水介质中漆酶催化酚类化合物特性及产物抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代酶学研究发现,在非水介质中酶可能表现出较水介质中更高的催化活性并且具有全新的性质,有利于制备新型功能型化合物。本研究以白腐菌漆酶为试材,以咖啡酸和阿魏酸为模式底物,于10种有机溶剂的非水反应介质中进行体外酶促氧化试验。研究了不同非水介质对酶促氧化反应的影响规律,分析氧化产物的理化性质、稳定性及其抗氧化活性,进行了氧化产物的组分分析和质谱鉴定。得出如下结果:
     (1)以咖啡酸和阿魏酸为底物,漆酶催化的最佳反应条件为:pH值分别5.15和4.85;温度均30℃;底物浓度分别8mmol/L和5mmol/L;酶浓度分别为0.05U/mL和0.025U/mL。
     (2)以10种有机溶剂的不同混水比例二相介质反应得出,低体积分数的亲水溶剂和高体积分数的疏水溶剂对酶促反应具有促进的作用。漆酶催化咖啡酸的最适反应介质为40%甲醇,92%正己烷;催化咖啡酸的最适反应介质为40%甲醇,92%的异辛烷。
     (3)咖啡酸和阿魏酸氧化产物的最大吸收波长分别为366nm和372nm。咖啡酸氧化产物具有较强的热稳定性,对光不敏感;阿魏酸氧化产物热稳定性差,对光敏感,应低温避光保存。
     (4)用DPPH,FRAP和还原力测定法测定咖啡酸和阿魏酸及其氧化产物的抗氧化活性,结果表明:DPPH和FRAP法的测定结果基本一致,酚类底物在疏水介质中生成的氧化产物抗氧化活性相对较高,咖啡酸在92%的正己烷,阿魏酸在92%异辛烷中的产物活性最高。最大清除率可达到85.4%,IC_(50)最小值0.049mmol/L;还原力测定结果为酚类底物的抗氧化能力远远大于氧化产物。另外,咖啡酸及其氧化产物的抗氧化活性明显强于阿魏酸。
     (5)对氧化产物进行HPLC及HPLC/MS分析,可知咖啡酸氧化生成4种产物,主要推测为咖啡酸二聚体(C_(18)H_(14)O_8),四聚体(C_(36)H_(28)O_(16))以及无法推测出结构的多聚体。阿魏酸氧化生成2种氧化产物,主要推测为阿魏酸二聚体(C_(20)H_(18)O_8)和三聚体(C_(30)H_(26)O_(12))。抗氧化活性高的产物中以低聚物为主。
Modern enzymology reveals that. enzyme in non-aqueous medium show very high catalytic activity and has new properties, such as products in non-aqueous media with strong thermal stability, storage stability and three-dimensional structure of selectivity , etc. For the synthesis of functional polymers, the non-aqueous media is conducive to the formation of phenolic oligomers with more stable and enhanced oxidation ability than the monomer, which can help to improve the laccase stability in practical application and catalytic preparation of new functional compounds.
     In the study, 10 kinds of organic solvents with different water content were employed as reaction media to tests the activity of laccase catalyzed oxidation of phenolic compounds.. Stability and antioxidant activity, of end products were determinrd and, composition as well as structure were identified by HPLC,HPLC / MS analysis..Main results are as following:
     (1) For model substrates of caffeic acid and ferulic acid, optimum reaction condition for Trametes versicolor laccase were determined as: pH5.15 and pH4.85, temperatures 30℃, substrate concentration of 8mmol/L and 5mmol/L, enzyme concentration of 0.05U/mL and 0.025U/mL,respectively.
     (2) Different organic solvents with different fraction of water showed different role for laccase catalyzation. Enzyme activity were enhanced in either low volume fraction of hydrophilic solvent or high volume fraction of hydrophobic solvents. The most suitable reaction mediumof the laccase-catalyzed oxidations for caffeic acid and ferulic acid are 40% methanol, 92% hexane and 40% methanol, 92% isooctane.
     (3) The maximum absorption wavelength of laccase-catalyzed end-product for caffeic acid and ferulic acid were 388,408 nm. Oxidation products of caffeic acid are stable in the light relatively and have a stronger heat resistance; Oxidation products of ferulic acid are poor thermal stability and sensitivity to light, and should be stored in cool and dark condition.
