新型介观晶体结构及形成机理的电子显微学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体是具有平移操作对称性,由结构的构成单元在三维空间无限排列而构成的一类特殊的固态物质。晶体有着非常特殊的内部结构和外部形貌,从而具有很多特殊性能,因此研究晶体的内部微观结构及合成具有不同性能的晶体材料就有着极其重要的意义。介观晶体是最近发展起来的研究领域,主要代表为介孔晶体和一些生物矿化材料。介观晶体在各领域已经表现出有价值的潜在应用。介观晶体自身又是一类非常特殊的晶体,其内部的原子尺度排列是无定形的,但在介观尺度上,模版分子(簇)或内部的孔洞有着高度有序的排列。这些介观晶体在常规的XRD或SAXS分析方面存在诸多困难,很多结构和机理并没有得到充分的表征和研究。因此需要通过电子显微学对不同的新型介观晶体进行了结构表征和机理研究。通过透射电子显微学,可以同时得到倒易空间和正空间的信息,因此通过电子晶体学方法可以方便得到介观晶体的结构特征。此外,在共生、缺陷的研究上面,电子显微学的方法相比X射线衍射有着明显优势。
     在第二章中,利用氨基酸头部的阴离子表面活性剂和共结构导向剂,通过添加非离子共表面活性剂Brij?56,合成出了一系列具有不同有机/无机界面曲率的介孔晶体。由于高温下Brij?56的疏水性,Brij?56分子可以与C18GluA的疏水端相容而增加胶束疏水部分的体积,降低有机/无机界面曲率,生成g值较大的介观结构。因此,即随着加入Brij?56量增高,介观相从高有机/无机界面曲率的结构转变为低有机/无机界面曲率的结构。通过对比不同温度下合成的结果,得到介观结构的顺序为:笼状→二维柱状C→二维柱状C与双连续Diamond D共生→二维柱状C与双连续Gyroid G共生→双连续Diamond D→双连续Gyroid G→层状L。在此,在这里第一次得到了含有两种双连续立方结构的相图,从而对其相变顺序进行了完整研究,并且通过电子晶体学的方法根据实验所得出的平均曲率和高斯曲率值计算得出D和G的真实值,从而在同体系中通过实验结果区分了这两种最小表面的双连续立方结构。此外,还通过HRTEM研究确认了C与G的取向共生关系。通过HRTEM直接观察到了他们的“肩并肩”生长,即被广泛报道的C {10} ? G {211}转变,并且第一次观察到了通过缺陷连接的C {10} ? G {220}转变。
     在第三章中,通过使用谷氨酸衍生阴离子表面活性剂,采用共结构导向剂的合成方法,添加非离子表面活性剂Brij-56作为共结构导向剂,发现了一种具有罕见多面体内部形貌(二十面体、十面体、Wulff多面体等)的介孔空心球晶体。经过HRTEM的表征,发现球壳是由高度有序的双连续金刚石介孔结构(空间群Pn-3m)组成,而多面体结构是由于球壳形成了“反向”多重孪晶而形成的,这是第一次发现晶体能够以多重孪晶结构来形成空心晶体。通过反应过程的时间实验,确认在反应溶液中最初形成了层状囊泡,之后发生了介观相相变而形成了高度有序的双连续金刚石结构。到目前为止,这是第一次通过一步法使用两亲性分子自组装和后续的介观相相变形成了具有多面体内部形貌的介孔空心球晶体,并且第一次对多面体内部形貌的空心球晶体的生长及形成机理进行了详细的解析。这种新型空心球晶体的合成过程引入了一种全新的晶体生长和合成策略,是对目前已知晶体结构和形貌的补充。
     在第四章中,通过以DNA为模板,使用共结构导向法合成了DNA-二氧化硅复合晶体,并进行了详细的结构表征和机理研究。随着合成体系DNA溶液初始浓度的增高,晶体从二维六方结构变为罕见的二维正方对称性结构。研究发现,具有二维正方结构的片状晶体呈现出六方的外形,且由若干个晶区融合而成,不同晶区取向角度之差互为60o。其形成过程结果表明,在早期先形成了二维六方紧密堆积结构。随着缩聚的进行,二维正方晶区逐渐出现并扩大、融合,最终形成了具有几个大的晶区的纯二维正方结构和六方外形的片状晶体。而二维正方堆积是由于DNA分子自己的螺旋构型产生的。依据Kornyshev-Leikin模型,螺旋状分子紧密堆积时,相邻分子会采取不同的相位,即取向错位,分子和分子之间形成“拉链”,以达到最大作用和最紧密堆积,即DNA骨架磷酸呈现为负电荷螺旋带,而TMAPS为正电荷螺旋带,相邻分子取向错位,拉近DNA分子之间的距离,使得DNA分子的正电荷螺旋带与邻接DNA分子的负电荷螺旋带相互作用,形成静电作用“拉链”,使得二维正方结构稳定存在。而二维六方晶体的形成是由于在较低浓度下,相对来说二氧化硅墙壁的形成较快,屏蔽了DNA分子表面的电荷,使分子按照柱状均匀分子的方式进行二维六方紧密堆积。这些结论对DNA理论研究、DNA自组装、生物矿化、大分子自组装和新型功能材料等设计方面都有重要的意义。
     在第五章中,使用阴离子表面活性剂CnGluA,P123或Brij-56作为分散剂,通过不同的实验配方合成出具有不同结构、不同粒径的介孔纳米颗粒。使用不同链长的表面活性剂得到了粒径比较均匀的纳米颗粒且平均粒径随着表面活性剂碳链长度的增加而减小。其中使用短链表面活性剂得到的是具有高度有序Fd-3m面心立方结构的晶体。此外,通过调节表面活性剂的浓度,得到了具有不同粒径的介孔纳米颗粒结构,并探讨了其形成机理。此外,通过使用油酸作为表面活性剂得到了空心介孔球结构,添加乙醇可以提高孔隙率形成薄壁而具有介孔垂直于球壳的通透结构。通过跟踪其形成过程,发现这种空心球是在乳液/表面活性剂双重作用下形成的。在反应体系中添加乙醇,可以调节反应液的乳化速度,降低表面活性剂堆积参数g,形成具有通透球壳内外介孔的空心球结构。
