DBD镇流层制备工艺改良及非对称电极电场强化效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DBD是在大气压条件下获得非平衡等离子体的有效方法之一,在等离子体化学、紫外光源、环境工程、高功率气体激光器等许多领域有着广泛的应用,具有深远的发展前景。但目前工业化DBD等离子体源构建中存在理论基础薄弱、电介质材料性能低下、系统难以匹配、效率不高等诸多问题。针对构建工业化DBD等离子体源的需要,本文依托国家科技发展支撑计划项目(编号:2006BAC11B06)与教育部新世纪优秀人才支持计划(NCET-05-0296),对工业化DBD等离子体源构建中涉及的DBD电介质层制备、空间局域电场强化两个主要问题进行研究。
     搪玻璃的介电常数适中,烧成容易,可以制造的很薄,与金属电极结合紧密,导热性能好,机械强度高,抗化学腐蚀性能优良,可修复,可以作为很好的DBD电介质材料。但要在强电场条件下工作也存在电绝缘性能不稳定,受工艺影响大等缺点。针对上述问题,对DBD镇流层制备工艺进行如下改良:第一,钢坯表面处理工艺引入两次退火处理;第二,调浆时以酒精为稀释剂并加入适当的NaCl为悬浮剂;第三,涂搪工艺采用湿法自动滚釉的涂搪方式;第四,搪烧工艺采用低温长烧制度,具体的温控方式为线性梯度控温方法。通过研究DBD镇流层介电性能和放电实验,证明上述工艺制度为制作DBD镇流层的最优工艺方法。
     目前工业应用中对等离子体源的基本要求是高密度、高效率。而非对称电极能有效强化DBD空间电场,从而提高DBD等离子体的浓度。为此,通过改变电极形状和曲率半径,构建三种不同曲率的电极形式,分别为平板电极、条形电极和针状电极。观察分析此三种电极形式下的DBD放电斑图、DBD放电功率、电场强度、伏安特性、DBD放电波形得到,无论激励频率、激励电压以及放电间隙如何改变,随着电极曲率的增加,DBD微放电辐射光强逐渐增强:DBD功率密度逐渐增加:DBD等效电场强度逐渐增大;因此说明电极曲率的增加能有效提高放电空间电场强度,提高DBD放电功率密度。
Dielectric barrier discharge (DBD) is an effective way to obtain non-equilibrium plasma at atmospheric pressure or above. Industrial applications of DBD include ozone generation, pollution control, surface treatment, high power CO_2 lasers, UV source, and flat large-area plasma displays. The technology of DBD has a far-reaching development prospects. But the building industrialization plasma source of DBD has a weak foundation in theory, a low dielectric material properties, the system difficult to match, and low efficiency, and many other issues. In order to construct the industrialization plasma source of DBD, this paper combines with "the support projects of science and technology ministry" (No. 2006BAC11B06) and "the talents-support plan of education ministry in new century" (No. NCET-05-0296); two major issues were studied, which involve the preparation of dielectric layer and the strengthening effect of local-space electric field about the construction of industrialized plasma source in DBD.
     Dielectric constant of enamel is moderate, and enamel has a lower sintering temperature, and has a compact combination of thin electrode plate, has a good heat conductivity and high mechanical robustness ,a good chemical corrosion resistance, it is repairable. But it also has some shortcomings of electrical insulating performance instability at high field and performances dependence on processing parameter. Aiming at these above problems, the preparation process of porcelain enamel is modified as follows: Firstly, twice-annealing is introduced to billet surface treatment technology; Secondly, appropriate sodium chloride is used to suspending agent alcohol is used to diluents while adjusting the concentration of glaze slurry; Thirdly, it is adopted that automatic roll glaze coated lining is based on the traditional manual process in wet; Fourthly, the burning technology is based on low-temperature-burning technology systems and temperature control mode is linear gradient temperature control methods. Through the research of dielectric properties and discharge experiment in DBD, it is proved that the above-mentioned technologic system is the optimal method to product ballasting layer of enamel in DBD.
