利用锌精矿和软锰矿直接生产硫酸锌和硫酸锰及综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌精矿和软锰矿是生产硫酸锌和硫酸锰的重要原料,世界上60%以上的硫酸锌、硫酸锰都是由锌精矿、软锰矿加工制得的。传统生产硫酸锌的工艺,其常规流程为氧化焙烧—硫酸浸出—除杂—蒸发结晶—产品。以软锰矿为原料生产硫酸锰的常规流程为:还原焙烧—硫酸浸出—除杂—蒸发结晶—产品。这两条独立生产硫酸锌、硫酸锰的方法具有流程长,投资大,能耗高,污染环境,工人劳动环境差等严重问题。因此,研究一种可行的新工艺代替传统的生产工艺,以减少污染,提高资源利用率具有重要的意义。
     本课题旨在利用锌精矿的强还原性和软锰矿的强氧化性,在硫酸介质中同槽浸出,经过除砷、除铁、除重金属、锌锰离子分离、蒸发结晶等工序,生产出符合饲料级标准的硫酸锌(HG 2934-2000)、硫酸锰(HG 2936-1999)产品。
     本课题通过大量实验数据,从理论上得出了较好的工艺条件:
     锌精矿、软锰矿同时浸出工艺条件:在浸出温度为90-95℃,硫酸过量系数为1.3、浸出反应时间4 h、加入催化剂硫酸亚铁的量为2 g、液固比为6-7,软锰矿的初始过量系数为1.3、反应过程中补加适当的酸和软锰矿的条件下,锌的一次浸出率达到了95.5%左右,锰的一次浸出率达到了98.9%以上,基本满足生产的要求。浸出液中砷含量也能达到饲料级产品标准,因为在浸出过程中,氧化剂软锰矿是大大过量的,它可以把原矿中的As3+氧化成AsO43-,浸出液中存在的Fe3+可以与AsO43-生成FeAsO4沉淀除去浸出液中的As。
     除杂工艺条件:该工艺选用P507-磺化煤油体系作为除铁萃取剂,在室温下,萃取接触时间为35min,初始料液酸度为0.45 mol·L-1H+,P507的体积分数为35%,相比O:A=1:2的条件下经四级逆流萃取,Fe3+的萃取效率达到了99%以上,Zn2+的收率为95.5%,Mn2+的收率为99.48%,可以到除铁的目的;萃Fe3+有机相用4.0 mol·L-1的盐酸,在相比O:A=2:1,反萃时间为7 min的条件下,经五级逆流反萃取,Fe3+的反萃效率可达99%以上;该萃取工艺条件应用于浸出料液同样也可以的到预期的效果。
     本工艺选用BaS+Zn粉的方法除重金属,在室温下加入4.0 gBaS搅拌反应1h,过滤后再加入1gZn粉,在60℃下反应4 h,Pb、Cd的含量只能报告检测不出,满足饲料级硫酸锌、硫酸锰的生产要求。
     锌锰分离的工艺条件:选用P507-磺化煤油体系作萃取剂,在室温下,初始pH=3.5,萃取平衡时间为10 min,相比O:A=2:3,P507的体积分数为40%的条件下,经过八级逆流萃取,锌锰离子能够达到很好的分离效果。
     负载有锌、锰离子的有机相,经0.02 mol·L-1的H2SO4洗涤液洗涤一次,锰离子的洗涤效率为99.77%,可以达到去除锰离子的目的,洗涤液可以返回矿粉浸出工艺,形成闭路循环。
     负载有锌离子的有机相,经0.7 mol·L-1的H2SO4溶液反萃,在反萃相比O:A=3:2的条件下,锌离子的单级反萃效率达到97.53%,可以满足工艺生产的要求,贫有机相可以不经处理直接返回萃取工艺而不受影响。
     最后硫酸锌、硫酸锰的溶液经过蒸发结晶,可以得到符合标准的饲料级硫酸锌、硫酸锰产品。
     本工艺具有能耗低、无二氧化硫污染、设备简单、投资费用低、易于实现自动化、产品质量高等优点。
zinc concentrate and pyrolusite are the important raw material of preparing zinc sulfate and manganese sulfate, and about 60% zinc sulfate and manganese sulfate were produced by zinc concentrate and pyrolusite. In the traditional production process of Zinc sulfate, its regular process for the oxidation roasting-sulfuric acid leaching-Impurity-evaporative crystallization-products. Soft manganese sulfate, pyrolusite as raw material production of the conventional process is as follows: Reduction roasting-sulfuric acid leaching-Impurity-evaporative crystallization-products.
