饲料铅对罗非鱼的毒性及硅酸盐纳米级微球减轻其毒害影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料铅作为水产养殖生产中铅污染的重要来源,不仅会导致水产动物发生铅中毒,而且还能够通过食物链损害人类健康。本试验以罗非鱼为试验对象,探讨不同水平饲料铅在罗非鱼体内的残留及其对罗非鱼的毒性作用,并对应用以上残留量指标及毒性效应指标作为监测饲料铅污染的早期预警指示物的可行性进行分析;与此同时,应用硅酸盐纳米级微球(Layer silicate nanoparticle, LSN)吸附饲料中的铅,并从罗非鱼组织中铅残留及多项毒性效应指标的变化探讨LSN的驱铅效果,为LSN作为驱铅产品在实际生产中的广泛应用提供科学依据。主要研究内容和结果如下:
     1饲料铅在罗非鱼体内的残留及其对罗非鱼的毒性作用
     选择个体初重为32.17±0.34g罗非鱼480尾,随机分为4组,每组6个重复,每个重复20尾鱼。试验组分别饲喂:基础日粮(对照组),基础日粮添加100μg/g铅(100μg Pb/g暴露组),基础日粮添加400 gg/g铅(400μg Pb/g暴露组),基础日粮添加800μg/g铅(800μg Pb/g暴露组)。试验预试期为21d,正试期为60d,分别于第15d、30d、45d和60d取样,并进行相关指标测定。通过本试验发现:
     随着铅暴露剂量的增加及暴露时间的延长,罗非鱼体内肠、肾脏(中肾)、骨、胃、肝脏、鳃、脾脏、精巢、肉(背肌)和脑中铅残留量均呈上升趋势;铅在罗非鱼体内的蓄积分布具有不同的组织亲和性,在不同组织中的残留量由高到低依次为:肠>肾脏(中肾)>骨>胃>肝脏>鳃>脾脏>精巢>肉(背肌)>脑。以上研究结果揭示:肾脏和骨等铅残留量高的组织能够敏感地反映环境中铅胁迫情况,而胃、肠组织中铅残留量不仅可以作为饲料铅污染还可作为天然食料铅污染的监测指标。
     随着饲料铅暴露剂量的增加,罗非鱼肾脏、骨、肝脏、脾脏和精巢中锌、铁、铜含量均呈下降趋势,在不同的被测组织中,锌、铁、铜含量下降幅度不同;罗非鱼肝脏、肾脏中MDA含量呈上升趋势,而T-AOC及GSH水平呈下降趋势。另外,罗非鱼肝脏、肾脏中GSH-Px及SOD活性呈相反的变化趋势:肝脏中GSH-Px和SOD活性被铅诱导升高,而肾脏中GSH-Px和SOD活性呈抑制性下降;罗非鱼肝脏、肾脏中AP、Na, K-ATPase和Ca, Mg-ATPase活性均呈下降趋势。罗非鱼肝脏中ALT、AST和LDH活性呈上升趋势,而肾脏中ALT、AST和LDH活性呈下降趋势;罗非鱼肝脏、肠和胃中淀粉酶、胰蛋白酶和脂肪酶活性均呈下降趋势;罗非鱼血清中T3和T4水平呈下降趋势。与对照组罗非鱼相比,铅暴露组罗非鱼血细胞彗尾DNA含量、彗尾长、尾距、Olive尾距显著升高,且各指标均呈剂量-效应关系;与对照组相比,铅暴露组罗非鱼肝脏、肾脏和脾脏显微结构呈现病理变化,并且随着铅暴露剂量的增加,病理损伤逐渐加剧。以上研究结果表明:饲料铅对罗非鱼具有多种毒性效应,并且以上毒性效应指标的变化与铅污染水平间具有剂量-效应关系,协同使用以上多个指标非特异性地指示铅污染情况具有一定的可行性。
     2硅酸盐纳米级微球减轻饲料铅毒害影响的研究
     选择个体初重为32.244±0.38g罗非鱼240尾,随机分为4组,每组3个重复,每个重复20尾鱼。试验组分别饲喂:基础日粮(对照组),基础日粮添加0.5%LSN(LSN组),基础日粮添加100μg/g铅和0.5%LSN (Pb+LSN组),基础日粮添加100μg/g铅(Pb组)。饲养试验结束后,处死试验鱼并进行取样分析,试验结果表明:
     与对照组罗非鱼相比,基础日粮中添加LSN后罗非鱼肠、肾脏、骨、胃和脾脏中铅残留量显著下降(P<0.05)。与Pb组罗非鱼相比,Pb+LSN组罗非鱼肠、肾脏、骨、胃、肝脏、鳃、脾脏、背肌、精巢和脑中铅的残留量均显著下降(P<0.05);LSN组罗非鱼肾脏、骨、肝脏、脾脏和精巢中锌、铁和铜的含量与对照组罗非鱼相比差异不显著(P>0.05)。与Pb组罗非鱼相比,LSN+Pb组罗非鱼被测组织中锌、铁和铜的含量升高(P>0.05);LSN组罗非鱼肾脏中MDA含量、T-AOC水平、GSH含量、GSH-Px和SOD活性与对照组罗非鱼相比差异不显著(P>0.05)。与Pb组罗非鱼相比,LSN+Pb组罗非鱼肾脏中MDA含量下降(P>0.05),GSH含量、GSH-Px和SOD活性升高(P>0.05),T-AOC水平显著升高(P<0.05);LSN组罗非鱼血细胞彗尾DNA含量、彗尾长、尾距、Olive尾距与对照组罗非鱼相比差异不显著(P>0.05)。与Pb组罗非鱼相比,LSN+Pb组罗非鱼血细胞彗尾DNA含量、彗尾长、尾距、Olive尾距均显著降低(P<0.05);LSN组罗非鱼肾脏中ALT、AST、AP、LDH、Na, K-ATPase、Ca, Mg-ATPase活性与对照组罗非鱼相比差异不显著(P>0.05)。与Pb组罗非鱼相比,LSN+Pb组罗非鱼肾脏中ALT、AST、AP、LDH、Na, K-ATPase、Ca, Mg-ATPase活性升高(P>0.05);LSN组罗非鱼肝脏中淀粉酶、胰蛋白酶与脂肪酶活性与对照组罗非鱼相比差异不显著(P>0.05)。与Pb组罗非鱼相比,LSN+Pb组罗非鱼肝脏中淀粉酶、胰蛋白酶与脂肪酶活性升高(P>0.05)。以上试验结果揭示:LSN能够有效吸附饲料中的铅,减少罗非鱼体内铅的残留量,降低铅致罗非鱼的毒害影响。
Dietary Pb, being one of the important Pb pollutants in aquaculture, could lead to toxic effects on aquatic animal and endangered the human health through food chains. In this study, the toxic effects of dietary Pb on tilapia (Oreochromis niloticus) were investigated, and the potential of using exposure effect index and toxicicty effect indexes to monitor dietary Pb contamination was evaluated. In addition, the experiment was carried out to investigate the effectiveness of layer silicate nanopartilce (LSN) on dietary Pb adsorption, and the effects of LSN on reducing dietary Pb toxicity was conducted on Pb residues in tissues and toxicity effect indexes. The main results were presented as follows:
     1 Effects of dietary Pb on Pb residues in tissues of tilapia and toxic effects of dietary Pb on tilapia
     480 fish (mean weight,32.17±0.34g) were selected and randomly divided into four treatments with six replicates (20 fish per replicate). After three weeks of acclimation, fish were fed with diet (0,100,400 and 800μg Pb/g dw diet) at 3-3.5% fresh body weight twice daily. At 15d,30d,45d and 60d of exposure period, fish were killed and weighted. Blood and tissue samples were collected and determined for corresponding indexes. The main results were shown as follows:
     It was indicated that Pb residues in tissues of tilapia increased with dietary Pb exposure concentrations and period. Moreover, Pb accumulated in sampled tissues in the following order:intestine> kidney> bone> stomach> liver> gill> spleen> testis> muscle> brain. The results showed that Pb residues in kidney and bone exhibited high Pb burden could be used as surrogate biomarkers to monitor Pb pollution, and Pb residues in intestine and stomach could indicate Pb contamination in diet specially.