     The basic requirement of the plasma source is high-density and high-efficiency for industrial application. While asymmetric electrode can strengthen the space field effectively, and enhance plasma concentration in DBD. Hence, by changing the electrode's shape and radius, we have manufactured three electrode forms of different curvature. There are flat electrode, filamentous electrode and needle electrode. Observing the discharge pattern of DBD, discharge power of DBD, electric field intensity of DBD, I-V characteristics of DBD, discharge waveforms of DBD about three electrode with different curvature, We have gained whether how to change the excitation frequency, the excitation voltage and the discharge gap, With the increase of electrode curvature, the radiation light intensity of micro-discharge has enhanced; Moreover, the power density of DBD increases gradually, and the equivalent electric field strength of DBD also increases gradually; thus, this has proved that DBD electric field strength and power density can be improved effectively by increasing in curvature of the electrodes.
引文
[1]Takaki K,Shimizu M,Sasaki T.Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removals[J].Plasma Science,2003(5):317-321
    [2]Kogelschatz U.Physics and applications of dielectric-barrier discharges[J].Plasma Science,2000(7):81-85
    [3]Fujita H,Akagi H.Control and Performance of a Pulse-density-modulated series-resonant inverter for corona discharge process[J].Industry Applications,1999(3):621-627.
    [4]Ohe K,Kamiya K,Kimura T.Improvement of ozone yielding rate in atmospheric pressure barrier discharges using a time-modulated power supply[J].Transactions on Plasma Science,1999,27(6):1582-1587.
    [5]Zhilkov S V,Zhilkov V S.Specialized non-beating chamber with spatially-homogeneous microwave energy distribution to support DBD-produced remote exposure atmospheric plasma processing for anti-microbial air decontamination[J].Plasma Science,2004(28):197-201
    [6]Lee S,Woo J,Shin H.Corrugated circular micro strip patch antennas for miniaturization[J].Electronics Letters.2002,38(6):262-268
    [7]Tzeno G,Warren C,Khalil N.Low-temperature MEMS process using plasma activated Silicon-On-Silicon(SOS) bonding[J].Micro Electro Mechanical Systems,2007(25):309-312
    [8]Pichal J,Aubrecht L,Scholtz V.Application of atmospheric air plasma for polyethylene powder modification[J].Plasma Science,2006(3):178-184
    [9]Takaki K,Shimizu M,Sasaki T.Flue gas treatment using dielectric barrier discharge with multipoint electrode[J].Pulsed Power,Volume,2003(1):571-574
    [10]K H Becher,Kogelschatz U K,H Schoenbach.Non-equilibrium air plasmas at atmospheric pressure[J].Journal of Physics,2005(3):367-372.
    [11]Gibalor V I,Pietsch G J.The development of dielectric barrier discharges in gas gaps and on surfaces[J].Applied Physics,2000(33):2618-2626.
    [12]Kawamura K,Yukimura K,Kambara S.Reduction of nitrogen oxide using ammonia radicals prepared by intermittent dielectric barrier discharge[J].Plasma Science,2004(8):211-216
    [13]Xiyao Bai,Zhitao Zhang,Mindong Bai,Hui Han.Research situation and progress of non-equilibrium plasma chemistry[J].Chinese Science Bulletin,2002,47(7):529-530.
    [14]Ulrich Kogelschatzl.Dielectric-barrier Discharges:Their History,Discharge Physics,and Industrial Applications[J].Plasma Chemistry and Plasma Processing,2003(23):254-260.
    [15]I P Vinogradov,K Wiesemann.Classical Absorption and Emission Spectroscopy of Barrier Discharges in N_2/NO and O_2/NOx Mixtures[J].Plasma Sources,1997(6):307-316.
    [16]Kogelschatz U.Filamentary,Patterned and Diffuse Barrier Discharge[J].Plasma Science,2002(10):4-8.
    [17]Mounir Laroussi.Non-thermal decontamination of biological media by atmospheric-pressure plasmas:review,analysis,and prospects[J].Plasma Science,2002,30(4):1409-1415.
    [18]Xu X J.Dielectric barrier discharge-properties and applications.Thin Solid Films,2001,39(9):237-242.
