金、钯纳米粒子气—液界面组装新方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金、钯等贵金属纳米粒子及其组装膜在光学、电子、磁学、催化等方面有着广泛的应用。近年来,贵金属纳米粒子的制备和在气-液、液-液两相界面上的组装倍受关注,各种方法层出不穷。因此发展界面组装新方法,制备二维和三维贵金属纳米粒子功能薄膜,具有重要意义。本文利用过量亚锡既作还原剂又作保护剂,分别制备了稳定的Au溶胶和Pd溶胶,并在气-液界面上得到了Au、Pd纳米粒子的自组装膜,研究了其成膜机理,考察了组装膜的表面增强拉曼散射效应和/或电催化活性。主要内容如下:
     1.酸性介质中,用过量亚锡还原氯金酸,得到以亚锡(SnCl3-形式)为保护剂的稳定金溶胶,该溶胶可在隔绝空气的条件下保存数月之久。但在与空气接触下陈化溶胶,则可在短时间内于气-液界面得到金纳米粒子组装而成的多孔结构超薄膜。拉曼光谱等实验证明,该界面组装过程涉及空气中的氧所导致的配体交换。即空气中的氧气氧化消耗溶液表面层的二价锡(Sn(Ⅱ)),引起溶液表面层的金纳米粒子发生SnCl3-和Cl-之间的配体取代,Cl-取代SnCl3-配体后,溶胶表面层中的金纳米粒子失稳,在气-液界面上自发组装成膜。另外,结合密度泛函理论(DFT)计算,对该配体变换机理进行了解释。
     2.该金纳米粒子组装薄膜表现出良好的SERS效应和电催化活性。以该组装膜为SERS基底,测定了吡啶、邻菲罗啉、烟酰胺的SERS光谱。另外,该组装膜在碱性溶液中对乙醇、葡萄糖、维生素C的电氧化有较好的催化活性。
     3.酸性介质中,过量的Sn(Ⅱ)加热还原氯化钯得到稳定的钯溶胶,持续加热陈化一定时间后,可在气-液界面获得Pd纳米粒子的组装膜。其机理可能涉及加热条件下Pd纳米粒子往气-液界面上的扩散与组装。将Pd纳米粒子组装成的超薄膜修饰在玻碳电极或光亮Pd电极上在碱性条件下对乙醇和甲酸的电催化氧化表现出较好活性。
Nanopartices (NPs) and their assembly films of noble metals like gold and palladium have attracted a great deal of attention due to their broad application in such areas as optics, nanoelectronics, sensing, catalysis, and so forth. In recent years lots of efforts have being made to the preparation of noble metal NPs and their assembly at the interfaces of gas-liquid, liquid-liquid. Therefore it is of great significance to develop new interfacial assembly methods on fabricating two-and three-dimensional functional films of noble metal NPs. In this thesis, we prepared colloidal gold and palladium with excessive divalent tin Sn(Ⅱ) as both reductant and capping agent, made assembly films of the two kinds of NPs at the air-water interface, studied the assembly mechanisms, and showed the applications of the assembled films in surface-enhanced Raman scattering (SERS) and/or electrocatalysis. The main contents are summarized as follows:
     1. A gold colloid was synthesized by the reduction of AuCl4- with excessive divalent tin Sn(Ⅱ) in an acid medium, which was stable for months under airproof condition by the protection of Sn(Ⅱ)Cl3-. However, ultrathin nanoporous gold films were formed at the air-water interface by aging the colloid for some time under air contact. Experiments including Raman spectroscopy proved that the interfacial assembly process involves the ligand exchange induced by the O2 from the air, namely, the protective Sn(Ⅱ) species (mostly SnCl3-) of the gold colloid could be gradually replaced by Cl-in the solution while the strongly chemically adsorbed Sn(Ⅱ) species on the Au NPs at the superficial layer of the colloid was oxidized by the O2 from the air contact. The Au NPs become unstable and form assembly films at the air-water interface. In addition, density functional theory (DFT) calculations were used to explain the ligand exchange mechanism.