Crystal is an object with translational symmetry. The atomic arrangement plays a crycial role for the properties of crystal and can be solved by crystallographic method. During the past two decades,the development of novel mesocrystals have been at the forefront of the development of materials science,and therefore they are expected to find applications in fields of catalysis,separation,sensor,drug delivery,and electronics,etc. However,the mesocrystals are considered as“cavity crystals”,where the pores or organic templates have long?range?ordering while the frameworks are amorphous silicas. It is very hard to determine the structure of the SMCs only by X?ray diffraction (XRD) analysis,as there are only a few broad peaks because the ordering of the material is very sensitive and could have various fluctuations,and sometimes the peaks can overlap. Besides,the SMCs are always too small to perform the single?crystal XRD analysis. It is very difficult to solve mesostructure by the conventional characterizations for atomistic crystals. Thus the structural characterization of mesocrystals is strongly rely on transmission electron microscopy (TEM).
     In chapter 2,cage?type structure,two?dimensional (2D) cylindrical hexagonal (C),bicontinuous gyroid (G),bicontinuous diamond (D) and lamellar (L) mesophases have been obtained by using amino acid derived anionic amphiphilic molecules N?stearoyl?L?glutamic acid (C18GluA) as the template,3?aminopropyl?trimethoxysilane (APS) as CSDA and tetraethyl orthosilicate (TEOS) as the silica source,in the presence of nonionic co?surfactant C16(EO)10 (Brij?56). The mesophases changed in an order that cage?type→C→intergrowth of C and D→intergrowth of C and G→D→G→L,with the increase of the Brij?56/C18GluA molar ratio. The mesophases tranformation was explained by the organic/inorganic interface curvature change caused by the hydrophobicity and penetration effect of Brij?56. The structural relationship with the surface curvature analysis of the mesophases were investigated, furthermore,the observed intergrowth structures have been studied in detail. Besides,by using electron crystallographic method,the actual g parameters of D and G obtained in this system were determined and compared.
