超临界CO_2中沉淀聚合法制备二乙烯基苯及三羟甲基丙烷三丙烯酸酯聚合物微球
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超临界CO2介质中用沉淀聚合法成功地合成了表面光滑的、单分散的二乙烯基苯聚合物(PDVB)微球、二乙烯基苯(DVB)和马来酸酐(MAH)共聚物(P(DVB-MAH))微球及三羟甲基丙烷三丙烯酸酯聚合物(PTMPTA)微球。研究了单体浓度、反应时间、反应压力、反应温度、共溶剂种类、共溶剂用量、引发剂浓度、单体配比等反应条件对聚合反应结果的影响;通过扫描电镜(SEM)对产物的形貌进行了观察,并探讨了聚合物微球的成长过程及成球机理;利用红外光谱(IR)对所得聚合物的结构进行了表征;利用热失重(TG)对聚合物进行了热性能分析;采用溴滴定法对单分散PDVB微球中的悬挂双键进行了测定。
     实验发现,在超临界CO2介质中能够直接得到粉末状的PDVB、P(DVB-MAH)及PTMPTA,且单体的转化率都到了97%以上。研究发现,在纯超临界CO2介质中很难获得PDVB、P(DVB-MAH)及PTMPTA的微球,而加入少量共溶剂(如正戊烷、乙酸、乙醇、丙酮等),在合适的反应条件下可以制得上述聚合物微球。因此,选择适当极性的共溶剂以及反应浓度、反应压力等条件来调节反应介质的溶解度参数是制备单分散聚合物微球的重要条件。
     研究表明,在少量丙酮作为共溶剂的超临界CO2体系中,当单体浓度为0.38 mol/L、反应压力为16.0 MPa、反应时间为24 h、混合溶剂的溶解度参数在10.58~11.01 MPa1/2范围时得到了表面光滑的、单分散的PDVB微球,并且聚合体系的单体浓度、反应压力及共溶剂用量对单体的转化率以及聚合物的热性能影响不大,但是对聚合物的成球性有很大影响。当MAH摩尔分数为5%~10%时也得到了表面光滑的、分散较好的P(DVB-MAH)共聚物微球,红外谱图表明我们成功地合成了MAH含量较高的P(DVB-MAH)共聚物。在少量乙醇为共溶剂的超临界CO2体系中,当单体浓度为0.067 mol/L、反应压力为16.0 MPa、反应时间为8 h时得到了PTMPTA微球。
     采用溴滴定法测定了PDVB微球中悬挂双键的含量,并通过红外谱进行了表征。通过比较溴加成前后及溴消去后的聚合物红外谱图证明了PDVB微球中确有悬挂双键的存在,通过溴滴定曲线得到了PDVB微球中悬挂双键的总量为2.99×10-3 mol/g,微球表面悬挂双键的量为1.81×10-3 mol/g,证明所制备的单分散PDVB微球含有大量的未反应的双键,利用这些双键可以进一步进行改性反应,从而对微球进行功能化,具有广泛的应用前景。
In this paper, monodisperse micro-size polydiviylbenzene (PDVB) microspheres, poly diviylbenzene-co-maleic anhydride (P(DVB-MAH)) microspheres and polytrihydroxy methylpropane triacrylate (PTMPTA) microspheres with clean surfaces were synthesized by precipitation polymerization in supercritical carbon dioxide system. Influences of monomer concentration, reaction time, reaction pressure, reaction temperature, species of cosolvent, the dosage of cosolvent, initiator concentration and monomer ratio on morphology and size of polymers were investigated; the morphology of the polymers were observed via scanning electron microscopy (SEM). The growth of polymer microsphere and the mechanism of polymer microsphere formation were also discussed; at the same time, the structure of polymers was characterized by IR and thermal property of polymers was determined by TDA. The total amount of detected vinyl groups in PDVB microspheres was determined by bromine titration.