     (4) Antioxidant activities of each substrate and their end product were valuated by through DPPH, FRAP and total reducing ability method. The results show that DPPH and FRAP method was consistent. The oxidation phenolic products generated in the hydrophobic medium owned relatively strong antioxidant activities, the maximum clearance rate could reach 85.4% and minimum IC_(50) is 0.049mmol / L, and reducing ability of phenolic substrate is much greater than the oxidation products. The antioxidant activity of caffeic acid and its Oxidation products was significantly stronger than that of ferulic acid, and it may be related to the number of phenolic hydroxyl groups and the degree of polymerization of a relationship.
     (5) Results of HPLC and HPLC/MS anslysis thowed that caffeic acid generated 4 oxidation products, three of them were identifies as dimer (C_(18)H_(14)O_8), tetramer (C_(36)H_(28)O_(16)) and not enterpreted polymer. Ferulic acid generated 2 oxidation products, dimmer (C_(20)H_(18)O_8) and trimer (C_(30)H_(26)O_(12)). Different reaction media has an important influence on the degree of polymerization and formation of products. 92% n-hexane and isooctane is conducive to oxidation of caffeic acid and ferulic acid in the formation of highly reactive oligomers.
引文
曹立芳,冯有胜. 2008.漆酶催化活性及应用研究进展.重庆工商大学学报.25(5):486-487
    钞亚鹏,钱世钧. 2001.真菌漆酶及其应用.生物工程进展.21:23-27
    陈建波,夏春谷. 2005.水-有机溶剂混合体系中辣根过氧化物酶的催化反应.上海师范大学学报(自然科学版).34(3):71-75.
    程玉华,赵秋宇.1992.酶类药物的研究进展.生物工程进展.12(4):11-18.
    丁兆堂,王秀峰,于海宁.2005.茶多酚固定化酶体外氧化产物茶黄素组成及其化学发光分析.茶叶科学.25(1): 49-55.
    范明辉,王淼.2005.苹果汁的前褐变及苹果PPO的部分特性研究.食品与发酵工业. 31(4):33-36.
    冯丽,宋曙辉,赵霖.2007.植物多酚种类及其生理功能的研究进展.江西农业学报,19(10): 105~107
    冯涛,杨容,李越敏,冯硕,崔鹏雷.2008.苹果多酚提取物抗氧化活性研究.食品研究与开发,12:189~192
    付时雨,詹怀宇,余惠生.2000.漆酶/介体体系生物漂白的影响因素及漂白效果.中国造纸学报.15:59-67
    高晴晴.2008.儿茶素酶促低聚物反应的初步研究和红茶酯提取物的分离及活性分析[硕士学位论文].北京:中国农业科学院.
    谷记平. 2004.茶黄素酶促氧化制备技术的研究.湖南农业大学.6:99-112.
    郭长江,杨继军,李云峰.2003.FRAP法测定水果不同部分抗氧化活性.中国公共卫生.19(7): 841-843.
    郭丽萍.2006.香蕉皮中多酚物质抗氧化性能的研究.[硕士学位论文].南宁:广西大学
    郭梅,蒲军,路福平.2004.白腐菌漆酶特性及其应用前景.天津农学院学报.11(:3)44-47.
    郭明高.2006.吸氧法测定生漆中漆酶活性.林产化学与工业.3:2-9.
    郝慧英,赵光鳌. 2003苹果中多酚氧化酶的性质.无锡轻工大学学报.22(1):7-11.
    黄小红,陈清西,王君. 2005.有机溶剂对苏云金芽孢杆菌(Bacillus thuringiensis)几丁质酶的影响.应用与环境生物学报.11(1):71-73.
    季立才,胡培植.1997.漆酶催化氧化反应研究进展.林产化学与工业.17(1):79-83.
    李冬生,康旭,杨红.2004.漆酶固定化及其性质研究.广州食品工业科技2:6-8.
    李光日,余惠生,时雨.2000.漆酶催化活性中心结构及应用的研究进展.纤维素科学与技术.8(2):42-49
    李钦玲,包锦渊.2005.有机溶剂中的酶学研究.陕西师范大学继续教育学报.22(1):1-3
    林建城,谢晓兰,龚敏.2005.有机溶剂对南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶活力的影响.厦门大学学报:自然科学版.44(5):693-696.
    林云琴,周少奇.2003.白腐菌降解纤维素和木质素的研究进展.环境技术, ,4: 29-33
    凌关庭.2000.天然抗氧化剂及其消除氧自由基的进展.食品工业.(3):19-22.