     In Chapter 3,we found that a novel hollow sphere with remarkable polyhedral crystal-like hollow morphology and a highly ordered double diamond bicontinuous mesoporous shell has been formed in a unique crystal growth system. Vesicle with a low-curvature lamellar structure was first formed by the self-assembling of amino acid derived amphiphilic carboxylic acid in the presence of a non-ionic surfactant,which followed a structural transformation to a highly ordered crystalline mesoporous shell with double diamond structure by maintaining a hollow cavity. The formation of the reversed multiply twinned particle (MTP) led to the icosahedral/decahedral hollow shape,and the sphere achieved the lowest total free energy by maximizing the spherical surface coverage.
     In Chapter 4,we analysed the structure and formation mechanism of a DNA- silica complex which synthesised based on the cooperative effects of N–trimethoxylsilylpropyl–N,N,N–trimethylammonium chloride (TMAPS). We found the first example of DNA liquid crystal silica mineralization platelet-like crystal with a extremely rare DNA 2D–square packing. By using TEM,it has been found that the hexagonal morphology of the crystal platelets with 2D-square symmetry composed of domains structures which arranged by 60o and the 2D-square structure was transformed from 2D-hexagonal structure. We speculated that the p4mm structure with a small interaxial separation was formed at higher concentrations by the formation of an electrostatic“zipper”with interactions between the negatively charged strands and positively charged grooves of opposing molecules.
     In Chapter 5, anionic surfactant templated mesoporous silica nanospheres with different mesostructure and particle size were synthesized by anionic surfactant, co-structure directing agent and silica source in the presence of nonionic surfactant. The formation mechanism of the nanospheres were investigated at different reaction periods. Besides, silica hollow spheres with different shell porosity were simply synthesised with micelle and emulsion dual templating route by using oleic acid as template and co-structure directing agent. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The formation of the silica hollow spheres has been studied in detail with reaction time.
引文
1 H. G. Liddell, R. Scott, A Greek?English Lexicon, on Perseus Digital Library.
    2 Wikipedia, http://en.wikipedia.org/.
    3 C. Kittel, Introduction to Solid State Physics, eighth edition, John Wiley & Sons, 2005.
    4 D. B. Williams, C. B. Carter, Transmission Electron Micrscopy: A Textbook for Materials Science (I?IV), Springer Science, 1996.
    5 X. Zou, S. Hovm?ller, Electron Crystallography: Electron Microscopy and Electron Diffraction, 2005.
    6 International Tables for Crystallography, http://it.iucr.org/.
    7 J. Rouquerol, D. Avnir, C.W. Faribridge, D.H. Everett, J.H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739.
    8 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988.
    9 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
    10 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.?W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenkert, J. Am. Chem. Soc. 1992, 114, 10834.
    11 C.?Y. Chen, H.?X. Li, M. E. Davis, Microporous Mater. 1993, 2, 17.
    12 C.?Y. Chen, S. L. Burkett, H.?X. Li, M. E. Davis, Microporous Mater. 1993, 2, 27.
    13 Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
    14 A. Firouzi, D. Kumar, L. M.Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinsky, C. Glinka, J. Nicol, D. Margolesse, G. D. Stuky, B. F. Chmelka, Science 1995, 267, 1138.
    15 A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 1993, 261, 1299.
    16 J. N. Israelachvili, D. J. Mitchell, B. W. Ninham. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525.
    17 Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    18 Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994, 368, 317.
    19 C. C. Pantazis, P. J. Pomonis, Chem. Mater. 2003, 15, 2299.
    20 Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science 1995, 268, 1324.
    21 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995, 269, 1242.
    22 P. T. Tanev, T. J. Pinnavaia, Science 1995, 267, 865.
    23 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
    24 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 602.