     Results demonstrated that PDVB, P(DVB-MAH) and PTMPTA were white powder solid and the conversions in all polymerization systems were above 97 %. It was found difficult to prepare PDVB, P(DVB-MAH) or PTMPTA microspheres in pure supercritical carbon dioxide, but monodisperse microspheres of these polymers were obtained in supercritical carbon dioxide with an amount of cosolvent (for example: n-pentane, acetic acid and acetone). Therefore, selecting the proper cosolvents and reaction pressure, reaction concentration to adjust solubility parameters of reaction medium were important in preparing monodisperse polymer microspheres.
     The results showed that monodisperse PDVB microspheres were obtained with monomer concentration of 0.38 mol/L, reaction pressure of 16.0 MPa and reaction time of 24 h, solubility parameters of reaction medium of 10.58~11.01 MPa1/2 in supercritical carbon dioxide using appropriate acetone dosage. It was also demonstrated that monomer concentration, reaction time, reaction pressure and cosolvent had no effect on the appearance, conversions and thermal property, but had a pronounced effect on morphology of the polymers. At the same time, P(DVB-MAH) microspheres were also prepared with MAH loading of 5 mol % ~10 mol %; the structures of copolymers were characterized by IR and the content of MAH in the copolymers was relatively high. PTMPTA were producted with monomer concentration of 0.067 mol/L, reaction pressure of 16.0 MPa and reaction time of 8 h in supercritical carbon dioxide using appropriate ethanol dosage system.
     In this experiment, the residual double bonds of the polymer microspheres were also determined by bromine addition and were characterized by IR. The presence of the residual double bonds in polymer microspheres was comfirmed via comparing the IR spectra of the polymers prior to and after bromine addition and elimination in the microspheres. The content of residual double bonds in polymer microspheres was determined by bromine titration. The results showed that the total amount of the residual double bonds in the microspheres was about 3.0×10-3 mol/g and the amount of the residual double bonds at the microspheres surfaces was about 1.8×10-3 mol/g. The PDVB microspheres, which have relatively high concent of residual double bonds, can be further functionalized.
引文
[1]张述营.超临界二氧化碳中天然橡胶化学改性的研究[D].中山大学, 2007.
    [2] Mckinley C, Brewer J, Wang E S J. Solid-vapor equilibria of the oxygen-hydrogen system[J]. Adv. Cryog. Eng. 1961, 7: 114-124.
    [3]胡英.近代化工热力学[M].上海:上海科技文献出版社, 1994.
    [4]朱自强.超临界技术[M].北京:化学工业出版社, 2000.
    [5] Guan Z, Combes J R, Menceloglr Y Z, DeSimone J M. Homogeneous Free Radical Polymerizations in Supercritical Carbon Dioxide: 2. Thermal Decomposition of 2,2’-Azobis(isobutyronitrile)[J]. Macromolecules, 1993, 26(11): 2663-2669.
    [6]胡红旗,陈鸣才,黄玉惠,丛广民. SCCO2流体的性质及其在高分子科学中的应用[J].化学通报, 1997, 12: 20-26.
    [7] Chaudhary A K, Beckman E J,Russell A J. Rational Control of Polymer Molecular and Dispersity during Enzyme-Catalyzed polyester Synthesis in Supercritical Fluids[J]. J. Am. Chem. Soc., 1995, 117: 3728-3733.
    [8] Kumar S K, Chhabria S P, Suter U W. Solubility of Polystyrene in Supercritical Fluids[J]. Macromolecules, 1987, 20: 2550-2557.
    [9] Brennecke J F, Tomasko D L, Eckert C A. Fluorescence spectroscopy studies of dilute supercritical solutions[J]. Ind. Eng. Chem. Res., 1990, 29: 1682-1690.
    [10] Eckert C A, Kuntson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and matericals processing[J]. Nature, 1996, 383(26): 313-318.
    [11] McHugh M A, Krukonis V J. Supercritical Fluids Extraction: Principles and Practice[M]. Heinman: Butterworth, 1993.