     Pb concentration-dependent decreases in trace elements (Zn, Fe and Cu) content were observed in kidney, bone, liver, spleen and testis of tilapia. In different sampled tissues, trace elements (Zn, Fe and Cu) metabolisms were disturbed at various levers. It was showed that malonyldialdehyde (MDA) levels in liver and kidney increased with dietary Pb concentrations, total antioxidant capacity (T-AOC) and glutathione (GSH) levers in liver and kidney decreased with dietary Pb exposure concentrations. It was also demonstrated that glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities in liver and kidney were affected by dietary Pb in a dissimilar way:Pb concentration-related decreases in GSH-Px and SOD activities were observed in kidney, while these two enzyme activities in liver were stimulated in a Pb concentration-dependent manner. It was observed that tail length (TL), TDNA%, tail moment (TM) and olive tail moment (OTM) of peripheral blood cells in tilapia increased with the increasing dietary Pb concentrations. Alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) activities in liver and kidney were affected by dietary Pb in a contrary way:Pb concentration-related decreases in ALT, AST and LDH activities were observed in kidney, while Pb concentration-dependent stimulative effects on above enzyme activities were observed in liver. It was also demonstrated that the inhibitory effects of dietary Pb on alkaline phosphatase (AP), Na, K-ATPase, Ca, Mg-ATPase activities in both liver and kidney were Pb concentration-dependent. The inhibitory effects of dietary Pb on amylase, trypsin and lipase enzyme activities were dietary Pb concentration-dependent. It was found that T3 and T4 levels in serum were inhibited in a Pb concentration-dependent manner. By observation of histological sections of liver, kidney and spleen in optical microscope, Pb concentration-related lesions could be detected in these tissues of Pb-exposed treatments. The results revealed that dietary Pb could lead to Pb concentration-dependent toxicity on tilapia, and cooperative above toxic effect indexes could indicate dietary Pb contamination.
     2 Effects of LSN on reducing dietary Pb toxicity
     240 fish (mean weight,32.24±0.38g) were selected and randomly divided into four treatments with three replicates (20 fish per replicate). The feeding experiment lasted for 60d after three weeks of acclimation. The treatments were denominated as follows: control treatment (basic dietary), LSN treatment (basic dietary added with 0.5% LSN), Pb treatment (basic dietary added with 100μg Pb/g dw), Pb+LSN treatment (basic dietary added with 100μg Pb/g dw and 0.5% LSN). After 60d of exposure period, fish were killed and weighted. Tissue samples were collected and determined for corresponding indexes. The main results were presented as follows:
     As compared with control treatment, supplementation of 0.5% LSN significantly reduced Pb residues in intestine, kidney, bone, stomach and spleen (P< 0.05). Compared to Pb treatment, Pb residues in intestine, kidney, bone, stomach, liver, gill, spleen, muscle, testis and brain of Pb+LSN treatment significantly decreased (P< 0.05), respectively. No significant differences on trace elements (Zn, Fe and Cu) content in kidney, bone, liver, spleen and testis were observed between control treatment and LSN treatment (P> 0.05). Compared to Pb treatment, trace elements (Zn, Fe and Cu) content in sampled tissues of Pb+LSN treatment increased insignificantly (P> 0.05). No significant differences on levels of MDA, GSH, T-AOC and activities of GSH-Px, SOD in kidney were observed between control treatment and LSN treatment (P> 0.05). Compared to Pb treatment, MDA level in Pb+LSN treatment decreased insignificantly (P> 0.05), while GSH level, GSH-Px activity and SOD activity were enhanced insignificantly (P> 0.05) and T-AOC level increased significantly(P< 0.05). No significant differences on TL, TDNA%, TM and OTM of peripheral blood cells were observed between control treatment and LSN treatment (P > 0.05). Significant decreases in TL, TDNA%, TM and OTM of peripheral blood cells of Pb+LSN treatment were observed when compared with that of Pb treatment. No significant differences on ALT, AST, AP, LDH, Na, K-ATPase, Ca, Mg-ATPase activities in kidney were observed between control treatment and LSN treatment (P>0.05). As compared with Pb treatment, ALT, AST, AP, LDH, Na, K-ATPase, Ca, Mg-ATPase activities in kidney of Pb+LSN treatment were insignificantly stimulated (P>0.05). No significant differences on amylase, trypsin and lipase activities in liver were observed between control treatment and LSN treatment (P>0.05). Compared to Pb treatment, amylase, trypsin and lipase activities in liver of Pb+LSN treatment increased insignificantly (P>0.05).
     In conclusion, LSN could reduce Pb residues in tissues and Pb toxicity through its effectiveness on Pb adsorption.
引文
Ahmad I, Pacheco M, Santos MA. Anguilla anguilla L. oxidative stress biomarkers:an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere.2006, 65(6):952-962.
    Alados CL, Weber DN. Lead effects on the predictability of reproductive behavior in fathead minnows (Pimephales promelas):a mathematical model. Environ Toxicol Chem.1999, 18(10):2392-2399.
    Albergoni V, Viola A. Effects of cadmium on lymphocyte proliferation and macrophage activation in catfish, Ictalurus melas. Fish Shellfish Immunol.1995,5(4):301-311.
