电化学方法研究交流干扰对埋地管线的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统经验认为交流电流所产生的干扰不能造成管道的腐蚀,其主要危害在于故障电流对人身安全造成威胁,但是近年来人们已经觉察到交流电气化铁轨等交流源对埋地金属管道的交流腐蚀危险和对阴极保护系统的交流干扰影响都增大了。由交流电流所产生的腐蚀干扰是一个相对新的现象,而且腐蚀行为比在通常的介质中要复杂得多,因此研究方法具有某些特殊性和一定的困难。
     为了快速而准确地测定金属材料在土壤介质中的腐蚀随时间的变化规律,本文选择符合青岛土壤情况的模拟试验溶液,进行交流干扰对管道腐蚀影响的实验室模拟试验和研究。通过测量管线钢X70钢的自腐蚀电位随时间的变化曲线及极化曲线和交流阻抗谱研究了X70钢在施加交流干扰时其相关电化学参数的变化规律,以及腐蚀速率的变化规律,从而初步探讨研究了交流干扰下土壤腐蚀机理。结果表明试样在有交流干扰时比没有干扰自腐蚀电位更负,且随着交流干扰电压的增大为负移趋势;自腐蚀电流变大,也随着交流干扰电压的增大而呈现增大趋势;腐蚀过程由阴极反应控制变成混合控制,腐蚀速度加剧。
     虽然阴极保护在一定程度上可以抑制交流腐蚀,但是在交流干扰防护标准中,继续使用中性溶液中碳钢的保护电位-770mVSCE就不一定合理了,因此在有交流电压干扰的阴极保护中,选择最适当的保护电位,对于抑制腐蚀,节约能源以及防止过保护造成的危害是十分重要的。本文提出在阴极保护工程中使用最佳保护电位来代替保护电位。采用电化学方法测量X70钢在不同交流干扰电压下的极化曲线、恒电位极化曲线和不同阴极极化电位下的电化学交流阻抗谱,建立了确定交流干扰腐蚀下阴极保护电位范围和最小及最佳保护电位的方法。结果表明,采用电化学测试方法可以确定X70钢的在有交流干扰的条件下的阴极保护参数,并建议在本实验条件下X70钢的最小保护电位为交流干扰电压较小时(≤4V)在-815mVSCE左右,交流保护电压较大时(≥5V)-835mVSCE左右;最佳保护电位在交流干扰电压较小(≤6V)时-900mVSCE左右,交流干扰电压较大(≥7V)时-1000mVSCE左右。
Traditional experiences showed that the current generated by AC could not cause corrosion of pipelines,and the main hazard was that the fault current threated to human security. But in recent years, people have awared that AC(such as the high-voltage transmission lines) would cause corrosive threat to the buried pipeline. The corrosion risk caused by AC is a relatively new phenomenon, and its corrosion behavior is much more complex than that in the usual medium, so research method has certain peculiarities and some difficulties.
     In order to quickly and accurately determine the corrosion rate over time of the metal material in the soil medium, this paper choosed test solution to simulate Qingdao soil for laboratory research of the pipeline corrosion interfered by AC. By measuring the X70 steel corrosion potential changing with time、polarization curves and AC impedance I studied the variation of electrochemical parameters on the X70 steel interfered by AC, as well as the changes of corrosion rate and thus studied initialy mechanism of soil erosion under the interference of AC. The results showed that when X70 steel was interfered by certain AC its corrosive potention was decrescent,its corrosive current was accrescent, and the process of corosion was changed from cathoding control to blending control,then corrosion rate increased.
     The cathodic protection could inhibit the exchange of corrosion to a certain extent. But in the AC interference protection standards, the continued use of carbon steel protection of potential(-770mVSCE) in neutral solution is not necessarily appropriate, so it is very important to select the most appropriate protection potential for inhibiting corrosion, energy conservation and preventing the harm caused by excessive protection under the AC voltage interfere. This paper proposed the use of the best potential in stead of the protection potential. Used electrochemical methods to research the corrosion characteristics of the X70 steel under different alternating stray current (AC)voltage and got polarization curves、potentiostatic polarization experiments and electrochemical impedance spectroscopy(EIS) under different cathodic polarization potential to determine the scope of its cathodic protection potential and the optimum cathodic protection potentia. The results showed that the use of polarization curves、potentiostatic polarization experiments and electrochemical impedance spectroscopy could determine the conditions of cathodic protection parameters of the X70 steel under different AC voltage.At last I suggested that in my experiment conditions the smallest cathodic protection potential of the X70 steel under different AC at a smaller voltage was -815mVSCE ,while at a larger selected -835mVSCE around and the optimum cathodic protection potential under different AC at a smaller voltage was -900mVSCE ,while at a larger selected -1000mVSCE around.