    [12] Liu G T, Nagahama K. Application of rapid expansion of supercritical solutions in the crystallization separation[J]. Ind. Eng. Chem. Res., 1996, 35: 4626-4634.
    [13] Jaubert J N, Concalves M M, Barth D A. A theoretical model to simulate supercritical fluid extraction: application to the extraction of terpenes by supercritical carbon dioxide[J]. Ind. Eng. Chem. Res., 2000, 39: 4991-5002.
    [14] Tomasko D L, Li H B, Liu D H. A Review of CO2 Applications in the Processing of Polymers[J]. Ind. Eng, Chem. Res., 2003, 42: 6431-6456.
    [15] Pourmortazavi S M J, Hajimirsadeghi S S. Application of supercritical carbon dioxide in energetic materials processes: a review[J]. Ind. Eng. Chem. Res., 2005, 44: 6523-6533.
    [16] Knittel D, Saus W, Schollmeyer E. Nonaqueous Dyeing of Synthetic-fiber in Compressed Carbon Dioxide[J]. Chem. Ind. Tech., 1994, 66(5): 683-686.
    [17] You J, Wang G J. The Integrated Management on Pine Caterpillar[J]. Chem. J. Chin. Univ., 1990, 20: 260-265.
    [18]李颖.极性和非极性溶质在含夹带剂超临界二氧化碳中溶解度的实验研究[D].北京化工大学, 2005.
    [19]张镜澄.超临界流体萃取[M].北京:化学工业出版社, 2000.
    [20] Romack T J, Maury E E, DeSimone J M, Precipitation Polymerization of Acrylic Acid in Supercritical Carbon Dioxide[J]. Macromolecules, 1995, 28: 912-915.
    [21] Okubo M, Fujii S, Maenaka H, Minami H. Production of polyacrylonitrile particles by precipitation polymerization in supercritical carbon dioxide[J]. Colloid Polym. Sci., 2003, 281: 964-972.
    [22] Okubo M, Fujii S, Maenaka H, Minami H. Production of polydivinylbiphenyl particals by precipitation polymerization in supercritical carbon dioxide[J]. Colloid Polym. Sci., 2002, 280: 1084-1090.
    [23] Li C S, Zhang S, Li X, Zheng A N. Copolymerization of Styrene and Maleic Anhydride in Supercritical Carbon Dioxide[J]. Journal of Applied Polymer Science, 2007, 104: 3332-3336.
    [24] Cooper A I, Hems W P, Holmes A B. Synthesis of Highly Cross-linked Polymers in Supercritical Carbon Dioxide by Heterogeneous Polymerization[J]. Macromolecules, 1999, 32: 2156-2166.
    [25] Cao L Q, Chen L P, Jiao J Q, Zhang S Y, Gao W. Systhsis of cross-linked poly(N-isopropylacrylamide) microparticles in supercritical carbon dioxide[J]. Colloid Polym. Sci, 2007, 285: 1229-1236.
    [26] Xu Q, Han B X, Yan H K. Effect of cosolvents on the precipitation polymerization of acrylic acid in supercritical carbon dioxide[J]. Polymer, 2001, 42: 1369-1373.
    [27] Bin Z, Hu H Q, Chen M C, Liu W Q. Synthesis of associating poly(acrylic acid) insupercritical carbon dioxide and its solution properties[J]. Colloid Polym. Sci., 2004, 282: 1228-1235.
    [28] Zhang D H, Mishima K J, Matsuyama K, Zhou L, Zhang S B. Environmentally Benign Precipitation Coplymerization of Methacrylate Ester and Styrene to Make Polymeric Microspheres in Supercritical Carbon Dioxide[J]. Journal of Applied Polymer Science, 2007, 103: 2425-2431.
    [29] Cooper A I, Hems W P, Holmes A B. Synthsis of cross-linked polymer microspheres in supercritical carbon dioxide[J]. Macromolecules, 1998, 19: 353-357.