    [19]Haiyun Luo,Xinxin Wang,Ruili Ma.Influence of dielectric and electrode on DBD at atmospheric pressure[J].Plasma Science,2006(6):174-179
    [20]Thorp J S,Evans D,Al-Naief M.The dielectric properties of AlN substrates for microelectronics packaging[J].Mater Science,1990(25):49-55
    [21]王(?),赵艳辉.DBD等离子体及其应用技术的发展.自然杂志,2002(5):278-281
    [22]张锐.大气压放电等离子体特性研究:(硕士学位论文).合肥:中国科学技术大学,2004
    [23]Kyung Cheol Choi.Byung-Jun Rhee.Characteristics Of charged and met stable species in micro-discharges of AC-plasma display panel.Plasma Science,2003,31(3):329-332
    [24]吴成康.我国等离子体工艺进展[M].物理,1999,28(7):387-393.
    [25]孙岩洲,邱毓昌等.电源频率对介质阻挡放电的影响[J].高电压技术,2002,28(11):43-45
    [26]白希尧,张宏.臭氧的发生及其应用研究[J].自然杂志,1991,14(11):813-817
    [27]杨超,邱高.等离子体表面技术和在有机材料改性应用中的新进展[J].2001,17(6)30-34
    [28]白希尧,张芝涛,白敏冬.高气压强电放电等离子体学科的形成及其应用展望[J].自然杂志,2000,22(3):156-160
    [29]V Bocci,E Alinucci.Ozone in medicine[J].Ozone:Science & Engineer.,2001(23):207-218
    [30]R G Rice,J W Farquhar.Review of the applications of ozone for increasing storage times of perishable foods[J].Ozone:Science & Engineer,1982(4):147-163
    [31]A E Pryor,M Fisher.Practical guidelines for safe operation of cooling tower water ozone ion systems[J].Science & Engineer,1994(16):505-536
    [32]张芝涛,鲜于泽.电荷电压法测量DBD等离子体的放电参量[J].物理,2003(7):458-463
    [33]张芝涛,鲜于泽.强电离放电研究[J].东北大学学报(自然科学版),2002,23(5):507-509
    [34]水野彰.放电によゐ排ガス处理技術[J].静电气学会志,1995,19(4):289-295
    [35]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996
    [36]金佑民,樊友三.低温等离子体物理基础[M].清华大学出版社,1983
    [37]朱天宇,周宏伟,卞新高.有机高分子介电体臭氧发生管的特性研究[J].高电压技术,2002(12):38-40
    [38]刘维良,吴坚强,陈云霞.臭氧发生器用AIN陶瓷基板材料的研究[J].陶瓷学报,2001(3):175-179
    [39]Qiu H T,Wang Y N,Ma T C.Collis ional effects on the radio-frequency sheath dynamics[J],J.Appl.Phys.,2001,90(12):78-84
    [40]赵化侨.等离子体化学与工艺[M].中国科技大学出版社,1993
    [41]Roberto D,Daniel M,Fidela T.High frequency ozone generation system[J].Ozone science &engineering,2001,23(2):171-176
    [42]Boenig H V.Plasma Science and Technology[J].Cornell University Press,1982(33):45-49
    [43]L B Loeb,J M Meek.The mechanism of spark discharge in air at atmospheric pressure[J].J.Appl.Phys.,1940(11):438-447
    [44]梁曦东,陈昌渔,周元翔.高电压工程[M].清华大学出版社,2003
    [45]N Y Babaeva,G V Naidis.Modeling of streamer propagation in Electrical discharges for environmental purposes[J].Nova Science,2000:21-48.