引文
[1]米琪.交流干扰-埋地管道完整性的新威胁及其危险性的分类标准.防腐保温技术,2008,16(3):27-35.
    [2] W.V.贝克曼,W.施文克,W.普林兹。胡士信,王向农译.《阴极保护手册—电化学保护的理论与实践》.北京:化学工业出版社,2005。
    [3]董旭,胡士信。西气东输工程及其管道防腐蚀概况《材料保护》,2001年12月,第34卷第12期。
    [4]吴长访等.新大管道杂散电流干扰影响研究.油气储运,2007,26(6):41-48.
    [5] S.Marsh. On Altemating Current Electrolysis.Proceeding RoyalSociety, Vol. 97,(1920) Pages 124-144.
    [6] Wendf J L. Control of AC Stray Currents Corrosion of Steel Pipelines. Corrosion Science,1985, 25(10):901-915.
    [7] Der Tall Chin. The Corrosion of Single Pits on Stainless Steel in Acidic Chloride Solution .Int1 Corrosion Congress 14 Metallie,1984,(4):96-103.
    [8] Chin D T. Advances in the Electrospark Deposition Coating Process. Corrosion, 1997, 35(11):514-523.
    [9] Wendt J L.Compaters in Stray Current Corosion Control. Corrosion Science, 1986,26(10):889-900.
    [10]杜应吉,李元婷.活性掺合料对地铁混凝土杂散电流的抑制作用.混凝土,2005(6):77-79.
    [11]宋光铃,曹楚南,林海潮.金属的交流干扰下的腐蚀腐蚀与防护,1991,11(4):319-326.
    [12]田家祥,林洪山,张玉龙.交流杂散电流腐蚀室内实验.大庆石油学院学报,2004,28(6):101-104.
    [13]曹楚南.腐蚀电化学原理.北京:化学工业出版礼1994,105-10.
    [14] Bosch R Boqaerts W .Theoretical Study of AC-induced Corrosion considering Diffusion Phenomena.Corrosion Science,1998,40(3):323-336.
    [15] Lalvani S,Lin X Theoretical Approach for Predicting AC-induced Corrosion.Corosion Science ,1994,36(6):1039-1046.
    [16] Richard W.Bonds,P,E. Stray current effects on ductile iron pipe[J].Research and Technical Director.1997:1-7 .
    [17] Kajiyama,Fun-do.Japanese and Foreign Criteria for Cathodic Crotection of SteelPipelines and Std.Corrosion Engineering,2000,49(9):515-519.
    [18] Schoneich, Hanns-Georg. Research Addresses High-voltage Interfeaence, AC Corrosion Risk for Cathodically Protected Pipelines.Oil and Gas Journal,2004,102(7):56-63.
    [19]刘颖,曹备.杂散电流对埋地管道阴极保护体系干扰的研究.煤气与热力,2003, 23(1) :7- 10.
    [20]尹国耀,魏振宏.杂散电流腐蚀与防护.焊管,2008:74-76.
    [21]董泉玉,王健.杂散电流对阴极保护效果影响的模拟实验.全面腐蚀控制,2003,17(4):13-14.
    [22] Jung-Gu Kim*,Yong-Wook Kim.Cathodic protection criteria of thermally insulated pipeline buried in soil.Corrosion Science,2001,43:2011-2021.
    [23] Pookoie S R.Design of Autoclaves for Corosive Media Materials Performance.Corrosion Science, 1978,17(3):27-29.
    [24] Hosokawa Y, Kajiyama F, Fukuoka T. Alternating Current Corrosion Risk Arising from Alternating Current-Powered Rail Transit Systems on Cathodically Protected Buried Steel Pipelines.and Its Measures.Corosion,2004,60(4):408.
    [25] Hosokawa et al. AC Interferenceing from AC Powered Rail Transit Systems on Cathodically Protected Buried Steel Pipelines and its Measures.C orosion Enginering,2003 ,52 (4):218-222.
    [26] Kasahara Komei,Kajiyama Fumio.International Congresson Metallic Corrosion,1984 Sponsoredby:Natl Research Counci of Canada,Ottawa,Ont,CanNatl Research Councilof Canada:455.