     There are some serious problems of the two independent production method of zinc sulfate, manganese sulfate, such as:high investment, high energy consumption, pollution of the environment, workers and poor working environment. Therefore, the study of a possible new process to replace the traditional production process, in order to reduce pollution, improve resource utilization has an important significance.
     This topic is designed to use the reduction of zinc concentrate and the oxidation of manganese ore in sulfuric acid leaching in the same slot, after the removal of arsenic, in addition to iron, in addition to heavy metals, zinc-manganese ion separation, evaporation and crystallization processes to produce consistent feed-grade standard zinc sulfate (HG 2934-2000), manganese sulfate (HG 2936-1999).
     Through a large number of experimental data derived the best process conditions from the theory.
     The leaching process conditions:in the condition of the temperature 90~95℃, sulfuric acid excess coefficient of 1.3, the leaching reaction time 4 h, by adding the amount of ferrous sulfate catalyst 2 g, liquid-solid ratio of 6~7, pyrolusite excess coefficient of 1.3, during the reaction added with appropriate acid and pyrolusite, the leaching rate of zinc is amount to 95.5%, the leaching rate of manganese is amount to 98.9%, broadly in line with production requirements. Leaching solution of arsenic can achieve feed-grade product standards, because in the leaching process, the oxidant pyrolusite is greatly excessive, and it can ore in the As3+ oxidation ASO43-, the Fe3+ in the leaching solution and AsO43- can generation FeAsO4, so the As in leaching solution can be removed.
     Impurity removal process conditions:The process selected P507 as iron extraction agent, under the conditions of room temperature, extraction contact time of 35min, the initial acidity of 0.45 mol·L-1H+, P507 volume fraction of 35%,0:A=1:2, by the four counter-current extraction, extraction rate of Fe3+ are more than 99%, the yield of Zn2+was 95.5%, the yield of Mn2+ was 99.48%. We can go to the purpose of removing iron. And under the conditions of 4.0 mol·L-1 of hydrochloric acid,O:A=2:1,the stripping time of 7min, The five counter-current stripping, and the stripping efficiency of more than 99%;the extraction process conditions used in leaching liquid could also be of the desired effect.
     The process selected BaS+Zn powder to remove heavy metals. At room temperature, we add 4.0 g BaS and reaction for 1h in the stirred tank; then filtered and join 1 g Zn powder to react for 4 h at 60℃. The content of Pb2+、Cd2+ was only to report not. So it is meet the feed-grade zinc sulfate, manganese sulfate production requirements.
     Zn-Mn separation process conditions:selection of P507-sulfonated kerosene as extractant, in the condition of the room temperature, initial pH=3.5, extraction equilibrium time of 10min, compared with O:A=2:3,P507 volume fraction of 40%, after eight counter-current extraction, zinc-manganese ion to achieve a good separation effect.
     The organic phase that were loaded by zinc and manganese ions could be washed by 0.02 mol·L-1 in H2SO4 for one time, and the washing efficiency was 99.77%, and it can be achieved to the purpose of removing manganese. Then we can return the washing liquid to the slag leaching process to form a closed loop.
     The organic phase that were loaded by zinc can be stripped by 0.7 mol·L-1 in H2SO4, in the condition of the stripping phase O:A=3:2, the single-stage back-extraction efficiency could amount to 97.53%.And this can meet the requirements of the production process, the depleted organic phase can directly to use to the extraction process without treated.
     Finally, the solution of zinc sulfate and manganese sulfate through evaporation crystallization, we can absorbed feed-grade standard zinc sulfate and manganese sulfate product.
     The process has many benefits such as:low energy consumption, no sulfur dioxide pollution, simple equipment, invest in low-cost, easy to implement automation, product quality and high.