     2. The ultrathin nanoporous films of Au NPs display excellent SERS effect and good electrocatalytic activity. The SERS spectra of pyridine,1, 10-phenanthroline, nicotinamide etc. can be got easily by using the ultrathin nanoporous films of Au NPs as SERS substrates. And the modified glass carbon electrode by the assembled film of Au NPs shows better electrocatalytic activity toward the electrooxidation of ethanol, glucose, and ascorbic acid in alkaline solution.
     3. Stable Pd colloids were synthesized by the reduction of PdCl2 using excessive divalent tin Sn(Ⅱ) under heating in an acid medium. The assembled films of Pd NPs at the air-water interface could be obtained by aging the colloid for a while with continuous heating, involving diffusion of Pd NPs from the bulk colloid to the air-water interface with the help of heating. The modified smooth Pd or glassy carbon electrode by the assembled film of Pd NPs display good electrocatalytic activity toward the electrooxidation of ethanol and formic acid in alkaline solution.
引文
[1]Collier C. P., Vossmeyer T., Heath J. R.. Nanocrystal superlattices[J]. Annu. Rev. Phys. Chem.,1998,49:371-404
    [2]Murray C. B., Kagan C. R.. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annu. Rev. Mater. Sci., 2000,30:545-610
    [3]Sun S., Anders S., Thomson T., et al.. Controlled synthesis and assembly of FePt nanoparticles[J]. J. Phys. Chem. B,2003,107:5419-5425
    [4]Taleb A., Petit C., Pileni M. P.. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles[J]. J. Phys. Chem. B,1998,102:2214-2220
    [5]Denkov N. D., Velev O. D., et al.. Two-dimensional crystallization[J]. Nature, 1993,361:26-26
    [6]Kralchevsky P. A., Nagayama K.. Capillary forces between colloidal particles[J]. Langmuir,1994,10:23-36
    [7]Motte L., Billoudet F., Thiaudiyre D., Naudon A., et al.. Characterization of ordered 3D arrays of Ag2S nanocrystallites[J]. J. Phys. Ⅲ,1997,7:517-527
    [8]He H. X., Zhang H., Li Q. G, et al.. Fabracation of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates[J]. Langmuir,2000,16,3846-3851
    [9]Li X., Huskens J., Reinhoudt D. N.. Reactive self-assembled monolayers on flat and nanoparticles surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies[J]. J. Mater. Chem.,2004,14: 2954-2971
    [10]Srivastava S., Kotov N. A.. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires[J]. Acc. Chem. Res.,2008,41: 1831-1841
    [11]Sennerfors T., Bogdanovic G, Tiberg F.. Formation, chemical composition, and structure of polyelectrolyte-nanoparticle multilayer films[J]. Langmuir,2002,18: 6410-6415
    [12]Onclin S., Ravoo B. J., Reinhoudt D. N.. Engineering silicon oxide surfaces using self assembled monolayers[J]. Angew. Chem. Int. Ed.,2005,44: 6282-6304
    [13]Behar, Sarikaya M., Jen A. K. Y.. Assembly of nanomaterials through highly ordered self assembled monolayers and peptide organic hybrid conjugates as templates[J]. J. Nanosci. Nanotechnol.,2007,7:2549-2566
    [14]Leibowitz F. L., Zheng W., Maye M. M., Zhong C.. Structrres and properties of nanoparticle thin films formed via a one-step exchange-cross-linking-precipitation route[J]. Anal. Chem.,1999,71:5076-5083
    [15]Zirbs R., Kienberger F., Hinterdorfer P., Binder W. H.. Directed assembly of Au nanoparticles onto planar surfaces via multiple hydrogen bonds [J]. Langmuir, 2005,21:8414-8421
    [16]Niemeyer C. M.. self assembled nanostructures based on DNA:towards the development of nanobiothchnology[J]. Curr. Opin. Chem. Biol.,2000,4: 609-618