    [30] Xu Q, Han B X, Yan H K. Precipitation Polymerization of Acrylic Acid in Compressed Carbon Dioxide-Cosolvent Systerms[J]. Journal of Applied Polymer Science, 2003, 88: 1876-1880.
    [31] Guan Z, DeSimone J M, Elabernd C S. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide[J]. Science, 1992, 257: 945-947.
    [32] Adamsky F A, Beckman E J. Inverse Emulsionpolymerization of Acrylamide in Supercritical Carbon Dioxide[J]. Macromolecules, 1994, 27: 312-314.
    [33] Wang X, Sudol E D, Aasser M S. Emulsion polymerization of styrene using a reactive surfactant and its polymeric counterpart: Kinetic studies[J]. Macromolecules, 2001, 34(22): 7715-7723.
    [34] Hems P W, Yong T M, Johanna L M. Dispersion polymerization of methyl methacry -late in supercritical carbon dioxide-evaluation of well defined fluorinated AB block copolymers as surfactants[J]. Materials Chemistry, 1999, 9: 1403-1407.
    [35] Muranaka M, Kitamura Y, Yoshizawa H. Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer[J]. Collid Polym. Sci., 2007, 285: 1441-1448.
    [36] Yoshida E. Synthsis of polyhedral particals by dispersion polymerization in supercritical carbon dioxide[J]. Colloid Polym. Sci., 2008, 286: 1435-1442.
    [37] Shiho H, DeSimone J M. Dispersion Polymerization of Acrylonitrile in Supercritical Carbon dioxide[J]. Macromolecules, 2000, 33: 1565-1569.
    [38] Fujii S, Minami H, Okubo M. Preparation of poly(methyl methacrylate) particales by dispersion polymerization with organic peroxide in the presence of trimethylsiloxyterminated poly(dimethylsiloxane) in supercritical carbon dioxide[J]. Colloid Polym. Sci., 2005, 284: 327-333.
    [39] Ganapathy H S, Hwang H S, Lee M Y, Jeong Y T, Gal Y S, Lim K T. Stabilizer architectures based on fluorinated random and block copolymers for the dispersion polymerization of 2-hydroxyethyl methacrylate in supercritical carbon dioxide[J]. Journal of Materials Science, 2008, 43: 2300-2306.
    [40] Watkins J J, Mocarthy T J. Polymerization in Supercritical Fluid-swollen Polymers: A New Route to Polymer Blends[J]. Macromolecules, 1994, 27: 4845-4847.
    [41] Setage W G. Acrylic Acid Polymerization[P]. CA1274942, 1986.
    [42] Guan Z, DeSimone J M, Elabernd C S. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide[J]. Science, 1992, 257: 945-947.
    [43] Romack T J, DeSimone J M. Precipitation Polymerization of Acrylic Acid in Supercritical Carbon Dioxide[J]. Polym. Prepr., 1994, 35(2): 741-742.
    [44] Kendal J L, Cuan Z, Elsbemd C S. Synthesis of fluoropolymers in supercritical carbon dioxide[J]. Science, 1992, 257: 945-947.
    [45] DeSimone J M, Maury E E, Menceloglu Y Z et al. Disperization in Supercritical Carbon Dioxide[J]. Science, 1994, 265: 356-359.
    [46] Guan Z B, Combes J R, Elsbernd C S, et al. Synthesis of fluoropolymers in supercritical carbon dioxide[J]. Polymer Preprint, 1993, 34(1): 447-448.
    [47] Ye W J, DeSimone J M. Emulsion polymerization of N-ethylacrylamide in super- critical carbon dioxide[J]. Macromolecules, 2005, 38: 2180-2190.
    [48] Canelas D A, Betts D E, DeSimone J M. Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide: Importance of Effective Surfactants[J]. Macromolecul- es, 1996, 29: 2818-2821.
    [49] DeSimone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide[J]. Science, 1994, 265: 356-359.