    Alquezar R, Markich SJ, Booth DJ. Metal accumulation in the smooth toadfish, Tetractenos glaber, in estuaries around Sydney. Australia Environ Pollut.2006,142(1):123-131.
    Alves LC, Glover CN, Wood CM. Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol.2006,51:615-625.
    Alves LC, Wood CM. The chronic effects of dietary lead in freshwater juvenile rainbow trout (Oncorhynchus mykiss) fed elevated calcium diets. Aquat Toxicol.2006,78:217-232.
    Anon. Biomarkers in risk assessment:validity and validation. WHOTASK group on environmental health criteria for biomarkers in risk assessment. vol.222. Environmental Health Criteria, WHO, Geneva.2001.
    Antonio Garcia T, Corredor L.Biochemical changes in the kidneys after perinatal intoxication with lead and/or cadmium and their antagonistic effects when coadministered. Ecotoxicol Environ Saf. 2004,57(2):184-189.
    Atli G, Canli M. Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol.2007,145 (2):282-287.
    Atli G, Canli M. Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bull Environ Contam Toxicol.2003,70(3):619-627.
    Bakalli RI, Pesti GM, Ragland WL.The magnitude of lead toxicity in broiler chickens. Vet Hum Toxicol.1995,37(1):15-19.
    Baker RTM, Handy RD, Davies SJ, et al. Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar Environ Res. 1998,45 (4-5):357-365.
    Bandyopadhyaya G, Sinha S, Chattopadhyay BD, et al. Protective role of curcumin against nicotine-induced genotoxicity on rat liver under restricted dietary protein. Eur J Pharmacol.2008, 588(2-3):151-157.
    Basha PS, Rani AU. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Saf.2003,56 (2):218-221.
    Beaudin SA, Stangle DE, Smith DR, et al. Succimer chelation normalizes reactivity to reward omission and errors in lead-exposed rats. Neurotoxicol Teratol.2007,29(2):188-202
    Berrahal A, Nehdi A, Hajjaji N, et al. Antioxidant enzymes activities and bilirubin level in adult rat treated with lead. C R Biol.2007,330(8):581-588.
    Bihan EL, Perrin A, Koueta N. Development of a bioassay from isolated digestive gland cells of the cuttlefish Sepia officinalis L. (Mollusca Cephalopoda):effect of Cu, Zn and Ag on enzyme activities and cell viability. J Exp Mar Bio Ecol.2004,309:47-66.
    Blair IA. Lipid hydroperoxide-mediated DNA. Exp Gerontol.2001,36(9):1473-1481.
    Blanusa M, Piasek M, Kostial K. Interaction of lead with some essential elements in rat's kidney in relation to age. Biol Trace Elem Res.1989,21:189-193.
    Blasco J, Puppo J. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca:Bivalvia). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol.1999,122(2):253-263.
    Bolin CM, Basha R, Cox D, et al. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J.2006,20(6):788-790.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248-254.
    Bradman A, Eskenazi B, Sutton P, et al. Iron deficiency associated with higher blood lead in children living in contaminated environments. Environ. Health Perspect.2001,109:1079-1084.
    Bressler JP, Olivi L, Cheong JH, et al. Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci.2004,1012:142-152.
    Brzoska MM, Moniuszko-Jaloniuk J, Jurczuk M, et al. The effect of zinc supply on cadmium-induced changes in the tibia of rats. Food Chem Toxicol.2001,39:729-737.
    Burden VM, Sandheinrich MB, Caldwell CA. Effects of lead on the growth and d-aminolevulinic acid dehydratase activityof juvenile rainbow trout, Oncorhynchus mykiss. Env Pollut.1998, 101:285-289.
    Burton GW, Traber MG. Vitamin E:antioxidant activity biokinetics and biovailability. Annu Rev Nutr.1990,120:357-382.
    Campana O, Sarasquete C, Blasco J. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Saf.2003,55 (1):116-125.
    Camusso M, Vigano L, Balestrini R. Bioconcentration of trace metals in rainbow trout:a field study. Ecotoxicol Environ Saf.1995,31(2):133-141.
    Cerklewski FL, Forbes RM. Influence of dietary copper on lead toxicity in the young male rat. J Nutr.1977,107(1):143-146.
    Cheung AP, Lam TH, Chan KM. Regulation of Tilapia metallothionein gene expression by heavy metal ions. Mar Environ Res.2004,58(2-5):389-394.
    Chiesa ME, Rosenberg CE, Fink NE, et al. Serum protein profile and blood cell counts in adult toads Bufo arenarum (Amphibia:Anura:Bufonidae):effects of sublethal lead acetate. Arch Environ Contam Toxicol.2006,50(3):384-391.
    Chiodo LM, Covington C, Sokol RJ, et al. Blood lead levels and specific attention effects in young children. Neurotoxicol Teratol.2007,29(5):538-546.
    Choi JW, Kim SK. Association between blood lead concentrations and body iron status in children. Arch Dis Child.2003,88:791-792.
    Chowdhury MJ, McDonald DG, Wood CM. Gastrointestinal uptake fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium. Aquat Toxicol.2004,69:149-163.
    Conner EA, Fowler BA. Biochemical and immunological properties of hepatic d-aminolevulinic acid dehydratase in channel catfish (Ictalurus punctatus). Aquat Toxicol.1994,28:37-42.
    Conti ME, Cecchetti G. A biomonitoring study:trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ Res.2003,93(1):99-112.
    Coumtryman PI, Heddle JA. The production of micronuclei from chromosome aberration in irradiated cultures of human lymphocytes. Mutation Res.1976,41:321-332.
    Danadevi K, Rozati R, Saleha Banu B, et al. DNA damage in workers exposed to lead using comet assay. Toxicology.2003,187(2-3):183-193.
    de la Torre FR, Salibian A, Ferrari L. Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environ Pollut.2000,109(2):277-282.
    de Mello Ferreira Guimaraes A, Ciminelli VST, Vasconcelos WL. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions. Appl Clay Sci.2008, Epub ahead of print.
    Depledge MH, Aagaard A, Gyorkos P. Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Mar Pollut Bull.1995,31(1-3):19-27.
    Devi KD, Banu BS, Grover P, et al. Genotoxic effect of lead nitrate on mice using SCGE (comet assay). Toxicology.2000,145(2-3):195-201.
    Devi M, Fingerman M. Inhibition of acetyl cholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead. Bull Environ Contam Toxicol.1995,55:746-756.
    De Wolf H, Backeljau T, Blust R.Heavy metal accumulation in the periwinkle Littorina littorea, along a pollution gradient in the Scheldt estuary. Sci Total Environ.2000,262(1-2):111-121.