    [17]Decher, Fuzzy G. Nanoassemblies:toward layered polymeric multicomposites[J]. Science,1997,277:1232-1237
    [18]Her R. K.. Multilayers of colloidal particles[J]. J. Colloid Interface Sci.,1966,21: 569-594
    [19]Kotov N. A., Fendler J. H., et al.. Layer-by-layer self-assembly of polylectrolyte semiconductor nanoparticle composite films[J]. J. Phys. Chem.,1995,99: 13065-13069
    [20]Caruso F., Mohwald H., et al.. Nanoengineering of Inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998:282,1111-1114
    [21]Giersig M., Hilgendorff M.. The preparation of ordered colloidal magnetic particles by magnetophoretic deposition[J]. J. Phys. D:Appl. Phys.,1999,32; 111-113
    [22]Urban J. J., Talapin D. V., Shevchenko E. V., et al.. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films[J]. J. Am. Chem. Soc.,2006,128:3248-3255
    [23]Giersing M., Hilfendorff M.. Magnetic nanoparticle supertructures[J]. Eur. J. Inorg. Chem.2005(18),3571-3583
    [24]Pileni M. P.. Nanocrystal self-assemblies:fabrication and collective properties [J]. J. Phys. Chem. B,2001,105:3358-3371
    [25]Pileni M. P., Lalatonne Y, Ingert D., Lisiecki I., Courty A.. Self assemblies of nanocrystals:preparation, collective properties and uses[J]. Faraday Discuss., 2004,125:251-264
    [26]hermanson K. D., Lumsdon S. D., Williams J. P., et al.. Dielectrophoretic assembly of electrically functional micro wires from nanoparticle suspensions [J]. Science,2001,294:1082-1086
    [27]Sun J., Guo Z., Wang C., Gu N.. Electric field-induced chaining of Au/Aniline polymeric particle pairs and TEM characterization[J]. ChemPhysChem,2005,6: 2485-2488
    [28]Vossmeyer T., Deionno E., Heath J. R.. Light-directed assembly of nanoparticles[J]. Angew. Chem. Int. Ed.,1997,36:1080-1083
    [29]Ajayan P. M., Stephan O., Redlich P., Colliex C..Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures[J]. Nature,1995, 375:564-567
    [30]Lee M., Im J., Lee B. Y., Myung S., et al.. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires[J]. Nature Nanotech.,2006,1:66-71
    [31]Hulteen J. C., Martin C. R.. A general template-based method for the preparation of nanomaterials[J]. J. Mater. Chem.,1997,7:1075-1087
    [32]Cheng B., Samulski E. T.. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3[J]. J. Mater. Chem.2001,11:2901-2902
    [33]Lakshmi B. B., Dorhout P. K., Martin C. R.. Sol-gel template synthesis of semiconductor nanostructures[J]. Chem. Mater.1997,9:857-862
    [34]Whitby R. L. D., Hsu W. K., Boothroyd C. B., et al.. Tungsten disulphide sheathed carbon nanotubes [J]. ChemPhysChem,2001,10:620-623
    [35]Zhao W., Zhu J., Chen H.. Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template[J]. J. Cryst. Growth.,2003,258:176-180
    [36]Satishkumar B. C., Govindaraj A., Nath M., Rao C. N. R.. Synthesis of metal oxide nanorods using carbon nanotubes as templates[J]. J. Mater. Chem.,2000, 10:2115-2119
    [37]Han Y., Kim J., Stucky G. D.. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem. Mater.,2000,12:2068-2069
    [38]Cao M., Hu C., Peng G, Qi Y., Wang E.. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods[J]. J. Am. Chem. Soc.,2003,125:4982-4983
    [39]Cao M., Hu C., Wang Y, Guo Y, Guo C., Wang E.. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J]. Chem. Commun.,2003, 1884-1885
    [40]Kralchevsky P. A., Ivanov I. B., Ananthapadmanabhan K. P., Lips A.. On the thermodynamics of particle-stabilized emulsions:curvature effects and catastrophic phase inversion[J]. Langmuir,2005,21:50-63
