PVP修饰下的含铁氧化物催化水合肼还原硝基苯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要采用水热合成法,使用聚乙烯吡咯烷酮(PVP)为保护剂,制备出了一系列不同比例的FeCl_3/PVP胶体催化剂,考察了该催化剂的制备条件(水热时间、PVP与FeCl_3摩尔比)和反应条件(反应温度、水合肼用量和催化剂用量)对苯胺产率的影响。运用XRD、TEM等手段对催化剂的形貌和结构进行了表征。结果表明,不同的水热处理时间和PVP与FeCl_3摩尔比制备出的催化剂,在粒径大小、胶粒形貌以及稳定性等方面均有明显的差异。在PVP与FeCl_3摩尔比1:40、100℃下水热2 h制得的胶体稳定性好、分散度高,其胶粒大小为70~90 nm的棒状结构。该胶体催化剂在催化水合肼还原硝基苯的反应中表现出很高的催化活性,以水合肼为还原剂,在反应温度80℃、反应时间80 min、硝基苯用量4.89 mmol、无水乙醇用量5 mL、FeCl_3/PVP胶体催化剂用量2.0 mL (nFe= 0.1500 mmol)、n(水合肼)∶n(硝基苯)= 2.5的条件下,苯胺收率可达到100.00%.
     另采用同样的制备方法,用水合肼作还原剂制备了PVP修饰下的Fe3O_4,着重探索了在催化剂的制备过程中还原剂的用量、还原剂的加入方式以及对催化剂进行去除PVP的处理对硝基苯还原的影响,结果表明,PVP的保护作用明显,它的存在,大大提高了Fe3O_4的催化活性, Fe_3O_4/PVP对硝基苯的还原有很高的活性。
     在尝试将FeCl_3/PVP胶体负载到活性炭上时,发现未负载过渡金属的活性炭对硝基苯还原也有一定的催化作用,尤其是经盐酸处理的活性炭,在氮气氛高温焙烧的条件下,可使苯胺的收率在2.5h达到100.00%。
In this paper, a series of different proportions of FeCl_3/PVP colloid nanoparticles catalyst has been successfully synthesized through the hydrothermal process using polyvinyllpyrroh -done (PVP) as protective agent. Effects of hydrothermal time and protective agent dosage on the performance of FeCl_3/PVP colloidal catalyst for the reduction of nitrobenzene were investigated. The yield of aniline was studied by reaction temperature, hydrazine hydrate dosage, and catalyst dosage. The structure and morphology of the colloidal catalysts were characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the hydrothermal treatment time,PVP and FeCl_3 molar ratio made the catalyst particles size, morphology and the stability different. Under hydrothermal treatment conditions, n(PVP):n(FeCl_3)=1:40, temperature 100℃, time 2 h, the high-stability, high-dispersion, club-shaped colloidal catalyst with a size of 70~90 nm were prepared. The FeCl3/PVP colloidal catalyst exhibits high catalytic activity for reduction of nitrobenzene reduced by hydrazine hydrate under the conditions: nitrobenzene 4.89 mmol, absolute alcohol 5 mL, 2.0 mL FeCl3/PVP colloidal catalyst(nFe=0.1500mmol), n(hydrazine hydrate):n(nitrobenzene) =2.5, 80℃for 80 min, the yield of aniline could reach 100.00%.
     Meanwhile, we prepared Fe3O4 modified by PVP, focused on exploration effect of hydrazine hydrate dosage when prepared the catalyst, reducing agent added approach and the catalyst treatment to remove the PVP for reduction of nitrobenzene, the results showed that the presence of PVP greatly enhanced the catalytic activity of Fe_3O_4/PVP.
     We also tried to prepare FeCl3/PVP colloid and then supporting on activated carbon .we found that free-transition metal exist in the catalyst, the activated carbon still had effection. Especially the activated carbon treated by the hydrochloric acid and in nitrogen atmosphere under the conditions of high temperature calcination, the yield of aniline could reach 100.00% in 2.5h.