    [27]董超芳,李晓刚等.土壤腐蚀的实验研究与数据处理.腐蚀科学与防护技术,2003,15(3):154-161.
    [28]李久青,杜翠薇.腐蚀实验方法及检测技术.中国石化出版社,2007.
    [29]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007:78-80.
    [30]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2007:157-162.
    [31]贾铮,戴长松,陈玲.电化学测量方法.第一版.北京:化学工业出社,2006:157-162
    [32]李永青,杜翠薇.腐蚀试验方法及监测技术[M].北京:中国石化出版社,2007:178-179
    [33]王慧龙,辛剑,等.HCl介质中巯基三唑缓蚀吸附膜对碳钢的保护时间的研究[J].腐蚀科学与防护技术,2004,16(5):284-286.
    [34]崔晓莉,江志裕.交流阻抗谱的表示及应用.上海师范大学学报(自然科学版),2001,30(4):53-61.
    [35]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002.20-24;45-75;150-185.
    [36] Yin Q,Kelsall G H,Vaughan D J,et al.Mathematical models for time -dependent impedance of passive electrode[J].J.Electrochem.soc., 2001.148(3):200-208.
    [37] A.I.Mismaila,*,A.M.EI-Shamyb.Engineering behaviour of soil materials on the corrosion of mild steel.Applied Clay Science,2008:1-7.
    [38] Yin Q,Kelsall GH,Vaughan D J,et al.Mathematical models for time -dependent impedance of passive electrode[J].J.Electrochem.soc., 2001.148(3):200-208.
    [39]沈广霞,陈艺聪,等.TiO2/316L不锈钢薄膜电极在NaCl溶液中的耐腐蚀性能[J].电化学,2005,11(1):20-27.
    [40] Passiniemi P.Vakipaeta K.Characterization of polyaniline blends with AC impedance measurements[J].Synthetic Metals.1995,69:237- 238.
    [41] Martini E M A,Muller I L.Characterization of the film formed in iron In borate solution by edectrochemical impedance spectroscopy[J]. Corros.Sci.,2000,42(3):443-454.
    [42] I.Martinez*,C.Andrade.Application of EIS to cathodically protected steel:Tests in sodium chloride solution and in chloride contaminated concrete.Corrosion Science,2008,50:2948-2958.
    [43] C.F.Donga,b,A.Q.Fua,X.G.Lib. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection. Electrochimica Acta,2008,54:628-633.
    [44]葛红花,周国定,等.316不锈钢在模拟冷却水中的钝化模型[J].中国腐蚀与防护,2004,24(2):65-70.
    [45]李锦萍,王永刚,王竹.地铁杂散电流模拟检测系统的设计.首都师范大学学报(自然科学版),2004,25(4):23-27.
    [46] Luca Bertolini et al. Corrosion behaviour of steel in concrete in the presence of stray current. Corrosion Science,2007,5(49):1056-1068.
    [47]邓树滨.杂散电流腐蚀及其对牺牲阳极阴极保护的影响.材料开发与应用,Vo1.10,1995年4月.
    [48]胡士信主编.阴极保护工程手册,第一版北京:化学工业出版社,1999年.
    [49] Y. Hosokawa. Overcoming the new threat to pipeline integrity-AC corrosion assessment and its mitigation. 23rd World Gas Conference,2006.
    [50]郭兴蓬,张华民,唐永凡.阴极保护最佳电位的确定.腐蚀科学与防护技术,1989,1(2):6-9.
    [51]徐乃欣,张承典.用电化学阻抗技术研究阴极保护.腐蚀与防护,1996,18(2):7-11.
    [52]吴继勋,傅争光,张普强等.用交流阻抗技术确定船用钢的最佳阴极保护电位.中国腐蚀与防护学报,1989,9(2):160-164.
    [53]曹楚男,张鉴清.电化学阻抗谱导论.科学出版社,2002.
    [54]徐乃欣,张承典.用电化学阻抗技术研究阴极保护.腐蚀与防护,2000,18(2):7-11.
    [55] Controlled experiments to study corrosion effects due to external varying fields in emdedded pipelines.Corrosion Science 2006:389-403.
    [56] ISO 15589-1:2003(E),Petroleum and natural gas industries-Cathodic protection of pipeline transportation systems-Part 1:On-land pipelines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700