    25 C. Z. Yu, Y. H. Yu, D. Y. Zhao, Chem. Commun. 2000, 575.
    26 X. Y. Liu, B. Z. Tian, C. Z. Yu, F. Gao, S. H. Xie, B. Tu, R. C. Che, L. M. Peng, D. Y. Zhao, Angew. Chem. Int. Ed. 2002, 41, 3876.
    27 J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou, D. Y. Zhao, Angew. Chem. Int. Ed. 2003, 42, 3146.
    28 F. Kleitz, D. N. Liu, G. M. Anilkumar, I. S. Park, L. A. Solovyov, A. N. Shmakov, R. Ryoo, J. Phys. Chem. B 2003, 107, 14296.
    29 F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2003, 2136.
    30 G. J. de A. A. Soler?Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
    31 S. Che, A. E. Garcia?Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2003, 2, 801.
    32 A. E. Garcia?Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2005, 44, 5317.
    33 A. E. Garcia?Bennett, K. Miyasaka, O. Terasaki, S. Che, Chem. Mater. 2004, 16, 3597.
    34 A. E. Garcia?Bennett, O. Terasaki, S. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813.
    35 S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281.
    36 C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed. 2006, 45, 4295.
    37 C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che, Chem. Mater. 2006, 18, 3904.
    38 C. Gao, Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem. 2007, 17, 3591.
    39 C. Gao, Y. Sakamoto, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 11423.
    40 L. Han, Y. Sakamoto, O. Terasaki, Y. Li, S. Che, J. Mater. Chem. 2007, 17, 1216.
    41 L. Han, J. Ruan, Y. Li, O. Terasaki, S. Che, Chem. Mater. 2007, 19, 2860.
    42 Y. Sakamoto, L. Han, S. Che, O. Terasaki, Chem. Mater. 2009, 21, 223.
    43 L. Han, Y. Sakamoto, S. Che, O. Terasaki, Chem. Eur. J. 2009, 15, 2818.
    44 D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G. D. Stucky, Chem. Mater. 1999, 11, 2668.
    45 H. Qiu, Y. Sakamoto, O. Terasaki, S. Che, Adv. Mater. 2008, 20, 425.
    46 A. Jain, G. E. S. Toombes, L. M. Hall, S. Mahajan, C. B. W. Garcia, W. Probst, S. M. Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2005, 44, 1226.
    47 Y. Han, D. Zhang, L. L. Chng, J. Sun, L. Zhao, X. Zou, J. Y. Ying, Nat. Chem. 2009, 1, 123.
    48 K. Miyasaka, L. Han, S. Che, O, Terasaki, Angew. Chem. Int. Ed. 2006, 45, 6516.
    49 K. Miyasaka, PhD Thesis, Stockholm University (Sweden), 2008.
    50 H. Qiu, S. Wang, W. Zhang, K. Sakamoto, O. Terasaki, Y. Inoue, S. Che, J. Phys. Chem. C 2008, 112, 1871.
    51 H. Qiu, S. Che, J. Phys. Chem. B 2008, 112, 10466.
    52 S. Shen, A. E. Garcia?Bennett, Z. Liu, Q. Lu, Y. Shi, Y. Yan, C. Yu, W. Liu, Y. Cai, O. Terasaki, D. Zhao, J. Am. Chem. Soc. 2005, 127, 6780.
    53 K. M. Kim, S. K. Kim, R. Ryoo, Chem. Commun. 1998, 259.
    54 S. Guan, S. Inagaki, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 5660.
    55 O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto, A. E. Garcia?Bennett, Stud. Surf. Sci. Catal. 2004, 148, 261.
    56 S. Che, S. Kamiya, O. Terasaki, T. Tatsumi. J. Am. Chem. Soc. 2001, 123, 12089.
    57 S. Kamiya, H. Tanaka, S. Che, T. Tatsumi, O, Terasaki. Solid State Sci. 2003, 5, 197.
    58 S. Che, H. Li, S. Lim, Y. Sakamoto, O. Terasaki, T. Tatsumi. Chem. Mater. 2005, 17, 4103.
    59 S. Che, S. H. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, T. Tatsumi, J. Am. Chem. Soc. 2002, 124, 13962.
    60 C. Yu, B. Tian, J. Fan, G. D. Studky, D. Zhao, J. Am. Chem. Soc. 2002, 124, 4556.
    61 H. Yang, A. Kuperman, N. Coombs, S. Mamiche?Afara, G. A. Ozin, Nature, 1996, 379, 703.
    62 H. Yang, N. Coombs, I. Sakolov, G. A. Ozin, Nature, 1996, 381, 589.
    63 Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gon, Y. Gou, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature, 1997, 389, 364.