引文
[1] Lauwiner M, Rys P, Wissmann J. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst. I. The reduction of monosubstituted nitrobenzenes with hydrazine hydrate in the presence of ferrihydrite. Appl. Catal., A, 1998, 172(1): 141-148.
    [2]樊金红,徐文英,高廷耀等。硝基苯废水的预处理技术。环境污染与防治,2005,27(1): 8.
    [3]朱洪涛,王军。铁屑在重金属废水处理中的应用。工业安全与环保,2005,31(8): 6-8.
    [4]曹一兵。铁屑内电解法处理综合性电镀废水技术,重庆环境科学,1995,17(4): 41-43.
    [5]曹曼。铁屑固定床及其在废水中的应用,上海环境科学,1994,13(2): 43-49.
    [6]肖继先。铁屑内电解法处理铝板涂层含铬废水,四川有色金属,1995,(1): 49-51.
    [7]柴永明,安高军,柳云骐等。过渡金属硫化物催化剂催化加氢作用机理。化学进展,2007,19(2/3) .
    [8] Litvin E F,Freidlin L K,Gurskii R N,etal.Izv Akad Nauk SSSR.Ser Khim,1975,8: 1736-1741.
    [9] Jassen H.J, Kruithof A.J,Steghuis G.J, etal. Kinetics of the catalytic hydrogenation of 2, 4- dinitrotoluene. II. Modeling of the reaction rates and catalyst activity. Ind. Eng. Chem. Res,1990,29: 1822-1829.
    [10] Mani R,Mahadevan V Srinivasan M,etal.Polymer International, 1 992,127(29):179-184.
    [11]左东华,张志琨,崔作林等。纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能。催化学报,1996,17(2):166-169
    [12]孙羽蒙,吴平东。对硝基苯甲酸催化加氢本征动力学。化学反应工程与工艺,1999,15(1):1-12.
    [13] Wang Y P,Neckers D C. 2, 2'-bipyridine-4, 4'-dicarboxylic acid and 2,6-diaminopyridine polyamides:complexes with rhodium.React Polym,1 985, 3: 181-189.
    [14] Xiangming Fang, Fengyi Li, Qin zhou. Effects of heavy rare earth addition on properties of KL zeolite-supported platinum reforming catalyst. Applied Catalysis A: General, 1997,161: 227-234.
    [15]李桂欣,方向明,夏克坚。铜-铬-钼-稀土/二氧化硅及铜-稀土/二氧化硅复合加氢催化剂的研究。江西教育学院学报(自然科学版),1998. 19(3): 27-29,67.
    [16] Xiangming Fang,Sulan Yao, Zhong Qing. Study on silica supported Cu-Cr-Mo nitrobenzene hydrogenation catalysts. Aplied Catalysis A: General, 1997, 161: 129-135.
    [17] Sajiki H,Hattori K,Hirota K. Highly chemoselective hydrogenation with retention of the epoxide function using a heterogeneous Pd/C-Ethylenediamine catalyst and THF. Chem. Eur. J.,2000,6: 2200-2204.
    [18] Yu X B,Wang M H,Li H X. Study on the nitrobenzene hydrogenation over a Pd-B/SiO2 amorphous catalyst. Appl. Catal.A:General,2000,202 (1):17-22.
    [19] Xi X L,Liu Y L,Shi J,et al. Palladium complex of poly(4-vinylpyridine-co-acrylic acid) for homogeneous hydrogenation of aromatic nitro compounds[J]. J. Mol. Catal. A:Chem., 2003,192:1-7.
    [20] Kantam M L,Bandyopadhyay T,Rahman A,et al. Reduction of nitroaromatics with a new heterogenised MCM-silylamine palladium(Ⅱ) catalyst. J. Mol. Catal. A:Chem.,1998,133:293-295
    [21] Pellegatta J L,Blandy C,Choukroun R,et al. Palladium colloids from an organometallic route : redox reaction between [VCp2] and [Pd(eta(3)-ally)2Cl]2. Catalytic application to the hydrogenation of aromatic nitro compounds. New J. Chem.,2003,27: 1528-1532.