引文
[1]朱洪法.实用化工辞典[M].北京,金盾出版社,2004.
    [2]Yuval Samuni, Deborah Coffin, Anne, Marie, DeLuca, William G.DeGraff. The Use of Zn-Desferrioxamine for Radioprotection in Mice, Tissue Cultur, and Isolated DNA[J]. Cancer Research 1999,59(15:405-409
    [3]Matsubara J, Shida T, Ishioka Kect. Protective effect of zinc against lethality in irradiated mice Environ Res(J).1986(41):558-567.
    [4]韩鲁强.硫酸锌在动物生产中的应用[P].山西师范大学学报(自然科学版)研究生论文专利,2008,22(3):56-58.
    [5]吴红岩,陈孝煊,阳会军,刘永坚,田丽霞.饲料中添加硫酸锌对奥尼罗非鱼幼鱼生长和机体抗氧化功能的影响[J].水产学报,2008,32(4):622-627.
    [6]M.I. Sampson, J.W. Van der Merwe, T.J. Harvey a, M.D. Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching[J].Minerals Engineering.2005,23(14):427~437.
    [7]刘俊峰,易平贵.常压酸浸铁闪锌矿制取硫酸锌工艺研究[J].无机盐工业[J].1995,20(6):13-15.
    [8]刘俊峰,邓文艳.闪锌矿常压酸浸制取硫酸锌除铁工艺研究[J].矿冶工程2001,21(1):53-55.
    [9]罗志臣,任国凤,丁元生,刘立业,徐鹏程.闪锌矿生产七水硫酸锌生产工艺研究[J].辽宁化工,2004,33(7):377-378.
    [10]陈松茂.化工产品实用手册(四)[M].上海:上海科学技术文献出版社,1994.
    [11]姚银寿.铜转炉烟灰生产七水硫酸锌的实践[J].有色冶炼,2003,(3):41-43.
    [12]张启卫,钟建生,廖雪华.从硫化锌矿制备硫酸锌的工艺研究[J].宝鸡文理学院学报(自然科学版),2004,24(3):197-200.
    [13]王兴尧,康晓红,谢慧琴,卢立柱.闪锌矿氧化浸出与协同萃取分离藕合研究[J].化学工程,2005,33(2):1-3.
    [14]石绍渊,张广积.硫化锌矿的生物浸出[J].国外金属矿选矿,2002(2):12-19.
    [15]贺治国,胡岳华,胡维,新徐竞.细菌浸出硫化矿物技术的现状和进展[J].矿产保护与利用,2002(5):41-45.
    [16]杨大锦,廖元双,徐亚飞等.锌冶金工艺概述[J].云南冶金,2002(6):22-26.
    [17]何良惠.深度粉碎的闪锌矿和闪锌矿-黄铁矿混合物的矿物特性及细菌浸出[J].四川有色金属,1995(1):12-14.
    [18]李值.细菌浸出及其应用[J].环境保护,1996(1):19-24.
    [19]夏光祥,方兆晰.高铁硫化锌精矿直接浸出新工艺研究[J].有色金属(冶炼部分),2001(3):8-10.
    [20]Chen H-K, Yang C-Y A study on the preparation of zinc ferrite[J]. Scandinavan journal of metallurgy,2001,30(4):238-241.
    [21]Nathalie Leclerc, Eric Meux. Hydrometallurgical extraction of zinc from zinc ferrites[J]. Hydrometallurgy,2003,70(13):175-183.
    [22]M J Collins. Starting up the Sherritt Zinc Pressure Leach Process at Hudson Bay.JOM[J]. 1994, (4):51-57.
    [23]石晓安.利用菱锌矿生产七水硫酸锌[J].新疆有色金属,2006,30(4):32-34.
    [24]钟国清.利用菱锌矿制取硫酸锌[J].云南化工,1996,(1):25-28.
    [25]张启卫.软锰矿制备硫酸锰的工艺原理和技术[J].三明职业大学学报,2000,(3):100-103.
    [26]杨新科,陈虎魁等.软锰矿直接还原浸取制备硫酸锰的研究[J].宝鸡文理学院学报(自然科学版),1997.