    64 A. Sellinger, P. M. Werss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, C. J. Brinker, Nature, 1998, 394, 256.
    65 D. Zhao, P. Yang, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Chem. Commun,. 1998, 2499.
    66 Y. Lu, H. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. Lavan, C. J. Brinker, J. Am. Chem. Soc., 2000, 122, 5258.
    67 N. A. Melosh, P. Davidson, B. F. Chmelka, J. Am. Chem. Soc., 2000, 122, 823.
    68 M. Antonietti, B. Berton, C. Cltner, H. Hentze, Adv. Mater., 1998, 10, 154.
    69 P. J. Bruinsma, A. Y. Kim, J. Liu, S. Baskaran, Chem. Mater., 1997, 9, 2507.
    70 F. Marlow, B. Splietlihoff, B. Tesche, D. Zhao. Adv. Mater., 1996, 12, 961.
    71 D. Zhao, J. Sun, Q. Li, G. D. Stucky, Chem. Mater., 2000, 12, 275.
    72 M. E. Raimondi, T. Maschmeyer, R. H. Templer, J. M. Seddon, Chem. Commun., 1997, 1843.
    73 S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature, 1997, 385, 420.
    74 H. Lin, C. Mou, Science, 1996, 273, 765.
    75 Y. Yu, H. Qiu, X. Wu, H. Li, Y. Li, Y. Sakamoto, Y. Inoue, K. Sakamoto, O. Terasaki, S. Che, Adv. Funct. Mater. 2008, 18, 541