    [50] Kendall J L, Canelas D A, Young J L, DeSimone J M. Polymerizations in Supercritical Carbon Dioxide[J]. Chemical Reviews, 1999, 99: 543-563.
    [51] Watkins J J, Mocarthy T J. Polymerization in Supercritical Fluid-swollen Polymers: ANew Route to Polymer Blends[J]. Macromolecules, 1994, 27: 4845-4847.
    [52] Mawson S, Johnston K P, DeSimone J M. Formation of Poly(1,1,2,2- tetrahydtoper- fluorodecy Acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions[J]. Macromolecules, 1995, 28: 3182-3191.
    [53] Peterson R C, Matson D W, Smith R D. The Faomation of Polymer Fibers from The Rapid Expansion of Supercritical Fluid Solution[J]. Polym. Eng. And. Sci., 1987, 27(22): 1693-1697.
    [54]何涛,胡红旗,陈鸣才等.超临界二氧化碳—高分子化学中的绿色介质[J].功能高分子学报, 2003, 16(2): 281-286.
    [55] Knittel D, Saus W, Schollmeyer E. Nonaqueous Dyeing of Synthetic-fiber in Compressed Carbon Dioxide[J]. Chem. Ind. Tech., 1994, 66(5): 683-686.
    [56]金君素.极性和非极性溶质在含夹带剂超临界流体中相平衡的研究[D].北京化工大学, 2005.
    [57]徐海军,邓碧玉,蔡云升.夹带剂在超临界萃取中的应用[J].化学工程, 1991, 19(2): 58-63.
    [58] Walsh J M, GreenField M L, Ikonomou G D, Donohue M D. Hyfrongen-bonding in competition in entrainer cosolvent mixtures[J]. Chem. Eng. Commun., 1986, 86: 125-130.
    [59] Conzalez M F, Ruseckaite R A, Cuadrado T R. Structural changes of polylactic-acid (PLA)microspheres under hydrolytic degradation[J]. Journal of Applied Polymer Science, 1999, 71: 1223-1230.
    [60] Jeyanthi R, Thanoo B C, Metha R C, Deluca P P. Effect of solvent removal technique on the matrix characteristics of polylactide/glycolide microspheres for peptide delivery[J]. Journal of Controlled Release, 1996, 41: 235-244.
    [61]赵玉增,白锋,黄文强.聚二乙烯基苯微球的合成及其表征研究[J].高分子学报, 2004, 3: 410-414.
    [62] Ishizu K, Tanaka H, Saito R. Microsphere synthesis of polypyrrole by oxidation polymerization[J]. Polymer, 1996, 37(5): 863-867.
    [1]阎青,白耀文,孟哲,等.乙酸中沉淀聚合制备窄分布聚二乙烯基苯微球[J].高分子学报, 2007, 11: 1102-1104.
    [2]黄金满,杨梅林,沈家骢,等.沉淀聚合制备聚二乙烯基苯微粒[J].功能高分子学报, 1996, 19(3): 377-382.
    [3] Kawangchi H. Functional polymer microspheres[J]. Prog. Polym. Sci, 2000, 25: 1171-1210.
    [4] Li K, St?ver H D H. Synthesis of monodisperse poly(divinylbenzene) microspheres[J]. Journal of Applied Polymer Science, 1993, 31: 3257-3263.
    [5] Li K, St?ver H D H. Highly crosslinked micron range polymer microspheres by dispersion polymerization[J]. Journal of Applied Polymer Science, 1993, 31: 2473- 2479.
    [6] Li W, St?ver H D H. The PGMA nanoparticles were cured with a low-temperature curing agent, diethylene triamine, to produce ultrafine thermoset nanoparticles[J]. Journal of Applied Polymer Science, 1999, 37: 2899-2907.
    [7] Frank R S, Downey J S, St?ver H D H. Synthesis of divinylbenzene-maleic anhydride microspheres using precipitation polymerization[J]. Journal of Applied Polymer Science, 1998, 36: 2223-2227.