    [27]田宗平,朱介忠,王雄英,李力.两矿加酸法生产硫酸锰的工艺研究与应用[J].中国锰业,2005,23(4):37-39.
    [28]Du Dongyun. Wet manganese sulfate production in several chemical issues[J].China Mn-industry,1994,12(5):29~34.
    [29]贺周初,彭爱国,郑贤福,余长艳,刘昱霖.两矿法浸出低品位软锰矿的工艺研究[J].中国锰业,2004,22(2):35-37.
    [30]华毅超,陈国松,张红漫.工业硫酸锰湿法还原生产工艺[J].南京工业大学学报,2004,26(4):50-53.
    [31]梅光贵,钟竹前.湿法冶金新工艺[M].中南工业大学出版社,1994.
    [32]李春,何良惠,李升章,王祖森.软锰矿与黄铁矿共同焙烧制备硫酸锰的研究[J].化学世界,2000,2:66-69.
    [33]罗天盛,韦运县.氧化锰矿化学浸出新工艺的研究[J].中国锰业,1998,16(3):37-39.
    [34]田宗平,王雄英,李力.硫酸锰生产新工艺研究与工业应用[J].无机盐业,2007,39(2):45-47.
    [35]李春,何良惠.中低品位软锰矿生产硫酸锰的新方法[J].无机盐工业,1999,31(2):16-18.
    [36]刘建本,陈上,鲁广.硫酸锰的生产技术及发展方向[J].无机盐工业,2005,37(9):5-8.
    [37]梁仁杰.软锰矿浆烟气脱硫及副产硫酸锰的研究[J].重庆大学学报,1994,(5):88-93.
    [38]津罗克诺普.从工业气体中回收SO2(M).北京:化学工业出版社,1996:96.
    [39]曹柏林,,黄斌.用贫软锰矿制备硫酸锰.湖南有色金属,2000,16(3):18-20.
    [40]邓益强.软锰矿无煤还原制备硫酸锰新工艺研究[D].湘潭大学,2004.
    [41]陈飞宇.从银锰矿中制取硫酸锰和碳酸锰的工艺研究[D].中南大学,2004.
    [42]邱静.粗品硫酸锰的提纯[D].重庆大学,2007.
    [43]徐钧,王素岩.菱锰矿制备硫酸锰的工艺研究[J].无机盐工业,1999,31(4):14-16.
    [44]武汉大学.《无机化学》(第三版)上下册[M],高等教育出版社.
    [45]武汉大学.《分析化学》(第四版)上下册[M],高等教育出版社.
    [46]薛涛,黄芳,陈肖虎.硫化锌精矿和软锰矿同槽浸出工艺研究[J].贵族工业大学学报(自然科学版),2006,35(1):24-26.
    [47]傅献彩.《物理化学》(第四版)上下册[M],高等教育出版社.
    [48]大连理工大学无机化学教研室编.无机化学(第三版)[M].北京:高等教育出版社,1990.
    [49]李军旗.硫化锌精矿和软锰矿同时浸出机理[J].有色金属,1996,48(2):90-93.
    [50]李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响[J].贵州工业大学学报(自然科学版),2000,29(3):10-14.
    [51]李军旗.硫化锌精矿与软锰矿同时浸出动力学因素的研究[J].贵州工学院学报,1988,17(3):119-125.
    [52]刘厚凡,潘庆辉,周新木,夏国强,高长华.氨-硫酸铵法生产饲料级氧化锌中除砷工艺研究[J].无机盐工业,2008,40(3):46-48.
    [53]陈敬军,蒋柏泉,王伟.除砷技术现状与进展[J].除砷技术现状与进展,2004,(6):1-4.
    [54]刘琦.高砷酸性废水除砷新工艺[J].洛阳工业高等专科学校学报,2005,15(1):10-12.
    [55]梁慧锋,马子川,张杰,胡章记.新生态二氧化锰对水中三价砷去除作用的研究[J].环境污染与防治,2005,27(3):168-172.
    [56]汪家鼎,陈家镛.《溶剂萃取手册》[M].化学工业出版社.
    [57]武汉大学.《分析化学实验》(第二版)[M].高等教育出版社.