    [41]Lin Y, Boker A., Skaff H., Cookson D., Dinsmore A. D., et al.. Nanopartices assembly at fluid interface:structure and dynamics[J]. Langmuir 2005,21: 191-194
    [42]Lin Y, Skaff H., Ermick T., Dinsmore A. D., Russell T. P.. Nanoparticle assembly and transport at liquid-liquid Interfaces [J]. Science,2003,299:226-229
    [43]Binks B. P., Clint J. H.. Solid wettability from surface energy components: Relevance to Pickering Emulsions[J]. Langmuir,2002,18:1270-1273
    [44]Benjamin L.. Chemical reactions and solvation at liquid interface:a microscopic perspective[j]. Chem. Rev.,1996,96:1449-1475
    [45]Luo G, Malkova S., Yoon J., Schultz D. G, Lin B., Meron M., Vanysek P., et al.. Ion-distributions near a liquid-liquid interface[J]. Science,2006,311:216-218
    [46]Wolfgang H., Binder. supramolecular assembly of nanoparticles at liquid-liquid interfaces[J]. Angew. Chem. Int. Ed.,2005,44:5172-5175
    [47]Rao C. N. R., Kulkarni G U., Agrawal V. V., et al.. Use of the liquid-liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides[J]. J. Colloid Interface Sci.,2005,289:305-318
    [48]Rao C. N. R., Kulkarni G U., Thomas J. P. Agrawal V. V., Saravanan P.. Films of metal nanocrystals formed at aqueous-organic interface[J]. J. Phys. Chem. B, 2003,107:7391-7395
    [49]Sanyal M. K., Agrawal V. V., Bera M. K., Kalyanikutty K.P., et al.. Formation and ordering of gold nanoparicles at the toluene-water interface[J]. J.Phys. Chem. C,2008,112:1739-1743
    [50]Rao C. N. R., Kalyanikutty K.P.. The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials[j]. Acc. Chem. Res.,2008, 41:489-199
    [51]Binks B. P.. Particles as surfactants-similarities and differences[J]. Curr. Opin. Colloid Interface Sci.,2002,7:21-41
    [52]Aveyard R., Binks B. P., Clint J. H.. Emulsions stabililsed solely by colloidal particles[J]. Adv. Colloid Interface Sci.,2003,100-102:503-546
    [53]Duan H., Wang D., Kurth D., Mohwald H.. Directing self-assembly of nanoparticles at water/oil interface[J]. Angew. Chem. Int. Ed.,2004,43: 5639-5642
    [54]Kim B., Tripp S. L., Wei A.. Self-organization of large gold nanoparticle arrays[J]. J. Am. Chem. Soc.,2004,123:7955-7956
    [55]Reincke F., Hickey S. G, Kegel W. K., Vanmaekelbergh D.. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interfacep[J]. Angew. Chem. Int. Ed.,2004,43:458-462
    [56]Yogev D., Efrima S.. Novel Silver metal liquidlike films[J]. J. Phys. Chem. C, 1988,92:5754-5760
    [57]Li Y., Huang W., Sun S.. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J]. Angew. Chem. Int. Ed.,2006,45:2537-2539
    [58]Xia H., Wang D.. Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly [J]. Adv. Mater.,2008,20: 4253-4256
    [59]Hu L., Ma R., Ozawa T. C., Geng F., Iyi N., Sasaki T.. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface[J]. Chem. Commun.,2008 4897-4899
    [60]Park Y., Park S.. Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface[J]. Chem. Mater.,2008,20:2388-2393
    [61]Langmuir I.. The constitution and fundamental properties of solids and liquids. II. Liquids[J]. J. Am. Chem. Soc.,1917,39:1848-1906
    [62]Blodgett K. B.. Films built by depositing successive monomolecular layers on a solid surface[J]. J. Am. Chem. Soc.,1935,57:1007-1022
    [63]Takamoto D. Y., Aydil E., Zasadzinski J. A., Ivanova A. T., et al. Stable ordering in Langmuir-Blodgett films[J]. Science,2001,293:1292-1295.