    [8] Li W, St?ver H D H. Monodisperse poly(chloromethylstyrene-co-divinyl benzene) microspheres by precipitation polymerization[J]. Journal of Applied Polymer Science, 1999, 37: 2295-2303.
    [9]鹿现永,黄达,杨新林,等.整流沉淀聚合法制备窄分散聚二乙烯基苯-co-丙烯腈功能聚合物微球[J].高分子学报, 2007, (2): 103-107.
    [10] Qi D L , Bai F, Yang X L, Huang W Q. Synthesis of core-shell polymer microspheres by two stage distillation-precipitation polymerization[J]. Eur. Polym. J, 2005, 41: 2320-2328.
    [11] Bai F, Yang X, Huang W. Synthesis of Narrow or Monodisperse Poly(divinylbenzene) Microspheres by Distillation-Precipitation Polymerization[J]. Macromolecules, 2004, 37: 9746-9752.
    [12] Okubo M, Katayama Y, Yamamoto Y. Preparation of micro-size monodisperse polym- er microspheres having crosslinked structures and vinyl groups[J]. Colloid Polym. Sci., 1991, 269: 217-221.
    [13] Yan Q, Zhao T Y, Bai Y W, Zhang F, Yang W T. Precipitation Polymerization in Acetic Acid: Study of the solvent effect on the Morphology of Poly(divinylbenzene)[J]. J. Phys. Chem., 2009, 113: 3008-3014.
    [1]陈胜利,董鹏,袁桂梅,等.亚微米/纳米聚苯乙烯微球粒度标准物质的研制[J].武汉理工大学学报, 2007, 29: 96-98.
    [2] Cornet, R. P, Héroguez V, Thienpont A, Babot O, Toupance T. Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromato- graphy[J]. J. Chromatogr. A, 2008, 1179(2): 152-160.
    [3]李建林,刘全俊,陈海华,等.二氧化钛反蛋白石薄膜的制备及其在化学传感器中的应用[J].化学学报, 2006, 64(14): 1489-1494.
    [4] Mehta R C, Thanoo B C, DeLuca P P. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide)[J]. Journal of Controll- ed Release, 1996, 41: 249-257.
    [5]郭红莲,程丙英,张道中.用聚苯乙烯小球模拟生物组织中的光强分布[J].物理学报, 2003, 52(2): 324-327.
    [6] Kim K, Kim D. J. High-performance liquid chromatography separation characteristics of molecular-imprinted poly(methacrylic acid) microparticles prepared by suspension polymerization[J]. Journal of Applied Polymer Science, 2005, 96: 200-212.
    [7] Xiong B H, Shen L, Cong R Z, et al. Synthesis of Monodisperse Porous Crosslinked Polystyrene Chromatographic Packing [J]. Chin. J. Chromatogr, 1998, 16(6): 492-494.
    [8] Ohtsuka Y, Kawaguch H, Sugi Y. Copolymerization of Styrene with Acrylamide in an Emulsifier-free Aqueous Medium [J]. Journal of Applied Polymer Science, 1987, 26: 1637-1647.
    [9] Omi S, Kanetaka A, Shimamori Y, et al. Magnetite (Fe3O4) Microcapsules Prepared by Glass Membrane and Solvent [J]. J. Microencapsulation, 2001, 18: 749-765.
    [10]阎青,白耀文,孟哲,杨万泰.乙酸中沉淀聚合制备窄分布聚二乙烯基苯微球[J].高分子学报, 2007, (11): 1102-1104.
    [11]顾相伶,朱晓丽,孔祥正,等.乙醇或乙醇-水为溶剂体系沉淀聚制备单分散聚合物微球[J].化学学报, 2009, 67(21): 2486-2494.
    [12] Kong XZ, Gu XL, Zhu X, Zhang L. Precipitation Polymerization in Ethanol and Ethanol/Water to Prepare Uniform Microspheres of Poly(TMPTA-styrene)[J].Macromolecular Rapid Communications, 2009, 30(11): 909-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700