    凌关庭.2000.有“第七类营养素”之称的多酚类物质.中国食品添加剂,(l):28~37
    刘杰超,王思新,焦中高,马彩红,王亚绿,郭焕霞,王晓燕,李银杰.2005.苹果多酚提取物抗氧化活性的体外试验.果树学报,22(2):106~110
    刘丽香.2008.甘薯叶中多酚提纯工艺及抗氧化活性研究.[硕士学位论文].南京:南京农业大学.
    刘淑珍,钱世钧.2003.担子菌漆酶的分离纯化及其性质研究.微生物学报.43:73-78.
    罗耀红,2008.漆酶对苹果多酚的酶促氧化及其产物分析[硕士学位论文].陕西:西北农林科技大学.
    乜兰春,孙建设.2004.苹果果实酶促褐变底物及多酚氧化酶活性的研究.园艺学报.31(4):502-504.
    彭雪萍,马庆一,刘艳芳,常广双,蒋宗瑰.2006.苹果废渣中天然抗氧化物的提取、分离及活性研究.食品工业科技,27(11):111~113
    沈生荣,杨贤强.1992.茶多酚体外助氧化作用的自由基机理.茶叶科学.12(2):145-150.
    石碧,狄莹.2000.植物多酚.北京科学出版社.30-33.
    石翠芳.2005.沙枣果肉原花青素的分离、鉴定与抗氧化研究.[硕士学位论文].武汉:华中农业大学.
    宋东晓.2003.食物中的抗癌物.中国食物与营养.6:55-57.
    宋薇薇.2008.石榴皮总黄酮的提取及抗氧化活性和抑菌作用研究.[硕士学位论文].成都,西华大学.
    孙达旺.1992.植物单宁化学.北京:中国林业出版社,402.
    唐传核,彭志英. 2001.苹果多酚的开发及应用.中国食品添加剂.2:41-45.
    唐啸宁,孙洪林.2009.耐有机溶剂微生物及酶类在生物催化中的应用.化学进展.21(12):2726-2734.
    王宏.2006.苹果渣中多酚物质的提取、分离及其抗氧化活性研究.陕西师范大学.
    王静,戚向阳.2006.表没食子酸儿茶素没食子酸酯体外氧化影响因素及其氧化产物分析.精细化工.11 (23):1094-1097.
    王镜岩,朱圣庚. 2004.生物化学.高等教育出版社.351-355.
    王临宾.2010.超声波辅助提取苹果叶多酚及其体外抗氧化性研究.[硕士学位论文].陕西:西北农林科技大学.
    王祎宁,赵国柱,谢响明. 2009.漆酶及其应用的研究进展.生物技术通报.5:35-37
    魏华丽,史安石,石淑兰. 2004.漆酶及其应用.纸和造纸.6:79-81
    闫爱新,田桂玲. 2001.蛋白酶在有机合成中应用的新进展.化学进展.13(3):203-208.
    杨建荣.2006.苹果多酚的高效液相色谱检测方法的建立[硕士学位论文].山东:山东大学.
    杨林,王建洲,刘刚. 2009.漆酶及其在食品中的应用.内肛科技. 2:39
    杨贤强.2003.茶多酚化学.上海科学技术出版社.141.
    姚鹏.2000.非水相中固定化脂肪酶催化酯合成反应的研究.[博士学位论文].北京:北京化工大学.
    叶蕴化.1992.有机溶剂中进行的酯催化反应.大学化学.7(4):17-21.
    于佳,袁翠.1999.富士苹果多酚氧化酶特性研究.中国野生植物资源.18(4):13-16.
    张海波.2010.粗毛栓菌Trametes hirsuta lg-9非典型漆酶的研究.[博士学位论文].山东:山东大学.
    周攀登,付时雨.2004.漆酶催化对苯基苯酚的聚合.高分子学报.8(4):614-616
    周易勇.1989.漆酶活性测定方法概述.中国生漆.8:8-12.
    周易勇.2008.有机溶剂对漆酶活性的影响.中国生漆.1:55-61.
    Antidisk,Psaradakiss,Tablerm, et al.2002.The occurrence of CMV specific short RNAs in transgenic tobacco expressing virus-derived double. Stranded RNA is indicative of resistance to the virus[J]. Mo1 PlantMicrobe Interact.15(8):826-833.