    [22] Nomura K. Efficient Selective Reduction of Aromatic Nitro Compounds by Ruthenium Catalysis under CO/H_2O Condition.J Mol Catal A: Chemical, 1995, 95: 203.
    [23]梅建庭,蒋景阳,肖启明等。Ru_3-(CO)_9(TPPTS)_3催化的水/有机两相芳香硝基化合物CO选择性还原的研究。高等学校化学学报, 2000, 6: 894.
    [24] Tafesh A M, Weigun J. A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds in Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO.J Chem Rev, 1996, 96: 2035.
    [25]梅建庭,蒋景阳,金子林。Ru/TPPTS催化的水/有机两相对氯硝基苯CO还原为对氯苯胺的研究。分子催化,2001,15 (6): 438-440.
    [26] Tafesh A,Beller M. First selective reduction of aromatic nitro compounds using water soluble catalysts. Tetra. Lett.,1995,36(51): 9305-9308.
    [27] Nomura K. Efficient selective reduction of aromatic nitro compounds by ruthenium catalysis under CO/H_2O conditions. J. Mol. Catal. A:Chem.,1995,95: 203-210.
    [28] Mei J T,Jiang J Y,Xiao Q M,et al. Studies of CO selective reduction of aromatic nitro compounds in water/organic phases by using Ru_3(CO)_9(TPPTS)_3. Chem. J. Chin. Univ.,2000,21: 894-897.
    [29] Benz M, Prins R. Kinetics of the reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst. Appl. Catal., A, 1999, 183(2): 325-333.
    [30] Heropoulos G A, Georgakopoulos S, Steele B R. High intensity ultrasound-assisted reduction of sterically demanding nitroaromatics. Tetrahedron Lett., 2005, 46(14), 2469-2473.
    [31]韦长梅,田丹碧,徐斌等。Pd/C催化水合肼还原法制备对氨基-β-苯乙醇的研究。化学世界, 2004 , 45(11) :597-599.
    [32]戴桂元,刘德龙,刘蕴等。取代邻硝基苯胺的还原工艺改进。化学界,2003, 44 (5) : 252-253.
    [33] Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites. Applied Catalysis A: General, 2004, 265 :135-139.
    [34] Kumbhar P S , Valente J S , Millet J M, et al . Mg2Fe Hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate. Journal of Catalysis , 2000 ,191 :467-473.
    [35] Shakhnes N D, Vorobev S S, Shevelev S A. Selective reduction of one, two, or three nitro groups in 1, 3, 5-trinitrobenzene with hydrazine hydrate. Russ. Chem. Bull., 2006, 55(5): 938-939.
    [36] Shevelev S A, Shakhnes A K, Ugrak B I, et al. High selective one-step synthesis of 2-amino-4, 6-dinitrotoluene and 2, 6-diamino-4-nitro- toluene from 2, 4, 6-trinitrotoluene. Synth. Commun., 2001, 31(17): 2557-2561.
    [37] Vass A , Dud(?)s J , TWth J , et al . Solvent free reduction aromatic nitro compounds with alumina supported hydrazine under microwave irradiation . Tetrahedron Letters ,2001 , 42 :5347-5349.
    [38] Serushkina O V,Dutov M D,Solkan V N,et al. Nitro group substitution in 2, 4, 6 -trinitrotoluene under the action of arenethiols and tranaformations of the traction products. Russ. Chem. Bull.,2001,50(12): 2406-2410.
    [39] Heropoulos G A,Georgakopoulos S,Steele B R. High intensity ultrasound -assisted reduction of sterically demanding nitroaromatics. Tetra. Lett.,2005,46: 2469-2473.
    [40] Chen Y Z,Chen Y C. Hydrogenation of p -chloronitrobenzene over nickel borides. Appl. Catal. A:General,1994,115: 45-57.
    [41] Kumbhar P S,Valente J S,Figueras F,et al. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of their iron(Ⅲ) oxide-MgO catalyst prepared from a Mg-Fe hydrotalcite precursor. Tetra. Lett.,1998,39: 2573-2574.