    [64]Ocko B. M., Kelley M. S.. Structure and phase behavior of mixed monolayers of saturated and unsatrrated fatty acids[J]. Langmuir,2002,18:9810-9815
    [65]Ye S., Noda H., Nishida T., Morita S., Osawa M.. Cd2+-induced interfacial structural changes of Langmuir-Blodgett films of stearic acid onsolidsubstrates:a sum frequency generation study[J]. Langmuir,2004,20:357-365
    [66]Yi K. C., Horvolgyi Z., Fendler J. H.. Chemical formation of silver particulate films under monolayers [J]. J. Phys. Chem.,1994,98:3872-3881
    [67]Yang J., Meldrum F. C., Fendler J. H.. Epitaxial growth of size-quantized cadmium sulfide crystals under arachidic acid monolayers[J]. J. Phys. Chem., 1995,99:5500-5504
    [68]Rybak B. M., Ornatska M., Bergman K. N., Genson K. L., Tsukruk V. V.. Formation of Silver nanoparticles at the air-water interface mediated by a monolayer of functionalized hyperbranched molecules [J]. Langmuir,2006,22: 1027-1037
    [69]Belman N., Golan Y, Berman A.. Nanocrystalline Ag2S on polydiacetylene Langmuir films[J]. Cryst. Growth. Des.,2005,5:439-443
    [70]Berman A., Belman N., Golan Y. Controlled deposition of oriented PbS nanocrystals on ultrathin polydiacetylene templates at the air-solution interface[J]. Langmuir,2003,19:10962-10966
    [71]Swami A., Kumar A., Pasricha R., Mandale A. B., Sastry M.. Formation of platinum nanoparticles at air-water interfaces by the spontaneous reduction of subphase chloroplatinate anions by hexadecylaniline Langmuir monolayers [J]. J. Colloid Interface Sci.,2004,271,381-387
    [72]Pasricha R., Swami A., Sastry M.. Transmetalation reaction between hydrophobic silver nanoparticle and aqueous chloroaurate ions at the air-water interface [J]. J. Phys. Chem. B,2005,109:19620-19626
    [73]Tao A. R., Huang J., Yang P.. Langmuir-Blodgettry of nanocrystals and nanowires[J]. Acc. Chem. Res.,2008,41,1662-1673
    [74]Dabbousi B. O., Murray, C. B., Rubner M. F., Bawendi M. G. Langmuir-Blodgett manipulation of size-selected CeSe nanocrystallites[J]. Chem. Mater.,1994,6:216-219
    [75]Heath J. R., Knobler C. M., Leff D. V.. Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers:the influence of particle size, size distribution, and surface passivant[J]. J. Phys. Chem.B,1997,101:189-1979
    [76]Song H., Kim F., Connor S., Somorjai G. A., Yang, P.. Pt nanocrystals:shape control and Langmuir-Blodgett monolayer formation[J]. J. Phys. Chem. B,2005, 109,188-193
    [77]Zhao X. K., Herve P. J., Fendler J. H.. Magnetic particulate thin films on bilayer lipid membranes[J]. J. Phys. Chem.,1989,93:908-916
    [78]Meldrum F. C., Kotov N. A., Fendler J. H.. Preparation of particulate mono-and multilayers from surfactant-stabilized, nanosized magnetite crystallites [J]. J. Phys. Chem.,1994,98:4506-4510
    [79]Pang S., Tetsuya O., Tomoyuki W., Kondo T., Kawai T.. Studies on 2D hybrid films of half surfactant-covered Au nanoparticles at the air/water interface[J]. J. Colloid Interface Sci.,2005,285,634-639