    76 Q. Huo, J. Feng, F. Schüth, G. D. Stucky, Chem. Mater., 1997, 9, 14.
    77 G. V. Rama Rao, G. P. López, J. Bravo, H. Pham, A. K. Datye, H. Xu, T. L. Ward, Adv. Mater., 2002, 14, 1301.
    78 W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun., 2002, 2434.
    79 C. E. Fowler, D. Khushalani, S. Mann, Chem. Commun., 2001, 2028.
    80 S. Chacht, Q. Huo, G. Voigt?Martin, G. D. Stucky, F. Schüth, Science, 1996, 273, 768.
    81 C. Yu, B. Tian, J. Fan, G. D. Stucky, D. Zhao, Chem. Lett., 2002, 62.
    82 B. Alonso, C. Clinard, D. Durand, Chem. Commun., 2005, 1746.
    83 E. Prouzet, F. Cot, C. Boissiere, J. Mater. Chem., 2002, 12, 1553.
    84 Y. S. Li, J. L. Shi, Z. L. Hua, H. R. Chen. M. L. Ruan, D. S. Yan, Nano Lett., 2003, 3, 609.
    85 H. Yang, N. Coombs, G. A. Ozin, Nature, 1997, 386, 692.
    86 P. T. Tanev, T. J. Pinnavaia, Science, 1996, 271, 1267.
    87 S. S. Kim, W. Zhang, T. J. Pinnavaia, Science, 1998, 282, 1302.
    88 M. H. Yu, H. N. Wang, X. F. Zhou, P. Yuan, C. Z. Yu, J. Am. Chem. Soc., 2007, 129, 14576.
    89 S. Mann, G. A. Ozin. Nature 1996, 382, 313.
    90 C. C. Perry, T. Keeling?Tucker. J. Biol. Inorg. Chem. 2000, 5, 537.
    91 K. J. van Bommel, A. Friggeri, S. Shinkai. Angew. Chem. Int. Ed. 2003, 42, 980.
    92 J. H. Jung, S. Shinkai, T. Shimizu. The Chemical Record. 2003, 3, 212.
    93 Y. Ono, Y. Kanekiyo, K. Inoue, J. Hojo, M. Nango, S. Shinkai. Chem. Lett. 1999, 475.
    94 M. Numata, K. Sugiyasu, T. Hasegawa, S. Shinkai. Angew. Chem. Int. ed. 2004, 43, 3279.
    95 T. Douglas, M. Young. Adv. Mater. 1999, 11, 679.
    96 W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann. Adv. Mater. 1999, 11, 253.
    97 C. E. Fowler, W. Shenton, G. Stubbs, S. Mann. Adv. Mater. 2001, 13, 1266.
    98 S. Chia, J. Urano, F. Tamanoi, B. Dunn, J. I. Zink. J. Am. Chem. Soc. 2000, 122, 6488.
    99 J. Huang, T. Kunitake. J. Am. Chem. Soc. 2003, 125, 11834.
    100 Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. Kim, G. Stucky, H. Shin, R. Ryoo. Nature, 2000, 408, 449.
    101 K. Miyasaka, O. Terasaki, Angew. Chem. Int. Ed. 2010, In Press.
    102 T. Ohsuna, O. Terasaki, D. Watanabe, M. W. Anderson, S. Lidin. Surd. Surf. Sci. Catal. 1994, 84, 413.
    1 J. N. Israelachvili, D. J. Mitchell, B. W. Ninham. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525.
    2 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
    3 Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    4 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
    5 P. T. Tanev, T. J. Pinnavaia, Science 1995, 267, 865.
    6 Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, G. D. Stucky, Nature 1994, 368, 317.
    7 M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, J. Phys. Chem. B 2002, 106, 1256.
    8 Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin, R. Ryoo, Nature 2000, 408, 449.
    9 C. Z. Yu, B. Z. Tian, J. Fan, G. D. Stucky, D. Zhao, J. Am. Chem. Soc. 2002, 124, 4556.
    10 S. Che, A. E. Garcia(?)Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, T. Nature Mater. 2003, 2, 801.
    11 C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, S. Angew. Chem. Int. Ed. 2006, 45, 4295.
    12 A. E. Garcia(?)Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2005, 44, 5317.
    13 C. Gao, Y. Sakamoto, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 11423.
    14 A. Jain, G. E. S. Toombes, L. M. Hall, S. Mahajan, C. B. W. Garcia, W. Probst, S. M. Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2005, 44, 1226.
    15 Y. Ran(?)on, J. Charvolin, J. Phys. Chem. 1988, 92, 6339; 1998, 92, 2646.
    16 M. W. Matsen, Phys. Rev. Lett. 1998, 80, 4470.
    17 T. Honda, T. Kawakatsu, Macromolecules 2006, 39, 2340.
    18 S. F(?)rster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley,A. J. Ryan, W. Bras, Marcomolecules 1994, 27, 6922.
    19 C. Y. Wang, T. P. Lodge, Macromolecules 2002, 35, 6997.
    20 M. E. Vigild, K. Almdal, K. Mortensen, I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, Marcomolecules 1998, 31, 5702.
    21 A. M. Squires, R. H. Templer, J. M. Seddon, Langmuir 2002, 18, 7384.
    22 A. M. Squires, R. H. Templer, J. M. Seddon, J. Woenkhaus, R. Winter, T. Narayanan, S. Finet, Phys. Rev. E. 2005, 72, 011502.
    23 C. E. Conn, O. Ces, A. M. Squires, X. Mulet, R. Winter, S. M. Finet, R. H. Templer, J. M. Seddon, Langmuir, 2008, 24, 2331.
    24 S. Hyde, Chapter 16, in Handbook of applied surfaces and colloid chemistry. Edited by Krister Holmberg, 2001, John Wiley and Sons.
    25 K. W. Gallis, C. C. Landry, Chem. Mater. 1997, 9, 2035.
    26 C. C. Landry, S. H. Tolbert, K. W. Gallis, A. Monnier, G. D. Stucky, P. Norby, J. C. Hanson, Chem. Mater. 2001, 13, 1600.
