介质阻挡放电的放电特性及其脱除气态环己酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气中的挥发性有机物(简称VOCs)的污染问题及其有效控制已经受到人们的普遍关注。近年,对于气态低浓度的VOCs用放电等离子体进行降解处理引起了世界各国研究者高度关注。该技术可以实现常温常压下,非常短的时间内,对浓度变化范围较大的多种气态污染物进行同时降解。
     本论文利用介质阻挡放电反应器进行了脱除挥发性有机物废气-环己酮的研究。通过研究发现:环己酮的脱除率随着极间电压,重复频率的升高而增加,随着气体流速和环己酮的进口浓度的增加而降低。
     当脉冲重复频率为10kHz,反应器所加脉冲峰值电压为8000V,总流速0.46m~3/h,环己酮初始浓度为50 ml/m~3时,对于环己酮的脱除率达到100%,证明了常温常压下的介质阻挡放电对环己酮的去除是十分有效的。
     设计了水电极介质阻挡放电实验装置,对大气压下介质阻挡放电在不同条件下的放电形貌演化过程及放电特性进行了实验研究,通过峰值电压,重复频率及放电间隙等条件的改变考察其放电特性的变化。
     利用发射光谱法进行了大气压下空气中介质阻挡放电的等离子体诊断研究。在常温常压下测量了N_2的第二正系跃迁(C~3Пu→B~3Пg)和N_2~+的第一负系跃迁中B~2∑~+u→X~2∑~+g的跃迁的发射光谱强度以及其与峰值电压、重复频率之间的关系。通过研究发现,体系内高能粒子的数量是影响环己酮脱除效果的最重要因素。
The pollution control of volatile organic compounds(VOCs) is receiving more and more attention.Recently,non-thermal plasma technology is regarded as a more promising new technology in VOCs control all over the world.In atmospheric temperature and room pressure,different VOCs at various concentration can be decomposed by this technology immediately.
     In this article,dielectric barrier discharge(DBD) was used to remove the dynamic cyclohexanone underatmospheric pressure.it was found that in the same power parameters,with an increase of voltage and frequence,the removal efficiency of cyclohexanone also increased,while it would decrease when the concentrate of cyclohexanone or gas flow rate climbed up.
     The removal efficiency of cyclohexanone(50 ml/m~3) was 100%when the voltage was 8000 V,frequence was 10 kHz and total gas flowrate was 0.46 m~3/h.The result indicated that DBD had good effect on removal of cyclohexanone.
     A water electrode experimental facility setup of dielectric barrier discharge was designed.In this article,the effect of applied excitation voltage,) repetition frequency and discharges gap width on discharge images characteristics of DBD was investigated
     The emission spactras were analyzed by using spectral diagnosis equipment at atmospheric pressure.The relationships between N_2(C~3Пu→B~3Пg) emission spectrum relative intensity and peak voltage,are measured by means of emission spectrum method at room temperature and atmospheric pressure which is advantage and practical for plasma characteristic diagnosis,it was indicated that the quantity of active particles was the critical factor of cyclohexanone remove
引文
[1]姜安玺.空气污染控制.北京:化学工程出版社,2003.
    [2]陈宗良,徐振全,京津地区大气颗粒物及其苯溶有机物的初步研究.环境科学,1983,(1):33-36.
    [3]Molhave J.Volatile organic compounds indoor air quantity and health.Indoor Air,1991,1(1):357-376.
    [4]中国环境优先监测研究课题.环境优先污染物.中国环境科学出版社,1989.
    [5]郑小萍.环境空气中VOCs的监测技术新进展.环境监测管理与技术2001.6(3).
    [6]吴忠标,赵伟荣.室内空气污染及净化技术.北京:化学工业出版社,2004.
    [7]吴永文,李忠,奚红霞等.VOCs污染控制技术与吸附催化材料.离子交换与吸附,2003,18(1):88-95.
    [8]冯春杨,赵君科.脉冲电晕技术在处理挥发性有机化合物中的应用研究.安全与环境学报,2004,4(1):59-61.
    [9]闰勇.有机废气中VOCs的处理方法.北京化工环保1997(17).
    [10]王志娟.大气污染与防治.包钢科技2001.6(2)27.
    [11]陈清.室内空气中挥发性有机物的污染及其控制.上海环境科学,2001,20(12):616-620.
    [12]泰涛,王怡中,胡克源.催化氧化法处理苯系物工业废气催化剂的研制.环境科学学报,1995,15(2):239-245.
    [13]闰勇.有机废气中VOCs的处理方法.北京化工环保1997(17).
    [14]尚书勇.化学工业中的新技术一等离子体技术.河南化工,2005,22(6):10-14.
    [15]Mizuno A.A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization.IEEE trans.On Ind.1986,22(3):516-522.
    [16]Yamamoto T.VOC Decomposition by Non-thermal Plasma Processing-A New Approach.Journal of Electrostatics,1997,42(1-2):227-238.