    [80]Hansen C. R., Westerlund F., Moth-poulsen K., Ravindranath R., Valiyaveettil S., Bj(?)rnholm T.. Langmuir,2008,24:3905-3910
    [81]万海保,曹立新,丁晗明,席时权.TiO2纳米溶胶的界面粒子膜的研究[J].膜科学与技术,1999,19(1):45-48
    [82]曹立新,万海保,袁讯道,曾广斌,席时权SnO2纳米粒子膜的性质和结构研究[J].化学物理学报,1999,12(2):191-196
    [83]Huo L., Li W., Lu L., Gui H., Xi S., et al.. Preparation, structure, and properties of three-dimensional ordered α-Fe2O3 nanoparticulate film[J]. Chem. Mater., 2000,12,790-794
    [84]Jin Y, Dong S.. Diffusion-limited, aggregation-based, mesoscopic assembly of roughened core-shell bimetallic nanoparticles into fractal networks at the air-water interface[J]. Angew. Chem. Int. Ed.,2002,41:1040-1044
    [85]Hu J., Zhao B., Xu W., Fan Y., Li B., Ozaki Y. Aggregation of Silver particles trapped at an air-water interface for preparing new SERS active substrates[J]. J. Phys. Chem. B,2002,106,6500-6506
    [86]Hu J., Han G, Ren B., Sun S., Tian, Z.. Theoretical consideration on prepating Silver particle films adsorbing nanoparticles from bulk colloids to an air-water interface[J]. Langmuir,2004,20:8831-8838
    [87]朱自莹,顾仁敖,陆天虹。拉曼光谱在化学中的应用[M].沈阳:东北大学出版社,1998
    [88]Fleischmann M., Hendra P. J., Mcquillan A. J.. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett.,1974,26(2):163-166
    [89]Jeanmaire D. L., Duyne R. P.. Surface raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver [J]. J. Electroanal. Chem.,1977-1978,84(1):1-20
    [90]任斌,田中群。固体催化剂的研究方法,第十六章电化学催化中的激光拉曼光谱法(上)[J].石油化工,2002,31(6):488-499
    [91]Tian Z., Ren B., Wu D.. Surface-Enhanced Raman Scattering:from noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B,2002,106:9463-9483
    [92]Roberson L. J.. Fabrication and characterization of nanoporous gold thin films [J]. Mater. Nnin. Reu.,2006,82-83
    [93]Gao P., Patterson L., Tadayyoni M. A., Weave M. J.. Gold as a ubiquitous substrate for interse surface-enhanced Raman scattering[J]. Langmuir,1985,1: 173-176
    [94]Huang W., Wang M., Zheng J., Li Z.. Facile fabrication of multifunctional three-dimensional hierarchical porous gold films via surface rebuilding[J]. J. Phys. Chem. C,2009,113:1800-1805
    [95]Peng Y., Niu Z., Huang W., Chen S., Li Z.. Surface-Enhanced Raman Scattering studies of 1,10-phenanthroline adsorption and its surface complexes on a gold electrode[J]. J. Phys. Chem. B,2005,109,10880-10885
    [96]Kim K., Lee H. B., Lee J. W., Park H. K., Shin K. S.. Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced Raman scattering [J]. Langmuir,2008,24:7178-7183
    [97]Tessier P. M., Velev O. D., Kalambur A. T., Rabolt J. F., et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc.,2000,122: 9554-9555
    [98]Wang Y., Guo S., Chen H., Wang E.. Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering[J]. J. Colloid Interface Sci.,2008,318:82-87.