    27 K. Miyasaka, O. Terasaki, Angew. Chem. Int. Ed. 2010, 49, 8867.
    28 F. H. Quina, W. L. Hinze, Ind. Eng. Chem. Res. 1999, 38, 4150.
    29 International Tables for Crystallography, Volume A. 4.7. Geometrical structure factors and electron density formulae for the three(?)dimensional space groups.
    30 W. Z. Helfrich, Naturforsch. 1973, C28, 693.
    31 S. T. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, B. W. Ninham, , Elsevier Science B. V., Amsterdam, 1997"(?) Chapter 4).
    1 K. M. Kim, S. K. Kim, R. Ryoo, Chem. Commun. 1998, 259.
    2 S. Guan, S. Inagaki, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 5660.
    3 O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto, A. E. Garcia?Bennett, Stud. Surf. Sci. Catal. 2004, 148, 261.
    4 S. Che, S. Kamiya, O. Terasaki, T. Tatsumi. J. Am. Chem. Soc. 2001, 123, 12089.
    5 S. Kamiya, H. Tanaka, S. Che, T. Tatsumi, O, Terasaki. Solid State Sci. 2003, 5, 197.
    6 S. Che, H. Li, S. Lim, Y. Sakamoto, O. Terasaki, T. Tatsumi. Chem. Mater. 2005, 17, 4103.
    7 S. Che, S. H. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, T. Tatsumi, J. Am. Chem. Soc. 2002, 124, 13962.
    8 C. Yu, B. Tian, J. Fan, G. D. Studky, D. Zhao, J. Am. Chem. Soc. 2002, 124, 4556.
    9 L. Han, Y. Sakamoto, O. Terasaki, Y. Li, S. Che, J. Mater. Chem. 2007, 17, 1216.
    10 K. Miyasaka, L. Han, S. Che, O, Terasaki, Angew. Chem. Int. Ed. 2006, 45, 6516.
    11 S. Chacht, Q. Huo, G. Voigt?Martin, G. D. Stucky, F. Schüth, Science, 1996, 273, 768.
    12 Q. Sun, P. J. Kooyman, J. G. Grossmann, P. H. H. Bomans, P. M. Frederik, P. C. M. M. Magusin, T. P. M. Beelen, R. A. van Santen, N. A. J. M. Sommerdijk, Adv Mater. 2003,15, 1097..
    13 J. Wang, Q. Xiao, H. Zhou, P. Sun, Z. Yuan, B. Li, D. Ding, A.?C. Shi, T. Chen, Adv. Mater. 2006, 18, 3284.
    14 H. Jin, H. Qiu, Y. Sakamoto, P. Shu, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 6413.
    15 S. Che, A. E. Garcia?Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2003, 2, 801.
    16 A. E. Garcia?Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2005, 44, 5317.
    17 A. E. Garcia?Bennett, K. Miyasaka, O. Terasaki, S. Che, Chem. Mater. 2004, 16, 3597.
    18 A. E. Garcia?Bennett, O. Terasaki, S. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813.
    19 S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281.
    20 C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed. 2006, 45, 4295.
    21 C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che, Chem. Mater. 2006, 18, 3904.
    22 C. Gao, Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem. 2007, 17, 3591.
    23 C. Gao, Y. Sakamoto, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 11423.
    24 International Tables for Crystallography, Volume A. 4.7. Geometrical structure factors and electron density formulae for the three?dimensional space groups.