    [58]中华人民共和国化工行业标准.饲料级硫酸锌HG2934-2000[S].
    [59]中华人民共和国化工行业标准.饲料级硫酸锰HG2936-1999[S].
    [60]Saji A, Reddy M L P. Liquid-liquid extraction separation of iron (Ⅲ) from titania wastes using TBP-MIBKmixed solvent system [J]. Hydrometallurgy,2001,6(1):81-87.
    [61]沈纬,王英,傅洵.硫酸铝生产过程中的萃取法除铁[J].应用化学,2002,19(5):464-467.
    [62]Asano H,Itabashi H,Kawamoto H.Separation of iron(Ⅲ) by di (2-ethylhexyl) phosphate/ 4-methyl-2-pentanone extraction[J] Journal of the Iron and Steel Institute of Japan,2001,87(9):623~625.
    [63]汤兵,朱又春,白雪梅.溶剂萃取法从镀锌酸洗废液中分离锌、铁的研究[J].矿冶工程,2003,23(5):47-50.
    [64]周学玺,杜晓宁,朱屯.叔胺萃取分离钴(Ⅱ)、铁(Ⅱ)[J].过程工程学报,2001,1(4):360-364.
    [65]周学玺,汪焕庆,夏云龙等.用季铵盐萃取分离钴铁锰[J].中国有色金属学报,2000,10(5):723-726.
    [66]何朝晖,易文武,刘一平.伯胺萃取法生产无铁硫酸铝工艺研究[J].无机盐工业,2001,33(6):29-30.
    [67]Suarez C, Ahumada E, Orellana F. Extraction of iron (Ⅲ) from acidic sulfate solutions with bis (2-eth-ylhexyl) phosphoric acid in PENRECO 170 ESa new friendly diluent[J]. Journal of Chemical Technology and Biotechnology,2002,77(2):183~189.
    [68]陆国弟,顾金英,耿政松.杯芳烃的配位化学(Ⅻ)——对叔丁基杯芳烃乙酸萃取铁(Ⅲ)的研究[J].同济大学学报,2000,28(5):587-592.
    [69]汪家鼎,骆广生.溶剂萃取[M],清华大学出版社,2000.
    [70]朱屯,李洲.溶剂萃取化学[M],工业出版社,2008.
    [71]武汉大学主编.分析化学实验,高等教育出版社[M],第三版.
    [72]刘栋柱,闭伟宁,黄炳合,刘春明,农德连.锰溶液重金属浸出及除杂过程分析[J].中国锰业,2008,26(2):48-52.
    [73]雷鸣,田中干也, 廖柏寒,铁柏清,秦普丰.硫化物沉淀法处理含EDTA的重金属废水[J].环境科学研究,2008,21(1):150-154.
    [74]杜军,刘晓波,刘作华,陶长元,孙大贵.菱锰矿浸取及除杂工艺的研究进展[J].中国锰业,2008,26(2):15-19.
    [75]陈家蓉,倪永康,张元福,李承华,唐道文.直接法制取活性氧化锌与化学二氧化锰的研究[J].贵州工业大学学报,1999,28(2):85-90.
    [76]张元福,陈家蓉.盐酸介质中制取化学二氧化锰与活性氧化锌的研究[J].中国锰业,1999,17(1)::39-44.
    [77]李军旗,江声扬.锌、二氧化锰分步电解新工艺[N].7-9
    [78]李永,金开胜.软锰矿与硫精矿直接浸出制备硫酸锰及在电解锌工业上的应用[J].贵州 科学,1988,16(2):98-103.
    [80]张元福,陈家蓉,倪永康,李承华.用TBP从盐酸介质中萃取分离锌、锰的研究[J].1997(3)
    [81]崔国星,严赤美,张启卫.溶剂萃取法分离锌锰金属离子的实验研究[J].无机盐工业,2008,40(9):20-23.
    [82]杨大锦,谢刚.硫酸锌溶液的萃取工艺研究[J].有色金属(冶炼部分),2006,(2):9-14.
    [83]杨龙.溶剂萃取一传统湿法炼锌工艺联合处理氧化锌矿[J].中国有色冶金,2007,4:16-19.