    Di Giulio RT, Washburn PC, Wenning RJ, et al. Biochemical responses in aquatic animals:a review of determinants of oxidative stress. Environ Toxicol and Chem.1989,8:1103-1123.
    Diplock AT. Metabolic aspects of selenium action and toxicity. CRC Crit Rev Toxicol.1976, 4:271-289.
    Dobryszycka W, Owczarek H. Effects of lead, copper, and zinc on the rat's lactate dehydrogenase in vivo and in vitro. Arch Toxicol.1981,48(1):21-27.
    Dogru MI, Dogru AK, Gul M, et al. The effect of adrenomedullin on rats exposed to lead. J Appl Toxicol.2008,28(2):140-146.
    Doyle JJ, Younger RL. Influence of ingested lead on the distribution of lead, iron, zinc, copper and manganese in bovine tissues. Vet Hum Toxicol.1984,26(3):201-204.
    El-Demerdash FM, Elagamy El. Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. Int J Environ Health Res.1999,9:173-186.
    Elia AC, Galarini R, Taticchi MI, et al. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf.2003,55 (2):162-167.
    El-Sayed IH, Lotfy M, El-Khawaga OA, et al. Prominent free radicals scavenging activity of tannic acid in lead-induced oxidative stress in experimental mice. Toxicol Ind Health.2006, 22(4):157-163.
    Eren E, Afsin B, Onal Y. Removal of lead ions by acid activated and manganese oxide-coated bentonite. J Hazard Mater.2008, Epub ahead of print.
    Ergene S, Cavas T, Celik A, et al. Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Goksu Delta (Turkey):genotoxic damage in relation to water pollution. Ecotoxicology.2007,16(4):385-391.
    Farag AM, Boese CJ, Woodward DF, et al. Physiological changes and metal tissue accumulation in rainbow trout exposed to foodborne and waterborne metals. Environ Toxicol Chem.1994, 13:2021-2029.
    Farombi EO, Adelowo OA, Ajimoko YR. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish(Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health.2007,4(2):158-165.
    Fenech M. The cytokinesis-block micronucleus technique:A detailed description of the method and its application to genotoxicity studies in human populations. Mutation Res.1993,285:35-44.
    Ferrarol MVM, Fenocchio AS, Mantovani MS, et al. Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H.malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet Mol Biol.2004,27(1):103-107.
    Fick KR, Ammerman CB, Miller SM, et al. Effect of dietary lead on performance, tissue mineral composition and lead absorption in sheep. J Anim Sci.1976,42(2):515-523.
    Fossi MC, Marsili L, Leonzio C, et al. The use of non-destructive biomarker in Mediterranean Cetaceans:preliminary data on MFO activity in skin biopsy. Mar Pollut Bull.1992,24(9): 459-461.
    Fossi MC. Nondestructive biomarkers in ecotoxicology. Environ Health Perspect.1994,102 (12): 49-54.
    Fowle JR 3rd, Sexton K. EPA priorities for biologic markers research in environmental health. Environ Health Perspect.1992,98:235-241.
    Fracasso ME, Perbellini L, Solda S, et al. Lead induced DNA strand breaks in lymphocytes of exposed workers:role of reactive oxygen species and protein kinase. Mutat Res.2002, 515(1-2):159-169.
    Galgani F, Bocquene G, Cadiou Y. Evidence of variation in cholinesterase activity in fish along a pollution gradient in the North Sea. Mar Ecol Prog Ser.1992,91:77-82.
    Gasiorowski K, Pawlowski T, Spychala J, et al. The influence of subcutaneously administered lead (II) acetate on the concentrations of copper, iron, and zinc in the blood, kidney, liver, and spleen of rats. Sci Total Environ.1987,64(1-2):117-123.
    Gaudin J, Huet S, Jarry G, et al. In vivo DNA damage induced by the cyanotoxin microcystin-LR: comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat Res. 2008,652(1):65-71.
    Geret F, Serafim A, Bebianno MJ. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus? Ecotoxicology.2003,12(5):417-426.
    Gill TS, Tewari H, Pande J. In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish Barbus conchonius Ham. (rosy barb). Comp Biochem Physiol C.1991, 100(3):501-505.
    Gill TS, Tewari H, Pande J. Use of the fish enzyme system in monitoring water quality:effects of mercury on tissue enzymes. Comp Biochem Physiol C.1990,97(2):287-292.
    Glover CN, Hogstrand C. In vivo characterisation of intestinal zinc uptake in freshwater rainbow trout. J Exp Biol.2002,205(Pt 1):141-150.
    Gordon KP. Gill surface interaction model for trace metal toxicity to fish:Role of complexion, PH and water hardness. Environ Sci Technol.1983,17:342-347.
    Hamed MA, Emara AM. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. Journal of Marine Systems.2006,60(3-4):220-234.
    Hammad TA, Sexton M, Langenberg P. Relationship between blood lead and dietary iron intake in preschool children. A cross-sectional study. Ann Epidemiol.1996,6:30-33.
    Hammond PB, Chernausek SD, Succop PA, et al. Mechanisms by which lead depresses linear and ponderal growth in weanling rats. Toxicol Appl Pharmacol.1989,99(3):474-486.
    Hammond PB, Succop PA. Effects of supplemental nutrition on lead-induced depression of growth and food consumption in weanling rats. Toxicol Appl Pharmacol.1995,131(1):80-84.
    Health AG. Water Pollution and Fish Physiology.2nd, Virginia; CRC Press,1995,325-342.
    Hernberg S. Lead poisoning in a historical perspective. Am J Ind Med.2000,38(3):244-254.
    Hodson PV, Blunt BR, Spry DJ. Chronic toxicity of waterborne and dietary lead to rainbow trout (salmo gairdneri) in Lake Ontario water. Water Res.1978,12:869-878.
    Hodson PV. d-Aminolevulinic acid dehydratase activity of fish blood as an indicator of a harmful exposure to lead. J Fish Res Board Can.1976,33:268-271.
    Hodson PV, Blunt BR, Spry DJ, et al. Evaluation of erythrocyte d-aminolevulinic acid dehydratase activity as a short term indicator in fish of a harmful exposure to lead. J Fish Res Board Can.1977, 34:501-508.
    Hong FS. Study of the effect of Pb2+ on alpha-amylase activity by spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi.2003,23:583-586.
    Huang DJ, Zhang YM, Song G, et al. Contaminants-induced oxidative damage on the carp Cyprinus carpio collected from the upper Yellow River, China. Environ Monit Assess.2007, 128(1-3):483-488.
    Inglezakis VJ, Stylianou MA, Gkantzou D, et al. Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination.2007,210(1-3):248-256.
    Isani G, Andreani G, Cocchioni F, et al. Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd exposure. Ecotoxicol Environ Saf.2008, Epub ahead of print.