    25 K. Miyasaka, O. Terasaki, Angew. Chem. Int. Ed. Accepted.
    26 W. Z. Helfrich, Naturforsch. 1973, C28, 693.
    27 S. Ino, J. Phys. Soc. Jpn. 1966, 21, 346.
    28 B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater. 2009, 19, 189.
    29 S. Mader, J. Vac. Sci. Technol. 1966, 8, 247.
    30 F. H. Quina, W. L. Hinze, Ind. Eng. Chem. Res. 1999, 38, 4150.
    31 J. N. Israelachvili, D. J. Mitchell, B. W. Ninham. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525.
    32 A. E. Garcia?Bennett, K. Lund, O. Terasaki, Angew. Chem. Int. Ed. 2006, 45, 2434.
    33 A. Squires, R. H. Templer, J. M. Seddon, J. Woenckhaus, R. Winter, S. Finet, N. Theyencheri, Langmuir 2002, 18, 7384.
    1 P. J. Hagerman, Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265.
    2 V. V. Rybenkov, N. R. Cozzarelli, A. V. Vologodskii, Proc. Natl. Acad. Sci. 1993, 90, 5307.
    3 F. Livolant, A. Leforestier, Prog. Polym. Sci. 1996, 21, 1115.
    4 C. Robinson, Tetrahedron. 1961, 13, 219.
    5 C. Robinson, Mol. Cryst. Liq. Cryst. 1966, 1, 467.
    6 V. Luzzati, A. Nicolaieff, J. Mol. Biol. 1963, 7, 142.
    7 C. F. Jordan L. S. Lerman, J. H. Venable. Nature: New biology. 1972, 236, 67.
    8 L. S. Lerman, Cold Spring Harbor Symposia on Quantitative Biology. 1974, 38, 59.
    9 T. Maniatis, Jr. J. H. Venable, L. S. Lerman, J. Mol. Biol. 1974, 84, 37.
    10 S. M. Cheng, S. C. Mohr, Biopolymers. 1975, 14, 663.
    11 R. Huey, S. C. Mohr, Biopolymers. 1981, 20, 2533.
    12 V. A. Bloomfield, Biopolymers. 1997, 44, 269.
    13 J. T. Shapiro, M. Leng, G. Felsenfeld, Biochemistry. 1969, 8, 3219.
    14 J. Zlatanova, J. Yaneva, DNA Cell Biol. 1991, 10, 239.
    15 R. Ghirlando, E. J. Wachtel, T. Arad, A. Minsky. Biochemistry. 1992, 31, 7110.
    16 International Tables for Crystallography, Volume A. 4.6. Geometrical structure factors and electron density formulae for the two(?)dimensional space groups.
    17 C. Tschierske, Chem. Soc. Rev. 2007, 36, 1930.
    18 B. Chen B, X. Zeng, U. Baumeister, G. Ungar, C. Tschierske. Science. 2005, 307, 96.
    19 H.(?)L. Chen, J.(?)S. Lu, C.(?)H. Yu, C.(?)L. Yeh, U.(?)S. Jeng, W.(?)C. Chen. Macromolecules. 2007, 40, 3271.
    20 G. S. Manning GS. Q. Rev. Biophys. 1978, 11, 179.
    21 A. Kornyshev, S, Leikin, J. Chem. Phys. 1997, 107, 3656.
    22 A. A. Kornyshev, S. Leikin, Phys. Rev. Lett. 1999, 82, 4138.
    23 H. Harreis, A. Kornyshev, C. Likos, H. L(?)wen, G. Sutmann, Phys. Rev. Lett. 2002, 89, 018303.
    24 H. Harreis, C. Likosa, H. L(?)wen, Biophys. J. 2003, 84, 3607.
    25 A. Kornyshev, D. Lee, S. Leikin, A. Wynveen, S. Zimmerman, Phys. Rev. Lett. 2005, 95, 1.
    1 H. Jin, H. Qiu, Y. Sakamoto, P. Shu, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 6413.
    2 S. Che, A. E. Garcia?Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2003, 2, 801.
    3 A. E. Garcia?Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2005, 44, 5317.
    4 A. E. Garcia?Bennett, K. Miyasaka, O. Terasaki, S. Che, Chem. Mater. 2004, 16, 3597.
    5 A. E. Garcia?Bennett, O. Terasaki, S. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813.
    6 S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281.
    7 C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed. 2006, 45, 4295.
    8 C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che, Chem. Mater. 2006, 18, 3904.
    9 C. Gao, Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem. 2007, 17, 3591.
    10 C. Gao, Y. Sakamoto, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 11423.
    11 J. N. Israelachvili, D.J. Mitchell, B.W. Ninham, J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700