    [42] Benz M,Kraan A M,Prins R. Reduction of aromatic nitrocompounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalystⅡ. Activity,X-ray diffraction and Moèssbauer study of the iron oxide hydroxide catalyst. Appl. Catal. A:General,1998,172: 149-157.
    [43]李风生,杨毅。纳米/微米复合技术及应用。北京:国防工业出版社,2002.
    [44]郑华均,刘化章。纳米催化剂的制备及应用的研究进展。浙江化工,2003, 34(2): 5-9.
    [45]张莺。纳米催化剂的制备和最新应用研究进展。山西大同大学学报,2008, 24(4): 30-32.
    [46]杨咏来,狳恒泳,李文钊。纳米粒子催化剂及其研究进展。材料导报,2003,17(2): 12-14.
    [47]张立德。纳米材料学。辽宁:辽宁科学出版社,1994.
    [48]高红,赵勇。纳米材料及纳米催化剂的制备。天津化工,2003,17(5): 14-17.
    [49]朱曾惠。纳米技术发展动向。化工新型材料,1999, 27(2) : 40-41.
    [50] Khoudiakov M,Gupta M C. Au/Fe_2O_3 nanocatalysts for CO oxidation by a deposition-precipitation technique. Nanotechnology, 2004,15(8): 987-991.
    [51] Ma X C,Lun N. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method.Diamond Relat Mater,2005, 14(1): 68-79.
    [52] Yabe Y,Ohtake Y.Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method.Diamond Relat Mater,2004,13(428): 1292-1295.
    [53] Yoon Y J,Baik H K.Synthesis of carbon nanotubes by chemical vapor deposition for field emitters.J Vac Sci Techn B,2001,19(1):27-32
    [54] Zhang W D,Wen Y.Carbon,2002,40(11):1981-1 983.
    [55] Zhang W D,Wen Y,Li J,Xu G Q, Gan L M.Synthesis of vertically aligned carbon nanotubes films on silicon wafers by pyrolysis of ethylenediamine.Thin Solid Film,2002,422(122):120-125.
    [56] Teo K B K. Lee S B.Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres-how uniform do they grow Nanotechnology,2003,14(2):204-211.
    [57]李晓伟,赵惠忠,汪厚植等。MnOx/ZrO_2纳米催化剂的制各及对CO.SCR-NO性能研究.真空电子技术,2005,2:16-9.
    [58] Bock C,Paquet C.Size-Selected Synthesis of Pt Ru Nano-Catalysts:Reaction and Size Control Mechanism.J Am Chem Soc,2004,126(25):8028—8037
    [59]王岚,孟霜鹤。纳米分子筛ZSM-5的热稳定性研究催化学报,2001,22(5):491-493.
    [60]刘奕,钱逸泰。MnV_2O_6纳米片的简易水热合成。无机材料学报,2007,22(6): 1139-1141.
    [61] Liu H T, Cao M S,Zhou Y Q. Hydrothermal Synthesis and Characterization of Nanocrystalline PZT Powders, Rare Metals,2008, 37, 730-733.
    [62]王永在。纳米晶Mg-Al水滑石的水热合成及合成机理。无机材料学报,2008,23(1): 93-98.
    [63]李秀艳,杨贤锋,吴明姆。不同介质中水热合成纳米TiO_2粉体及其光催化性能研究。无机材料学报, 2008, 23(6): 1253-1258.
    [64]陈志武,何新华,胡建强等。二氧化钛纳米粉体的可控水热合成研究。稀有金属材料与工程,2009,38,1040-1043.
    [65]徐光亮,聂轶霞,赖振宇。水热合成羟基磷灰石纳米粉体的研究。无机材料学报,2002,17(3): 600-603.
    [66]程晓丽,徐英明,蔡庄。ZnO纳米薄膜的制备及其气敏性质研究。无机化学学报,2008,157-160.