    Jackim E. Influence of lead and other metals on fish d-aminolevulinic acid dehydratase activity. J Fish Res Board Can.1973,30:560-562.
    Jamieson JA, Stringer DM, Zahradka P, et al. Dietary zinc attenuates renal lead deposition but metallothionein is not directly involved. Biometals.2008,21(1):29-40.
    Jamieson JA, Taylor CG, Weiler HA. Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats. Toxicol Sci.2006,92(l):286-294.
    Jedrychowski W, Perera F, Jankowski J, et al. Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). Int J Hyg Environ Health.2008, 211(3-4):345-351.
    Johansson-Sjobeck M, Larsson A. Effects of inorganic lead on delta-aminolevulinc acid dehydrates activity and haematological variables in the rainbow trout, Salmo gairdnerii. Arch Environ Contam Toxicol.1979,8:419-431.
    Jones I, Kille P, Sweeney G. Cadmium delays growth hormone expression during rainbow trout development. J Fish Biol.2001,59(4):1015-1022.
    Kale M, et al. Lipid peroxidative damage on lead exposure and alterations in antioxidant system in rat erythrocytes:role of vitamin E. Trace Elem Electrolytes.1997,14 (4):177-180.
    Kapor A, Viraraghavan T. Use of immobilized bentonite in removal of heavy metals from wastewater. J Environ Eng.1998,124(10):1020-1024.
    Karan V, Vitorovic S, Tutundzic V, et al. Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicol Environ Saf.1998,40(1-2):49-55.
    KesowerNS. The glutathione status of cells. Int Rev Cytol.1978,54:109-159.
    Ketterer B, Coles B, Meyer DJ. The role of glutathione in detoxication. Environ Health Perspect. 1983,49:59-69.
    Khan IA, Thomas P. Lead and Aroclor 1254 disrupt reproductive neuroendocrine function in Atlantic croaker. Mar Environ Res.2000,50(1-5):119-223.
    Kim HS, Lee SS, Hwangbo Y, et al. Cross-sectional study of blood lead effects on iron status in Korean lead workers. Nutrition.2003,19:571-576.
    Klauder DS, Petering HG. Protective value of dietary copper and iron against some toxic effects of lead in rats. Environ Health Perspect.1975,12:77-80.
    Knapen D, Reynders H, Bervoets L, et al. Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. Aquat Toxicol.2007, 82(3):163-172.
    Kock G, Triendl M, Hofer R. Lead (Pb) in Arctic char (Salvelinus alpinus) from Oligotrophic Alpine Lakes:gills versus digestive tract. Water Air Soil Pollut.1998,102:303-312.
    Krajnovic'-Ozretic'M, Ozretic'B. The ALAD activity test in lead-exposed grey mullet Mugil auratus. Mar Ecol Prog Ser.1980,3:187-191.
    Lakshmi R, Kundu R, Thomas E, et al. Mercuric chloride-induced inhibition of diffrent ATPases in the intestine of mudskipper, Boloophthalmus dentatus. Ecotoxicol Environ Saf.1991,1:18-24.
    Landinen MH, Vipo JA. Repair of gamma-irradiation induced DNA single strand breaks in huntn bone marrow cell:effects of a second irradiation. Mutat Res,1997,373(1):31-37.
    Langston WJ, Chesman BS, Burt GR, et al. Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary:an indicator of environmental quality? Mar Environ Res.2002, 53(3):263-293.
    Leclerc L, Marden M, Poyart C. Inhibition of the erythrocyte (Ca2++Mg2+)-ATPase by nonheme iron. Biochim Biophys Acta.1991,1062(1):35-38.
    Lee E, Oh E, Lee J, et al. Use of the tail moment of thelymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci.2004,81(1):121-132.
    Lefcort H, Meguire RA, Wilson LH, et al. Heavy metals alter the survival, growth, metamorphosis and antipredatory behavior of Columbia spotted Frog(Reno luteiventris) tadpoles. Arch Environ Contam Toxicol.1998,35:447-456.
    Levesque HM, Dorval J, Hontela A, et al. Hormonal, morphological, and physiological responses of yellow perch (Perca flavescens) to chronic environmental metal exposures. J Toxicol Environ Health A.2003,66(7):657-676.
    Lin XL, Xu ZR. Effects of montmorillonite nanocomposite on mercury residues in growing/finishing pigs. Asian-Australasian Journal of Animal Science.2004,17(10):1434-1437.
    Macdonald A, Playle RC. A lead-gill binding model to predict acute lead toxicity to rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol.2002,133:227-242.
    Mahaffey K R. Nutritional factors in lead poisoning. Nutr Rev.1981,39:353-360.
    Maracine M, Segner H. Cytotoxicity of metals in isolated fish cells:importance of the cellular glutathione status. Comp Biochem Physiol.1998,120A:83-88.
    Marchlewicz M, Michalska T, Wiszniewska B. Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemosphere.2004,57(10):1553-1562.
    Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis.2000,21(3):361-370.
    Mateo R, Beyer WN, Spann JW, et al. Relationship between oxidative stress, pathology, and behavioral signs of lead poisoning in mallards. J Toxicol Environ Health A.2003, 66(14):1371-1389.
    Mateo R, Hoffman DJ. Differences in oxidative stress between young Canada geese and mallards exposed to lead-contaminated sediment. J Toxicol Environ Health A.2001,64(7):531-545.
    Mazon LI, Gonzalez G, Vicario A, et al. Inhibition of esterases in the marine gastropod Littorina littorea exposed to cadmium. Ecotoxicol Environ Saf.1998,41:284-287.
    McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein. J Biol Chem.1969,244:6049-6055
    McKelvey-Martin VJ, Green MH, Schmezer P, et al. The single cell gel electrophoresis assay (comet assay):a European review. Mutat Res.1993,288(1):47-63.
    McKim JM. Physiological and biological mechanisms that regulate the accumulation and toxicity of environmental chemicals in fish. In:Hamelink JL, Langdrum PF, Bergman HL, et al. (Eds.). Bioavailability:Physical, chemical, and biological interactions. Boca Raton:Lewis Publishers, 1994,179-201.
    M. Ferraro MV, Fenocchio AS, Mantovani MS, et al. Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet Mol Biol.2004,27(1):103-107.
    Miloshev G, Mihayliv I, Anachkova B. Application of the single cell gel electrophoresis on yeast cells. Mutat Res.2002,513(1-2):69-74.
    Miranda M, Lopez-Alonso M, Castillo C, et al. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environ Int.2005,31(4):543-548.
    Mishra S, Srivastava S, Tripathi RD, et al. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere.2006,65(6):1027-1039.
    Mithelmore CL, Chipman JK. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Res.1998,399:135-147.