    [99]Jung H. Y., Park Y, Park S., Kim S. K.. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles[J]. Anal. Chim. Acta., 2007,602:236-243
    [100]Weinberg N. L., Weinberg H. R.. Electrochemical oxidation of organic compounds[J]. Chem. Rev.,1968,68:449-523
    [101]Zhen C., Sun S., Fan C., Chen S., Mao B., Fan Y. In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(110) electrode in alkaline solutions[J]. Electrochim. Acta.,2004,49:1249-1255
    [102]Herrero E., Chrzanowski W., Wieckowski A.. Dual path mechanism in methanol electrooxidation on a platinum electrode[J]. J. Phys. Chem.,1995,99: 10423-10424
    [103]Yepez O., Scharifker B. R.. Oxidation of formate on hydrogen-loaded palladium[J]. Int. J. Hydrogen Energy,2002,27:99-105
    [104]Zhu Y, Kang Y, Zou Z., Zhou Q., Zheng J., Xia B., Yang H.. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid[J]. Electrochem. Commun.,2008,10:802-805
    [105]Wang R., Liao S., Ji S.. High performance Pd-based catalysts for oxidation of formic acid[J]. J. Power Sources,2008,180:205-208
    [106]Pavese A., Solis V.. Comparative investigation of formic acid and formaldehyde oxidation on Palladium particle by a rotation ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. J.Electroanal.Chem,1991,301: 117-127
    [107]Sheridan A. K., Clark A. W., Glidle A., Cooper J. M., Cumming D. R. S.. Multiple plasmon resonances from gold nanostructrres[J]. Appl. Phys. Lett., 2007,90:143105-1-143105-3
    [108]Yin G, Wang S., Xu M., Chen L.. Theoretical calculation of the optical properties of gold nanoparticles [J]. J. Korean Chem. Soc.,2006,49:2108-2111
    [109]Daniel M., Astruc D.. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev.,2004,104:293-346
    [110]陈述.金属阳极/溶液界面过程、纳米结构和拉曼光谱电化学研究[D].湖南师范大学博士学位论文.2009-8-24
    [111]Chu Y., Chen S., Zheng J., Li Z.. Elimination of oxidation and decomposition by SnCl2 in the SERS study of pyridoxine on a roughened Au electrode[J]. J. Raman Spectrosc.,2009,40,229-233
    [112]Peng Y., Niu Z., Huang W., Chen S., Li Z.. Surface-enhanced Raman scattering studies of 1,10-phenanthroline adsorption and its surface complexes on a gold electrode[J]. J. Phys. Chem. B,2005,109:10880-10885
    [113]Pingarron J. M., Yanez-Sedeno P., Gonzalez-Cortes A.. Gold nanoparticle-based electrochemical biosensors[J]. Electrochim. Acta,2008,53: 5848-5866
    [114]Liu Y, Xue Y, Ji J, Chen X, Kong J, Yang P, Girault H., Liu B.. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis[J]. Mol. Cell. Proteomics,2007,6:1428-1436
    [115]Jain P. K., Huang X., El-Sayed I. H., El-Sayed M. A.. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Acc. Chem. Res.,2008,41: 1578-1586
    [116]Nie S., Emory S. R.. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science,1997,275:1102-1106
    [117]Kneipp K., Wang Y, Kneipp H., Perelman L. T., Itzkan I., Dasari R., et al.. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett.,1997,78:1667-1670
    [118]Garcia-Vidal F. J., Pendry J. B.. Collective Theory for surface enhanced Raman scattering[J]. Phys. Rev. Lett,1996,77:1163-1166
    [119]Mena M. L., Yanez-Sedeno, Pingarron J. M.. A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes [J]. Anal. Biochem.,2005,336:20-27
    [120]Yang W., Wang J., Zhao S., Sun Y, Sun C..Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment[J]. Electrochem. Commun.,2006,8: 665-672
    [121]Xiao Y., Ju H., Chen H.. Direct Electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified Gold electrode[J]. Anal. Biochem.,2000,278:22-28
    [122]Elghanian r., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A.. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of Gold nanoparticles[J]. Science,1997,277:1078-1081
    [123]Borkowska Z., Tymosiak-Zielinska A., Shul G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes[J]. Electrochimica Acta., 2004,49:1209-1220
    [124]Hsiao M. W., Adzic R. R., Yeager E. B.. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer [J]. J. Electrochem. Soc.,1996,143:759-767