    [17]Masuda S,Hosokawa S,Tu X,et al,Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics,Journal of Electrostatics,1995,34(4):415-438.
    [18]Keping Y,Hexing H,Corona Induced Non-Thermal Plasmas:Fundamental Study and Industrial Applications,Journal of Electrostatics,1998,44(1-2):17-39.
    [19]聂勇,李伟,施耀等.脉冲放电等离子体治理甲苯废气放大试验研究.环境科学.2004,25(3):30-34
    [20]Tomio R Removal of NOXby DC Corona Reactor with Water.Journal of Electrostatics,2001,51:8-14.
    [21]Chang J S,Corona Discharge Process.IEEE Transaction on plasma science,1999 19(6):1152-1165.
    [22]Oda T.Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air.Journal of Electrostatics.2003,57:293-311.
    [23]Evans D,Masuda.Plasma remediation of trichloroethylene in silent discharge plasma.J.Apple.Phys.,1993,74(9):378-5386.
    [24]侯健,刘先年等.低温等离子体技术及其治理工业废气的应用.上海环境科学,1999,18(4):151-153.
    [25]Chang M B,Lee C C.Destruction of formaldehyde with dielectric barrier discharge.Envir.Sci.&Tech.,1995,29(1):181-186.
    [26]张若兵,吴彦,靳承铀等.双向窄脉冲DBD放电水处理反应器及其性能研究.大连理工大学学报.2003,43(6):719-722.
    [27]Siemens W.Poggendorfs Ann.Phys.Chem.,1857,102(66):132-147.
    [28]K.Buss,Die elecktrodenlose Entladung Nach Messung mit demkathoden-ozillograghen.Arch.Elektroteclmol,1932,26:261-273
    [29]U.kogelschatz.Filamentary,patterned,and diffuse barrier discharges.IEEE transactions on plasma Science,2002,30(4):1400-1512
    [30]彭国贤.气体放电:等离子体物理的应用.上海:知识出版社,1988.
    [31]八田吉典.气体放电.日本:近代科学社,1997.
    [32]Coburn J W,Chen M.Optical emission spectroscopy of reactive plasmas:a method for correlating emission intensities to reactive particle density.Journal of Applied Physics,1980,51:3134-3136
    [33]Goeckner M J,Goree J A,Sheridan T E J.Monte Carlo simulation of ions in a magnetron plasma.IEEE Trans.Plasma Sci,1991,19:301-308
    [34]Den Hartog E A,Persing H,Woods R C,Ion temperature in an electron cyclotron resonance plasma as determined by laser induced fluorescence Doppler width measurements,IEEE Conference Record-Abstracts,1990,210-211
    [35]Den Hartog E A,O'Brian T R,Lawler J E.Electron temperature and density diagnostics in a helium glow discharge.Phys.Rev.Lett,1989,62:1500-1503
    [36]朱德忠,热物理激光测试技术.北京:科学出版社,1990.
    [37]包成玉,冯文源,刘锡明.激光荧光法测量气体温度的实验研究.清华大学学报1996,36(6):40-43.
    [38]樊加才,罗直智,张军等简述环己酮中毒与预防职业与健康1999,3:20-22
    [39]A.M.Turing,Philos.Trans.R.Soc.London Ser.B 1925,37,327
    [40]M.C.Cross and P.C.Hohenberg,Rev.Mod.Phys.1993,65,851
    [41]J.D.Murray,Mathematical Biology(Berlin:Springer),1989
    [42]R.Kapral and K.Showalter,Chemical Waves and Patterns(Kluwer:Dordrecht),1995
    [43]R.Imbihl and G.Ertl,Chem.Rev.1995,95,697
    [44]V.S.Zykov and S.C.Mtlller,Phys.D 1996,97,322
    [45]Y.P.Raizer,Gas Discharge Physics(Berlin:Springer),1991
    [46]E.Ammelt,D.SchwengandH.G.Purwins,Phys.Lett.A,1993,179,348
    [47]N.Jiang,S.F.Qian,and L.Wang.Thin Solid Film.2001,119,392
    [48]Moo been Chang.NO/NOX removal with C2H6 as additive via dielectric discharges.Environmental and Energy engineering,2001,47(5):1226-1233.
    [49]O.Goossens.Application of atmospheric pressure dielectric barrier discharges in deposition,cleaning and activation.Surface and Coating,2001:142-144.
    [50]Liu Dongping.Diamond-like carbon films deposited in the plasma of dielectric barrier discharge at atmospheric pressure.Jpn.J.Appl.Phvs.,2002(39):3359.
    [51]刘晶.介质阻挡放电等离子体脱除氮氧化物的发射光谱研究(硕士论文).大连理工大学,2005
    [52]G.赫兹堡 分子光谱与分子结构,第一卷,双原子分子光谱[M].北京:科学出版社,1983.
    [53]谢成屏.等离子体法处理挥发性有机物(VOCs)的应用研究(硕士论文).北京工业大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700