    Moreira EG, Rosa GJD, Barros SBM, et al. Antioxidant defense in rat brain regions after developmental lead exposure. Toxicology.2001,169 (2):145-151.
    Mount DR, Barth AK, Garrison TD, et al. Dietary and waterborne exposure of rainbow trout (oncorhynchus mykiss) to copper, cadmium, lead and zinc using a live diet. Environ Toxicol Chem.1994,13(12):2031-2041.
    Mukai K, Morimoto H, Okauchi Y, et al. Kinetic study of reactions between tocopheroxyl radicals and fatty acids. Lipid.1993,28:753-756.
    Mylroie AA, Boseman A, Kyle J. Metabolic interactions between lead and copper in rats ingesting lead acetate. Biol Trace Elem Res.1986,9(4):1221-1231.
    Nakagawa H, Tajima T, SatoT, et al. A field study of water lead pollution in fresh water areas of northern Kyushu, based on 5-aminolevulinic acid dehydratase activity and lead concentration in the blood of crucian carp, Carassius auratus langsdorfii. J Fac Agric Kyushu Univ.1998, 43:209-215.
    Naseem R, Tahir SS. Removal of Pb(II) from aqueous/acidic solutions by using bentonites as an adsorbent. Wat Res.2001,35 (16):3982-3986.
    Nehru B, Kanwar SS. N-acetylcysteine exposure on lead-induced lipid peroxidative damage and oxidative defense system in brain regions of rats. Biol Trace Elem Res.2004,101(3):257-264.
    Nieto-Fernandez FE, Alcide K, Rialas C. Heavy metals and neuroimmunomodulation in Mytilus edulis. Acta Biol Hung.2000,51(2-4):325-329.
    Ojo AA, Wood CM. In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout(Oncorhynchus mykiss). Aquat Toxicol.2007,83:10-23.
    Olojo EAA, Olurin KB, Mbaka G, et al. Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. Afr J Biotechnol.2005,4 (1):117-122.
    Oner M, Atli G, Canli M.Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem.2008,27(2):360-366.
    Oyanedel-Craver VA, Smith JA. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. J Hazard Mater.2006,137(2): 1102-1114.
    Pandrangi R, Petras M, Rasph S. Alkaline singel cell gel (comet) assay and genotoxieity monitoring using bullheads and carp. Environ Mol Mutagen.1995,96(4):345-356.
    Pan J, She M, Xu ZX, et al. inhibitors induce DNA via reactive species in human cancer cells. Cancer Res.2005,65(9):3671-3681.
    Patel M, Rogers JT, Pane EF, et al. Renal responses to acute lead waterborne exposure in the freshwater rainbow trout (Oncorhynchus mykiss). Aquat Toxicol.2006,80(4):362-371.
    Patlolla AK, Barnes C, Yedjou C, et al. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol.2008, Epub ahead of print.
    Pelgrom SMG, Lock RAC, Balm PHM, et al. Effects of combined waterborne Cd and Cu exposures on ionic composition and plasma cortisol in tilapia, Orechromis mossambicus. Comp Biochem Physiol C.1995,111:227-235.
    Pickering AD, Pottinger P. Seasonal and diet changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen Comp Endocrinol.1983,49:232-239.
    Pinto D, Ceballos JM, Garcia G, et al. Increased cytogenetic damage in outdoor painters. Mutat. Res.2000,467:105-111.
    Rademacher DJ, Steinpreis RE, Weber DN. Effects of dietary lead and/or dimercaptosuccinic acid exposure on regional serotonin and serotonin metabolite content in rainbow trout(Oncorhynchus mykiss). Neurosci Lett.2003,339(2):156-160.
    Rademacher DJ, Steinpreis RE, Weber DN. Short-term exposure to dietary Pb and/or DMSA affects dopamine and dopamine metabolite levels in the medulla, optic tectum, and cerebellum of rainbow trout (Oncorhynchus mykiss). Pharmacol Biochem Behav.2001,70(2-3):199-207.
    Rainbow PS. Heavy metal levels in marine invertebrates. In:Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, FL.1990.
    Rainbow PS. Trace metal accumulation in marine invertebrates. marine biology or marine chemistrytebrates:marine biology or marine chemistry? J mar biol Ass U K.1998,77:195-210.
    Reddy N, Venugopa K. Effect of cadmium on acetyl cholinesterase activity and oxygen consumption in the freshwater field crab, Barytelerusa guerini. J Environ Biol.1993,14:203-210.
    Reichert WL, Federighi DA, Malins DC. Uptake and metabolism of lead and cadmium in coho salmon (Oncorhynchus kisutch).Comp Biochem Physiol C.1979,63C (2):229-234.
    Reynders H, Bervoets L, Gelders M, et al. Accumulation and effects of metals in caged carp and resident roach along a metal pollution gradient. Sci Total Environ.2008,391(1):82-95.
    Richardson HBD, Hilton JW, Ferguson HW. Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout. J Fish Dis.1984,7(5):379-389.
    Risso-de Faverney C, Devaux A, Lafaurie M, et al. Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch Environ Contam Toxicol.2001,41(2):129-141.
    Roesijadi GK, Robinson WE. Metal regulation in aquatic animals:mechanisms of uptake, accumulation, and release. In:D.C. Mullins and G.K. Ostrander, Editors, Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives.1994,387-420.
    Rodrigues AL, Bellinaso ML, Dick T. Effect of some metal ions on blood and liver delta-aminolevulinate dehydratase of Pimelodus maculatus (Pisces:Pimelodidae). Comp iochem Physiol.1989, B 94:65-69.
    Rogers JT, Richards JG, Wood CM. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout(Oncorhynchus mykiss). Aquat Toxicol.2003,64:215-234.
    Rogers JT, Wood CM. Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss. J Exp Biol.2004,207:813-825.
    Romeo M, Bennani N, Gnassia-Barelli M, et al. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat Toxicol.2000, 48(2-3):185-194.
    Rosenberg CE, Fink NE, Arrieta MA, et al. Effect of lead acetate on the in vitro engulfment and killing capability of toad (Bufo arenarum) neutrophils. Comp Biochem Physiol C Toxicol Pharmacol.2003,136(3):225-233.
    Ruas CB, Carvalho CD, de Araujo HS, et al. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf.2007, Epub ahead of print.
    Saito Y, Kato M, Kobayashi I, et al. Biomarker Responses in Flounder (Platichthys flesus) and their use in Pollution Monitoring. Mar Pollut Bull.1996,33(1):36-45.
    Sasaki YF, Nishidate E, Izumiyama F, et al. Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet assay) in multiple mouse organs (liver, lung, spleen, kidney, and hone marrow). Mutat Res,1997,391(3):215-231.