    [67]余海湖,李小甫,许丕池等。采用静电自组装技术在光纤上制备光学薄膜的研究。光通信研究,2002,111(3):43-46.
    [68]魏晓,徐刚,任召辉等。镧引入方式对水热合成的Pb_(0.7)La_(0.3)TiO_3纳米粉体物相和形貌的影响,稀有金属材料与工程,2008,37,734-737.
    [69]吕德义,卞飞荣,许可等。胶溶-水热晶化过程中纳米Ti02晶粒聚集机理及形貌的研究,无机材料学报,2007,22,(1): 59-64.
    [70]胡寒梅,邓崇海,黄显怀等。低温水热前驱物技术制备单晶PbS纳米片。无机化学学报,2007,23(8): 1403-1408.
    [71]陈德文,王素华。纳米级CdS粒子尺寸量子化的化学效应研究。中国科学(B辑),1996,26(3):262-2681.
    [72] Winans RE,Vajda S.Thermal Stability of Supported Platinum Clusters Studied by in Situ GISAXS.J Phys Chem,2004,108(47):18105-18107.
    [73]贺志强,郭强,潘国梁。共沉淀制备ZrW_2O_8及其中间产物的晶体结构。理化检验-物理分册,2009,45(4):191-194.
    [74]纪红兵,王乐夫。高等化学工程学报,2002,16(2):149-151.
    [75]翁瑞,丁红梅,吴晓东。LaMnO_3稀土纳米材料及催化性能.物理化学报,2001,17(3):248-251.
    [76]杨华明,黄承焕.微波合成无机纳米材料的研究进展.材料导报,2003,17(11):36-39.
    [77]邓斌,章爱华,徐安武。微波辐射下纳米CeO_2催化合成氯乙酸乙酯。合成化学,2008,16(5):586-588.
    [78]邓斌,章爱华,徐安武。微波辐射纳米固体超强酸SO_4~(2-)/Fe_2O_3催化合成水杨酸异辛酯。精细石油化工进展,2008,9(11):21-27.
    [79] E K Rideal. J. Am. Chem. Soc., 1920, 42: 749~756.
    [80] L D Rampino, F F Nord. J. Am. Chem. Soc., 1941, 63: 2745~2749.
    [81] H Hirai, H Chawanya, H Toshima. React. Polym., 1985, 3: 127~141.
    [82] H Hirai, H Wakabayashi, M Komiyama. Bull. Chem. Soc. Jpn. 1986, 59: 545~550.
    [83]华金铭,郑起,林性贻等.分子催化, 2004, 18(1): 68-80.
    [84]兰新哲,金志浩,赵西成。PVP保护还原法制备纳米金溶胶,稀有金属材料与工程,2003,32(1): 50-53.
    [85] Besson C,Firmey E E,Finke R G,Electroreductive Palladium-Catalysed Ullmann Reactions in Ionic Liquids: Scope and Mechanism.Chem.Mater.2005, 1 7, 4925-4938.
    [86] Besson C,Finney E E,Finke R G,Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids.J.AM.Chem.Soc.2005,1 27,8179-8184.
    [87] Widegren J A,Finke R G.A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts.J Mol Catal,2003, 191, 187-207.
    [88] Finke RG,Ozkar S. Molecular insights for how preferred oxoanions bind tO and stabilize transition-metal nanoclusters:a tridentate,C3 symmetry,lattice size matching binding model,Coordination Chemistry Reviews 2004, 24(8): 135-146.
    [89] He R, Qian X F, Yin J, et al. Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Coolloids and Srfaces A: Physicochem. Eng. Aspects, 2003, 220 (1-3): 151-157.
    [90] Coombes A G A, Yeh M K, Lavelle E C. The control of protein releasefrom poly(DL-lactide coglycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oilinwater method. J. Controlled Release, 1998, 52,(3): 311-320.
    [91] Xu C Q, Zhang Z C, Ye Q. A novel facile method to metal sulfide(metal= Cd, Ag, Hg) nanocrystallite. Materials Letters, 2004, 58(11): 1671-1676.