    [46]A Kulikovsky.Positive streamer in a weak field in air:a moving avalanche to streamer transition[J].Plasmas fluids,1998(7):66-70
    [47]к.ф.斯捷潘楚克,н.А.基那可夫.高电压技术[M].机械工业出版社,1990
    [48]管井秀郎.等离子体电子工程学[M].科学出版社,2002
    [49]N Merbahi,N Sewraj,P Millet.Luminescence of argon in a spatially stabilized monofilament dielectric barrier micro-discharge:spectroscopic and kinetic analysis[J].Applied Physics,2004(3):64-68
    [50]CHU Jinyu,XU Xiaohong,ZHANG Bo.Analysis of the Load Characteristic of the Ozone Generator Electrode[J].High Voltage Engineering,2004,30(9):53-61
    [51]Meng Zhiqiang,Tang Xiongmin,Peng Yongjin.Study of Fundamental Wave Equivalent Circuit and Dynamic Characteristics of DBD-Type Ozone Generator Powered by Medium-Low Frequency Sinusoidal Voltage[J].Transactions of China Electrotechnical Society,2004,19(7):21-25
    [52]葛景滂,丘昌容.局部放电测量[M].机械工业出版社,1984.
    [53]顾文郁.电气绝缘测试技术[M].上海科学技术出版社,1987
    [54]Zhilkov S V.Specialized non-heating chamber with spatially-homogeneous microwave energy distribution to support DBD-produced remote exposure atmospheric plasma processing for anti-microbial air decontamination[J].Plasma Science,2004(28):197-200
    [55]Hu Y P,Yah L,Li Z Q.Surface modification of carbon fiber by DBD[J].Plasma Science,2004(26):392-395
    [56]Ping Yah,Jue Wang,Yaohong Sun.Research on power supply used in dielectric barrier discharge[J].Plasma Science,2004(22):390-394
    [57]Korkmaz S,Oksuz L,Helhel S.Investigation of DBD for wool fabric:depending on experimental parameters[J].Plasma Science 2004(10):391-396
    [58]Cao Zhi.The influence of gas flow to maintain a uniform dielectric barrier discharge at one atmospheric pressure[J].Plasma Science,2006(7):68-68
    [59]Minayeva O,Wood J,Dobbs E Remote Plasma Treatment of Bacteria using Non-Equilibrium Atmospheric Pressure Air Dielectric Barrier Discharge(DBD)[J].Plasma Science,2005(20):151-155
    [60]黄振侃等.论搪玻璃釉层残余应力[J].玻璃与搪瓷,1989,17(6):43-52
    [61]Xu Hewen.Study on Some Technology Problems about Products of Glass Lined Equipment [J].Proceeding of 11th ICPR,1991:38-42
    [62]沈亦鸣.解决搪玻璃爆瓷的工艺措施[J].北京工业大学学报,1993(2):60-64
    [63]黄振侃.搪玻璃设备传热数值研究[J].北京工业大学学报,1995(3):43-46
    [64]陆介平.搪烧工艺中搪玻璃釉特性参数的应用与测定[J].玻璃与搪瓷,1992,20(4):41-46.
    [65]陆介平.搪瓷角鳞爆的检测与控制[J].玻璃与搪瓷,1991,19(2):44-48
    [66]邵规贤.《搪瓷学》[M].轻工业出版社,1981
    [67]庄柄群.钛白釉瓷层结构与耐酸度、烧成温度等的关系[J].1984年搪瓷专业年会论文
    [68]作花济夫.玻璃手册[M].(日本)编,1980
    [69]赤木三郎.玻璃材料的特性和它的试验方法[J].科学与工业,1981,55(11):28-43
    [70]Werner A Jospeh.Structure of Enamel Coatings.The Vireos Enameller,1988