    Sastry KV, Gupta PK. Alternations in the activity of some digestive enzymes of Channa punctatus, exposed to lead nitrate. Bull Environ Contam Toxicol.1978,19:549-555.
    Sastry KV, Gupta PK. Enzyme alterations in the digestive system of Heteropneustes fossilis induced by lead nitrate. Toxicol Lett.1979,3:145-150.
    Schmitt CJ, Caldwell CA, Olsen B, et al. Inhibition of erythrocyte delta-aminolevulinic acid dehydratase (ALAD) activity in fish from waters affected by lead smelters. Environ Monit Assess. 2002,77(1):99-119.
    Scott GR, Sloman KA, Rouleau C, et al. Cadmium disrupts behavioral and physiological responses to alarm substance in juvenile rainbow trout(Oncorhynchus mykiss). J Exp Biol.2003, 206(11):1779-1791.
    Sharma G, Sandhir R, Nath R, et al. Effect of ethanol on cadmium uptake and metabolism of zinc and copper in rats exposed to cadmium. J Nutr.1991,121:87-91.
    Shen X, Wu S, Yan C. Impacts of low-level lead exposure on development of children:recent studies in China. Clin Chim Acta.2001,313(1-2):217-20.
    Shimada H, Funakoshi T, Waalkes MP. Acute, nontoxic cadmium exposure inhibits pancreatic protease activities in the mouse. Toxicol Sci.2000,53:474-480.
    Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res.1988,175:184-191.
    Sivaprasad R, Nagaraj M, Varalakshmi P. Combined efficacies of lipoic acid and 2, 3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J Nutr Biochem. 2004,15(1):18-23.
    Sloman KA, Scott GR, Diao Z, et al. Cadmium affects the social behavior of rainbow trout, Oncorhynchus mykiss. Aquat toxicol.2003,65(2):171-185.
    Steinhart H, Wieninger-Rustemeyer R, Kirchgessner M. Effect of Cu++ions on the activity of trypsin on natural substance. Arch Tierernahr.1981,31:119-125.
    Struzynska L, Bubko I, Walski M, et al. Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology.2001,165(2-3):121-131.
    Suicmez M, Kayim M, Koseoglu D, et al. Toxic effects of lead on the liver and gills of Oncorhynchus mykiss WALBAUM 1792. Bull Environ Contam Toxicol.2006,77(4):551-558.
    Talapatra SN, Banerjee SK. Detection of micronucleus and abnormal nucleus in erythrocytes from the gill and kidney of Labeo bata cultivated in sewage-fed fish farms. Food Chem Toxicol.2007, 45(2):210-215.
    Tao S, Liang T, Cao J, et al. Synergistic effect of copper and lead uptake by fish. Ecotoxicol Environ Saf.1999,44(2):190-195.
    Taylor LN, McFarlane WJ, Pyle GG, et al. Use of performance indicators in evaluating chronic metal exposure in wild yellow perch (Perca flavescens). Aquat Toxicol.2004,67(4):371-385.
    Towel DW. Role of Na+-K+-ATPase in ionic regulation by marine and estuarine animals. Mar Biol Lett.1981,2(1):107-122.
    Tripathi DN, Pawar AA, Vikram A, et al. Use of the alkaline comet assay for the detection of transplacental genotoxins in newborn mice. Mutat Res.2008,653(1-2):134-139.
    Tripathi RM, Raghunath R, Mahapatra S, et al. Blood lead and its effect on Cd, Cu, Zn, Fe and hemoglobin levels of children. Sci Total Environ.2001,277(1-3):161-168.
    Trivedi R, John S, Trivedi R, et al. Effect of vitamin E on the changes in lead-induced lipid peroxidation and antioxidant enzymes in rat tissues. Trace Elem Electrolytes.1998,15 (4): 200-204.
    Vaglenov A, Creus A, Laltchev S, et al. Occupational exposure to lead and induction of genetic damage. Environ Health Perspect.2001,109:295-298.
    Van Campenhout K, Goenaga Infante H, Goemans G, et al. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS). Sci Total Environ.2008,394(2-3):379-389.
    Vaziri ND, Liang KH, Ding YX. Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int.1999,56(4):1492-1498.
    Velmurugan B, Selvanayagam M, Cengiz El, et al. Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride. Environ Toxicol.2008,4:Epub ahead of print.
    Verbost PM, vanRooij J, Flik G, et al. The movement of cadmium through fresh water trout branchial epithelium and its interference with calcium transport. J Exp Biol.1989,145:185-197.
    Viola A, Pregnola G, Albergoni V. Effect of in vitro cadmium exposure on natural killer (NK) cells of catfish, Ictalurus melas.1996,6(3):167-172.
    Vutukuru SS, Chintada S, Madhavi KR. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem. 2006,32 (3):221-229.
    Wang J, Wu J, Zhang Z. Oxidative stress in mouse brain exposed to lead. Ann Occup Hyg.2006, 50(4):405-409.
    Weber DN, Dingel WM, Panos JJ, et al. Alterations in Neurobehavioral Responses in Fishes Exposed to Lead and Lead-chelating Agents. Amer. Zool.1997,37:354-362.
    Weber DN. Exposure to sublethal levels of waterborne lead alters reproductive behavior patterns in fathead minnows (Pimephales promelas). Neurotoxicology.1993,14(2-3):347-358.
    Weiler HA. Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats. Toxicol Sci.2006, 92(1):286-294.
    White FD, Neathery MW, Gentry RP, et al. The effects of different levels of dietary lead on zinc metabolism in dairy calves. J Dairy Sci.1985,68(5):1215-1225.
    Whitehead MW, Thompson RA, Powell JJ. Regulation of metal absorption in the gastrointestinal tract. Gut.1996,39(5):625-628.
    Wood CM. Excretion In:Groot C, Margolis L, Clarke WC. Physiological Ecology of the Pacific Salmon. Government of Canada Special Publications Branch, UBC Press, Vancouver,1995, 381-438.
    Wright RO, Shannon MW, Wright RJ, et al. Association between iron deficiency and low-level lead poisoning in an urban primary care clinic. Am J Public Health.1999,89:1049-1053.
    Wu SM, Shih MJ, Ho YC. Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol. 2007,145(2):218-226.
    Yang L, Gao Z, Cao Y, et al. Effect of PbⅡ on the secondary structure and biological activity of trypsin. Chembiochem.2005,6:1191-1195.
    Xu ZR, Han XY, Wang YZ. Effects on growth and cadmium residues from feeding cadmium-added diets with and without montmorillonite nanocomposite to growing pigs. Vet Human Toxicol.2004,46(5):238-241.