    Aruoma O I,1998.Free radicals,oxdative stress,and antioxidants in human health and disease.J Am Oil Chem So.75:199-212
    Balasundram Nagendran,Sundram Kalyana,Samman Samir.2005.Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential use. Food Chemistry.5:1-13
    Barbara Surma-Slusarska,Janina Leks-Stepien. 1995.TCF bleaching of kraft pulps with xylanase and laccase. J. pulp and paper science.21:280-284
    Carreag,Rivas. 2000.Properties and synthetic applications of enzymes in organic solvents. AngewChem IntEdEng.39(13):2226-2254.
    Chen Y,Zhang R,Zhong-jian J. 1990.Flavonoids as super oxide scavengers and antioxidants free radicals. Biol Med. 9:19-21.
    Crawford RL1981.Lignin Biodegradation and Transformation. NewYork:JhonWiley& Sons, Inc.12,56-66.
    Doddapanenikk,Tatinenir,Vellankirn, et al.2009.Purification and characterization ofa solventand detergent-stable novelprotease from Bacillus cereus.MicrobiolRes.164(4):383-390.
    Duarte,J.C.,Nato ASI Ser.1987.Ser A.Perspect.Biotechnol. Peeet.Bforeehnol.23-41,
    Duarte,J.C.1987.Nato ASI Ser.Perspect.Biotechnol.128:23-41.
    Harald Claus.2004.Laccase:structure,reaction,distribution.Micron.35:93-96.
    Hassitou P K.,Arvanitoyannis I S Bioremediation. 2001.A novel approach to food waste management. Trends in Food Science&Technology.12:185-196.
    Hunter c p.2000.Gene silencing shrinking the bla缓冲液box of RNAi.Current Biology.10(4):137-140.
    Itom,Nouyek.2005.Catalytic propertiesofan organic solvent-resistantty rosinase from Streptomycessp.REN-21 and itshigh-levelproduction inE. Coli. JBiochem.138 (4):355-362.
    Khan,S.A.,Halling,P.J.,and Bell,G.1990.Enzyme Microb.12:453-458...
    Klibanov A M. 2003.Asymmetric enzymatic oxidoreductions in organic solvents. Curr Opin in Biotechnol.14(4):427-431
    Klibanov, A.M.1986.CHEMTECH.7:354-359.
    Koskinen,A.M.P. and Klibanov.A.M., eds.1996.Enzymatic Reactions in Organic Media. Blaie Aeademic&Professional.356-366
    Lorenzo M,Moldes D,Sanroman M.A.2006.Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes.Chemosphere.63:912-917
    Matteo Antorini,Isabelle Herpoel-Gimbert,Thomas Choinowski,et al.2002.Purification, crystallization and X-ray diffraction study of fully functional laccases from two ligninolytic fungi.Biochimica et Biophysica Acta.1594:109-114.
    Missioua,Kalaantidisk,Bouflaa, etal.2004.Generation of transgenic potato plants highlyresistant to potato virusY(PVY)through I silencing.MolecularBreeding. 14:185-197.
    Nelson D,Maria A R,Alessandro D,et al. 2002.Applications of laccases and tyrosinases immobilized on different supports:a review.Enzyme and Microbial Technology.31:907-931.
    Niku-PaavolaML, RaanuaM, SoumakkiA, et al. 1994.Effect of lignin-modifying enzymes of pulp. Bioresour Techno.50(1): 73.
    Nska-Swiglo AG,Tyrakowska B.2003.Quality of commercial apple juices evaluated on the basis of thepolyphenol content and the TEAC antioxidant activity. Journal of food science.68: 1844-1849.
    Pshezhetskii,A,V. 1998,Biokhiraiya(Moscow).53(6):1013-1019.
    Pshezhetskil,A.V.etal.1987.Bio1.Membr.4(11):1209—1215.
    Ryan Danielle,Robards Kevin,Prenzley Paul,et al.1999.Applications of mass spectrometry to plant phenols. Trends in Analytical Chemistry.18 (5):362-372.
    Sylvain G,Bourvellec L C,Nathalie M,et al.2002.Procyanidins are the most Abundant Polyphenols in Dessert Apples at Maturit.Lebensm.-Wiss.u.-Technol.35(3):289-291
    Zaks,A.,Klibanov,A.M.,J.Biolog.1988.Chem.263(17),8017-8021.
    Zaks,A.,Klibanov,A.M.1985.Enzyme-catalysed processes in ortanic solvents.Proc.Natl. Acad.Sci.U.S.A.82:3192-3196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700