    [84]黄浪,项长祥,邹兴.用D2EHPA从硫酸介质中萃取锌[J].北京科技大学学报,2002,24(6):610-613.
    [85]沈庆峰,杨显万.用溶剂萃取法从氧化锌矿浸出渣中回收锌[J].中国有色冶金,2006,(5):24-27.
    [86]黄莺,秦炜,戴猷元.溶剂萃取法回收锌锰金属离子的研究[J].清华大学学报(自然科学版),2002,42(s1):21-24.
    [87]汪胜东,蒋讯雄,蒋开喜.P204从大洋富钴结壳浸出液中萃取锌[J].有色金属,2006,58(1):69-71.
    [87]Mehmet Copur, Cengiz Ozmetin, Elif Ozmetin, M.Muhtar Kocakerim. Optimization study of the leaching of roasted zinc sulphideconcentrate with sulphuric acid solutions[J]. Chemical Engineering and Processing,2004,43:1007~1014.
    [88]罗芳,李德谦,吴庸烈.CyanxeosZ在中空纤维薄膜器重萃取锌的传持动力学[J].应用化学,2000,(5):471-474.
    [89]姚秉华,余晓皎.铜(Ⅱ)和锌(Ⅱ)的二烷基磷酸萃取平衡研究[J].西安理工大学学报,1999,(1):13-17.
    [90]柴金岭.稀释剂对HEHEH萃取锌(Ⅱ)的影响[J].山东师大学报(自然科学版),1999,(1):39-41.
    [91]Francesco Ferella, Ida De Michelis, Francesco Veglio.Process for the recycling of alkaline and zinc-carbon spent batteries[J]. Journal of Power Sources,2008, (183):805~811.
    [92]王靖芳,杨文斌,冯彦琳.P507萃取锌锡机理[J].山西大学学报(自然科学版),1994,(1):38-41.
    [93]T. Kaskiala.Determination of oxygen solubility in aqueous sulphuric acid media[J]. Minerals Engineering,2002,15:853~857.
    [94]P. Massacci, M. Recinella, L. Piga. Factorial experiments for selective leaching of zinc sulfate in ferric sulfate media[J]. Int. J. Miner. Process,1998, (53):213~224.
    [95]Alguacil FJ, Schmidt B. Extraction of zinc from chloride solutions using dibutylbuty phosphonate(DBBP)in Exxsol DIOO[J]. Revista demetalurgia Madrid,1999, (4):255~ 260.
    [96]George O. Selective extraction of Zn and Cd from Zn-Cd-Co-Ni sulfate solution using di-2ethylhexylPhosphoric acid extraction[J]. Hydrometallurgy,1998,47(2):204~215.
    [97]Loyson P. Solvent extraction of zinc from lithium chloride by Aliquat 336 chloride, bromide and iodide in chloroform:an analytical investigation[J]. Solvent Extraction and Ion Exchange,2000, (1):25~39.
    [98]Berend W, David D, Jane H. Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat336a strong base anion exchanger in the chloride and thiocyanate froms[J]. Hydrometallurgy,2000,57(3):235~252.
    [99]Alguacil FJ, Alonso M. Effect of ammonium sulfate and ammonia on the liquid-liquid extraction of zinc using LIX54[J]. Hydrometallurgy,1999,53(2):203~209.
    [100]Yan Wang, Chunshan Zhou. Hydrometallurgical process for recovery of cobaltfrom zinc plant residue[J]. Hydrometallurgy,2002,63:225~234.
    [101]J.S.Liu, H.Chen, X.YChen, Z.L.Guo, Y.C. Extraction and separation of In(Ⅲ), Ga(Ⅲ)andZn(II)from sulfate solution usin gextractionresin[J]. Hydrometallurgy,2006,82: 137-143.
    [102]T.J. HARVEY,W.T. YEN t.THE INFLUENCE OF CHALCOPYRITE, GALENA AND PYRITE ON THE SELECTIVE EXTRACTION OF ZINC ]FROM BASE METAL SULPHIDE CONCENTRATES[J]. Minerals Engineering,1998,11(1):1-21.
    [103]天津化工研究院编.无机盐工业手册[M].化学工业出版社,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700