    [92] Wang Q Q, Zhao G L, Han G R. Title Synthesis of single crystalline CdS nanorods by a PVP-assistedsolvothermal method source. Materials Letters, 2005, 59(21): 2625-2629.
    [93] Reetz M T, Breinbauer R, Wanninger K. Suzuki and heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters . Tetrahed. Lett., 1996, 37 (26): 4499~4502.
    [94]陈鹏,彭峰。纳米金催化剂的研究进展。工业催化,2009,17(4): 15~20.
    [95] Bars J L, Specht U, Bradley J S et al. A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir, 1999, 15: 7621-7625.
    [96] Shiraishi Y, Toshima N. Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters . Colloids Surf. A, 2000, 169: 59-66.
    [97] Nord F F Kavanagh K E,. J. Am. Chem. Soc., 1943, 65: 2121-2125.
    [98] Turkevich J, Hubbell H H. J. Am. Chem. Soc., 1951, 73: 1-7.
    [99] Carter J L, Cusumano J A, Sinfelt J H. J. Phys. Chem., 1966, 70(7): 2257-2263.
    [100] Hirai H, Chawanya H, Toshima H. React. Polym., 1985, 3: 127-141.
    [101] Hirai H, Yakura N, Seta Y et al. React. Funct. Polym., 1998, 37: 121-131.
    [102] Hirai H, Wakabayashi H, Komiyama M. Preparatin of polymer-protected colloidal dispersions of copper. Bull. Chem. Soc. Jpn. 1986, 59: 367-372.
    [103] Jyothi T M, Rajagopal R, Sreekumar K, et al. Reduction of aromatic nitro compounds with hydrazine hydrate over a CeO2-SnO2 catalyst. J. Chem. Res., Synop, 1999, 11: 674-675.
    [104] Lauwiner M, Roth R, Rys P. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide/hydroxide catalyst.Ⅲ. The selective reduction of nitro groups in aromatic azo compounds. Appl. Catal., A, 1999, 177(1): 9-14.
    [105] Du W M, Qian X F, Niu X S, et al. Symmetrical six-horn nickel diselenide nanostars growth from oriented attachment mechanism, Adv. Mater, 2007, 12(7): 2733-2737.
    [106] Mo M S, Yu J C, Zhang L Z, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres, Adv. Mater. 2005, 17 (6): 756-760.
    [107] Pramod S K, Jaime S V, Jean M M, et al. Mg-Fe hydrotalcite as a vatalyst for the reduction of aromatic nitro compounds with hydrazine hydrate. J. Catal, 2000, 191(2): 467-473.
    [108] Shevelev S A, Shakhnes A K, Ugrak B I, et al. High Selective One-Step Synthesis of 2-Amino-4,6-Dinitrotoluene and 2, 6-Diamino-4-Nitro-Toluene from 2,4, 6-Trinitrotoluene. Synth Commun, 2001, 31(17): 2557-2561.
    [109]夏树伟,孙雅丽,夏少武等,对胶体催化剂的认识。化学通报, 2006, 69(5): 467-473.
    [110]熊雷,姜宏伟,王迪珍. PVP-b-PLA修饰Fe_3O_4磁性纳米粒子的制备与表征.高分子学报, 2008, 8: 791- 796.
    [111] Remiro P M, Cortazar M M, Calahorra M E. A study of the degradation of uncured DGEBA/PVP blends by thermogravimetry and their miscibility state. Journal of Materials Science: Material in Medicine, 1999, 34(11): 2672-2633.
    [112]解强,张香兰,李兰廷等。活性炭孔结构调节:理论、方法与实践,新型炭材料,2005,20(2): 183-190.
    [113]彭峰,黄仲涛。活性炭催化载体的表征。华南理工大学学报,1997,25(5): 111-115.
    [114]史泰尔斯。催化剂载体与负载型催化剂。李大东,钟孝湘译。北京:中国石化出版社,1992, 123.
    [115]尾崎萃著。催化剂手册(中译本)。北京:化学工业出版社,1981,150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700