    [71]郑庆海,肖明等.瓷釉制造与搪瓷工艺[M].北京:中国财政经济出版社,1963
    [72]卢进标.中国搪瓷手册[M].中国轻工业出报社,2001
    [73]周桂华.搪瓷工艺对常压DBD氧等离子体源性能的影响.硕士论文.2001
    [74]许阳.大尺度DBD氧等离子体源构建的关键问题研究.硕士论文.2006
    [75]刘程.规模化DBD等离子体源中的介电效应与光谱诊断.硕士论文.2007
    [76]张为军.厚膜电路式电热元件的金属基片技术[J].电子元件与材料,2002,21(3)26-27
    [77]张为军.微晶玻璃及其在电子元件中的应用[J].电子元件与材料.2002,21(8)26-28
    [78]Charles A,Baldwin and William D.Faust Appliance Ferro Corporation,recent developments in electronic porcelain enamels[J].U.S.Patent,2002(5):68-74
    [79]Robber L,Hyde.Porcelain Enamel Composition and Substrates Coated Therewith[J].U.S.Patent,1988(3):22-25
    [80]Kenneth W,Wayne M.Partially Devitrified Porcelain Composition and Articles Prepared With Same[J].U.S.Patent,1981(4):256-260
    [81]K W Hang,J Andrus,W M Anderson.High Temperature Porcelain Coated Steel Electronic Substrates Composition and Properties[J].RCA Review,1981(4):59-63
    [82]Sridharan,William D.Porcelain Enamel Composition for Electronic Applications[J].U.S.Patent,1999(5):98-103
    [83]I S Onyshkevych,W H Tsien.Manufacturing Steps in the Production of Porcelain Enamel PC Boards[J].RCA Review,1981(4):45-50
    [84]郑绍成,邢翰学,滕波涛.高耐候复合搪瓷钢板韵研究[J].新型建筑材料,2006(9):70-71
    [85]双木林.国外静电涂搪的现状和未来综述[J].华东搪瓷,1992(3):40-44
    [86]王允失.日本搪瓷工业的演革[J].华东搪瓷,1991(4):53-60
    [87]严永江,于海涛,宋敏华.搪瓷设备脱瓷原因分析及应采取的措施[J].河北化工,2007,30(5):57-60
    [88]殷海荣,王昱,陈福.微晶搪玻璃釉的研制[J].陕西科技大学学报,2005,23(1):18-21
    [89]许亚华,周焕勤.国外搪瓷用钢板生产技术及宝钢的应用[J].宝钢情报,1991(1):44-48
    [90]余献忠,陈鸿美.大型搪玻璃设备受控搪烧的优点及对瓷釉的要求[J].玻璃与搪瓷,2006,34(3):16-19
    [91]窦安民.静电干粉搪瓷[J].中国搪瓷,2002,23(4):21-24
    [92]王允夫,王禹.静电干粉涂搪用粉[J].中国搪瓷,2001,22(1):12-19
    [93]章荣生,戴修好.目产搪瓷薄钢板的质量状况及改进意见[J].玻璃与搪瓷,1995,2(3):45-50
    [94]陈林.涂搪和预处理之间的关系[J].华东搪瓷,1992(7):48-50
    [95]王家旺.浅谈搪玻璃瓷层异物产生的原因及克服方法[J].中国搪瓷,1992,13(4):38-39
    [96]袁清习,强明亮,张丙荣.Li_2O-CaO-Al_2O_3-SiO_2系微晶搪瓷面釉的研究[J].玻璃与搪瓷,1997,23(3):11-15
    [97]王能亮.搪玻璃窑炉的历史、现状及今后几点改革想法[J].中国搪瓷,1996,17(4):21-27
    [98]马今朝,王东.U型搪烧炉的几何设计对能耗和温度的影响[J].华东搪瓷,1991(7):44-50
    [99]吴国华.俄罗斯的搪瓷管道生产技术概况[J].中国搪瓷,1996,17(6):20-25
    [100]丘宏富,许喜儒,王风华.搪玻璃烧结底釉的研究.中国搪瓷[J].1991,12(1):29-31
    [101]唐玉军.3%的盐酸用于搪玻璃设备铁坯预烧[J].中国搪瓷,1991,12(5):44-48
    [102]张绍兵.搪玻璃设备修补技术及应用[J].天津化工,2003,17(6):48-50
    [103]蔡遏新.搪玻璃缺陷的分析和处理方法[J].中国搪瓷,1991,12(3):11-15
    [104]徐静.搪玻璃设备爆瓷分析及克服办法[J].中国搪瓷,1996,17(6):11-14
    [105]林亚楠.搪玻璃设备局部搪烧的初步研究[J].中国搪瓷,1990,11(2):32-34
    [106]徐子阳.低温无底釉耐酸搪瓷釉的研制[J].玻璃与搪瓷,2005,33(2):24-26
    [107]徐研,高雅春.搪瓷烧成温度计算方法[J].河北理工学院学报.2003,25(3):95-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700