    [125]Gao J. S., Tian Z. Q.. Surface enhanced Raman scattering of pyridine at copper eletrodes excited with a 514.5 nm line[J]. Chem. Phys. Lett.,1996,262: 151-154
    [126]Chen S., Chu Y, Zheng J., Li Z.. Study on the two dealloying modes in the electrooxidation of Au-Sn alloys by in situ Raman spectroscopy[J]. Electrochim. Acta,2009,54:1102-1108
    [127]陈万喜,徐清华,蒋化,徐铸德,李彩凤.表面增强拉曼光谱研究吸附态的变化[J].分子科学学报,1998,14:226-231
    [128]Burkea L. D., Ryana T. G. The role of incipient hydrous oxides in the oxidation of glucose and some of its derivatives in aqueous media[J]. Electrochim. Acta, 1992,37:1363-1370
    [129]Henglein A.. Colloidal Palladium nanoparticles:reduction of Pd(Ⅱ) by H2; PdcoreAushellAgshell Particles[J]. J. Phys. Chem. B,2000,104:6683-6685
    [130]Mayer A. B. R., Antonietti M.. Transition Metal Nanoparticles Protected by amphiphilic block copolymers as tailored catalyst systems [J]. Colloid. Polym. Sci.,1997,275:333-340
    [131]刘漫红,高飞鹏,刘金强.Pd金属胶体的制备[J].青岛科技大学(自然科学版),2008,29:302-304
    [132]董颖男,董守安,唐春.在可溶性聚合物体系中光化学法制备Pd纳米粒子的研究[J].贵金属,2007,28:20-23
    [133]Luo C., Zhang Y., Wang Y.. Palladium nanoparticles in poly(ethyleneglycol): the efficient and recyclable catalyst for heck reaction[J]. J. Mol. Catal. A: Chem.,2005,229:7-12
    [134]Chen W., Cai W., Lei Y, Zhang L.. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica[J]. Mater. Lett.,2001, 50:53-56
    [135]Xie J., Zhang Q., Lee J. Y, Wang D. I. C.. General method for extended metal nanowire synthesis:ethanol induced self-assembly [J]. J. Phys. Chem. C,111: 17158-17162
    [136]Zheng L., Li J.. Self-assembly of ordered 3D Pd nanospheres at a liquid/liquid interface[J]. J. Phys. Chem. B,2005,109:1108-1112
    [137]Zhu Z., Wang Z., Li H.. Self-assembly of palladium nanoparticles on functional multi-walled carbon nanotubes for formaldehyde oxidation[J]. J. Power Source, 2009,186:339-343
    [138]Tong X., Zhao Y, Huang T., Liu H., Liew K. Y. Controlled synthesis of pompon-like self-assemblies of Pd nanoparticles under microwave irradiation[J]. Appl. Surf. Sci.,2009,225:9463-9468
    [139]Yepez O., Scharifker B. R.. Oxidation of formate on hydrogen-loaded palladium[J]. Int. J. Hydrogen Energy,2002,27:99-105
    [140]申燕,朱培德,刘柏峰,杨秀荣,董绍俊.钯纳米粒子在电极表面的制备及其对氧的催化还原[J].高等化学学报,2003,24:2080-2082
    [141]Liu Z., Hong L., Tham M. P., Lim T. H., Jiang H.. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells[J]. J. Power Source,2006,161: 831-835
    [142]Larsen R., Ha S., Zakzeski J., Masel R., I.. Unusually active palladium-based catalysts for the electrooxidation of formic acid[J]. J. Power Source,2006,157: 78-84
    [143]Haan J. L., Masel R. I.. The influence of solution pH on rates of an electrocatalytic reaction:Formic acid electrooxidation on platinum and palladium[J]. Electrochim. Acta,2009,54:4073-4078
    [144]Hara M., Linke U., Wandlowski Th.. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1M H2SO4 and HClO4 Part I. Low-index phases[J]. Electrochim. Acta,2007,52:5733-5748
    [145]Xu C., Cheng L., Shen P., Liu Y.. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media[J]. Electrochem. Commun.,2007,9:997-1001
    [146]Pan W., Zhang X., Ma H., Zhang J.. Eletrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles[J]. J. Phys. Chem. C, 2008,112,2456-2461
    [147]Xu C., Wang H., Shen P., Jiang S.. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cell[J]. Adv. Mater.,2007,19:4256-4259
    [148]Liang, Z., Zhao T. S., Xu J. B., Zhu L. D.. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta,2009, 54:2203-2208
    [149]Wang X., Xia Y. Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation[J]. Electrochimica Acta, 2009,54:7525-7530
    [150]Zhou Z., Wang Q., Lin J., Tian N., Sun S.. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta,2010, DOI:10.1016/j.electacta.2010.02.071

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700