probe [J], Opt. Express.2008,16(11):8300~8305.
    [133] S. Cerqueira Jr, F. Luan, C. M. B. Cordeiro, et al. Hybrid photonic crystalfiber [J], Opt. Express.2006,14(2):926~931.
    [134] L. Xiao, W. Jin,M. S. Demokan. Photonic crystal fibers confining light byboth index-guiding and bandgap-guiding: hybrid PCFs [J], Opt. Express.2007,15(24):15637~15647.
    [135] Y. Ould-Agha, A. Betourne, O. Vanvincq, et al. Broadband bandgapguidance and mode filtering in radially hybrid photonic crystal fiber [J], Opt. Express.2012,20(6):6746~6760.
    [136] K. Otsuka. Self-induced phase turbulence and chaotic itinerancy in coupledlaser systems [J], Phys. Rev. Lett.1990,65(3):329~332.
    [137] T. A. Birks, G. J. Pearce,D. M. Bird. Approximate band structurecalculation for photonic bandgap fibres [J], Optics Express.2006,14(20):9483~9490.
    [138] H. S. Huang,H. C. Chang. Guided vector modes of equilateral three-corefibres [J], Electron. Lett.1989,25(1):55~56.
    [139] L. Jin, Z. Wang, Y. Liu, et al. Ultraviolet-inscribed long period gratings inall-solid photonic bandgap fibers [J], Opt. Express.2008,16(25):21119~21131.
    [140] M. Perrin, Y. Quiquempois, G. Bouwmans, et al. Coexistence of totalinternal reflexion and bandgap modes in solid core photonic bandgap fibre withintersticial air holes [J], Opt. Express.2007,15(21):13783-13795.
    [141] C. Zhao, R. Peng, Z. Tang, et al. Modal fields and bending loss analyses ofthree-layer large flattened mode fibers [J], Opt. Commun.2006,266(1):175~180.
    [142] M. D. Feit,J. A. Fleck. Light propagation in graded-index optical fibers [J],Appl. Opt.1978,17(24):3990~3998.
    [143] F. Fogli, L. Saccomandi, P. Bassi, et al. Full vectorial BPM modeling ofindex-guiding photonic crystal fibers and couplers [J], Opt. Express.2002,10(1):54~59.
    [144] D. Yevick. A guide to electric field propagation techniques forguided-wave optics [J], Opt. Quant. Electron.1994,26(3):185~197.
    [145] C. Kerbage, B. Eggleton, P. Westbrook, et al. Experimental and scalarbeam propagation analysis of an air-silica microstructure fiber [J], Opt. Express.2000,7(3):113~122.
    [146]廖延彪.光纤光学——原理与应用[M].北京:清华大学出版社,2010:2~6.
    [147] N. M. Litchinitser, S. C. Dunn, B. Usner, et al. Resonances inmicrostructured optical waveguides [J], Opt. Express.2003,11(10):1243~1251.
    [148] Z. Chen, C. Xiong, L. M. Xiao, et al. More than threefold expansion ofhighly nonlinear photonic crystal fiber cores for low-loss fusion splicing [J], Opt. Lett.2009,34(14):2240~2242.
    [149] C. F. Bohren,D. R. Huffman. Absorption and scattering of light by smallparticles [M]. New York: Wiley,1983.
    [150]张明生.激光光散射谱学[M].北京:科学出版社,2008.
    [151] P. Mulvaney. Surface plasmon spectroscopy of nanosized metal particles[J], Langmuir.1996,12(3):788~800.
    [152] M. Fleischmann, P. J. Hendra,A. J. McQuillan. Raman spectra of pyridineadsorbed at a silver electrode [J], Chem. Phys. Lett.1974,26(2):163~166.
    [153] H. Xu, E. J. Bjerneld, M. K ll, et al. Spectroscopy of single hemoglobinmolecules by surface enhanced Raman scattering [J], Phys. Rev. Lett.1999,83(21):4357~4360.
    [154] M. Kerker, O. Siiman, L. A. Bumm, et al. Surface enhanced Ramanscattering (SERS) of citrate ion adsorbed on colloidal silver: erratum [J], Appl. Opt.1980,19(24):4137.
    [155] H. Xu. Theoretical study of coated spherical metallic nanoparticles forsingle-molecule surface-enhanced spectroscopy [J], Appl. Phys. Lett.2004,85(24):5980~5982.
    [156] S. Link,M. A. El-Sayed. Size and temperature dependence of the plasmonabsorption of colloidal gold nanoparticles [J], J. Phys. Chem. B.1999,103(21):4212~4217.
    [157] Release on the Refractive Index of Ordinary Water Substance as aFunction of Wavelength, Temperature and Pressure.Http://www.iapws.org/relguide/rindex.pdf, Erlangen, Germany: The InternationalAssociation for the Properties of Water and Steam(IAPWS),1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700