    Yu DY, Xu ZR, Yang XG. In vitro, in vivo studies of Cu(II)-exchanged montmorillonite for the removal of lead (Pb). Anim Feed Scid Tech.2006,127:327-335.
    Zha LY, Xu ZR, Wang MQ, et al. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. J Anim Physiol An N. Epub ahead of print.
    Zhang JS, Gao XY, Zhang LD, et al. Biological effects of a nano red elemental selenium. BioFactors.2001,15,27-38.
    Zhong Y, Feng SL, Luo Y, et al. Evaluating the genotoxieity of surface water of Yangzhong city using the Vicia Faba micronucleus test and the comet assay. Environ Contam Toxicol.2001, 67:217-224.
    F.利鲍.硅酸盐结构化学.北京:中国建筑工业出版社,1989.
    艾春香,陈立侨,温小波等.VE对河蟹血清和组织中超氧化物歧化酶及磷酸酶活性的影响.台湾海峡.2003,22(1):24-31.
    曹伟,傅佩玉,韩中华等.天然沸石处理含铅废水的试验研究.环境导报.1998,2:20-22.
    岑赛宁,区腾飞,官大伙.学龄前儿童血铅水平与5种微量元索相互关系的研究.中国实用儿科杂志.2004,19(5):288-290.
    成军,高丰潘,耀谦等.仔猪实验性铅中毒的病理学研究.中国兽医学报.2004,24(4):372-375.
    陈敏,谢吉民,程晓农等.铅对小鼠脏器中微量元素的影响.江苏理工大学学报:自然科学版.2000,21(5):68-70.
    陈佩丽,周雅燕,刘彬等.铅对婴幼儿智力影响及与锌、硒含量关系.中国公共卫生.2006,22(6):673-673.
    陈清西,陈素丽,朱凌翔等.长毛对虾碱性磷酸酶功能基团的研究.厦门大学学报(自然科学版).1996,35(4):587-591.
    陈社安,吕婉娴,黄丽萍.儿童血铅水平与其他微量元素的相关性研究.实用医技杂志.2005,12(11):3239-3240.
    陈武,季寿元.矿物学导论.北京:地质出版社.1985.
    崔金山,张玉敏,李宏革等.铅对作业工人某些内分泌腺功能影响的研究.中国工业医学杂志.1995,8(1):1-3.
    崔金山,王薛君.铅对大鼠某些内分泌腺功能影响研究.中国公共卫生学报.1995,14(2)109-110.
    邓岳松,陈权军.纳米硒对尼罗罗非鱼生长的影响.内陆水产.2003,6:16-19.
    丁磊,吴康,张伟明等.镉对鲫外周血单个核细胞凋亡的诱导.水产学报.2005,29(1):55-59.
    董杰影,金龙金,楼哲丰等.运用彗星试验检测醋酸铅对小鼠离体、在体生殖细胞的DNA损伤作用.癌变.畸变.突变.2006,18(1):42-45.
    范迪富,黄顺生,廖启林等.不同量剂凹凸棒石粘土对镉污染菜地的修复实验.江苏地质.2007,31(4):323-328.
    方洛云.不同锌源对断奶仔猪生长、免疫和消化的影响及其作用机理的探讨.浙江大学硕士学位论文.浙江杭州.2002,5.
    冯健,刘永坚,田丽霞.草鱼实验性镉中毒的肝、肾病理学研究.中山大学学报(自然科学版).2003,42(2):226-230.
    冯昶,范广勤李伟等.铅染毒与大鼠骨中锌、钙、铜的相关性研究.江西医学院学报.2003,43(6):54-55.
    冯一秦.柱撑处理对蒙脱石纳米微粒吸附霉菌毒素的影响研究.浙江大学博士学位论文.浙江杭州.2008,6.
    耿芳宋,刘洪明,王秀丽等.铅对人类胎盘碱性磷酸酶活力与构象的影响.青岛医学院学报.1998,34(4):240-242.
    耿龙武,蔺玉华,刘永等.铬对鲤脂质过氧化影响及其对嗜多染红细胞微核的诱变效应.吉林农业大学学报.2005,27(2):220-224.
    郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展.应用生态学报.2005,16(10):1990-1996.
    郭坤梅,马毅杰.膨润土对Pb2+的吸附性能及影响吸附的主要因素.环境科学学报.2000,20(5):654-656.
    郭添伟,夏光华,占俐琳等.改性海泡石处理含铬工业废水的试验研究.陶瓷学报.2003,24(4):217-218.
    杭小帅,周健民,王火焰等.粘土矿物修复重金属污染土壤.环境工程学报.2007,1(9):113-120.
    黄雪琴,龙玉博.镉对江蚬Corbicula fluminalis (Muller)碱性磷酸酶的影响.福建师范大学学报(自然科学版).1995,112:74-78.
    胡彩虹,夏枚生.载铜蒙脱石对水产病原菌的抗菌活性及其机理.硅酸盐学报.2005,33(11):1376-1380.
    胡彩虹,夏枚生,熊莉等.载铜蒙脱石对嗜水气单胞菌粘附尼罗罗非鱼上皮细胞的影响.水 产学报.2005,29(5):619-623
    胡秀丽,荣会,刘忠英等.MT蛋奶粉对铅中毒大鼠脑和股骨中微量元素的影响.吉林大学学报:医学版.2006,32(5):791-793.
    胡忠于,罗道成.改性累托石对镉离子吸附性能的研究.环境工程学报.2007,1(4):82-85.
    胡忠于,罗道成,易平贵.改性海泡石对电镀废水中Pb2+、Cu2+、Cd2+的吸附.材料保护.2002,35(5):45-46,53.
    蒋引珊,董振亮,张雨力.膨润土对干电池溶液中重金属离子的吸附作用.应用化学,1995.12(6):101-102.
    简弘晨,曾宗鹏,惠秀娟等.铅化合物体外诱导人的淋巴细胞DNA损伤的遗传毒性.辽宁大学学报:自然科学版.1999,26(1):84-87.
    简敏菲,游海,倪才英.鄱阳湖饶河段重金属污染水平与迁移特性.湖泊科学.2006,18(2):127-133.
    贾秀英,陈志伟.镉对鲤鱼磷酸酶活性的影响.上海环境科学.1998,17(8):40-41.
    贾秀英,陈志伟.镉对鲫鱼组织转氨酶和过氧化氢酶活性的影响.环境污染与防治.1997,19(6):4-5,48.
    贾秀英,董爱华.镉、铅对蟾蜍精巢毒作用的酶学研究.生态学报.2004,24(10):2329-2333.
    贾秀英,陈志伟.镉对鲫鱼酶活性毒性的研究.浙江农业学报.2002,14(3):155-158.
    贾秀英,董爱华.Cd、Cr(Ⅳ)及复合污染对鲫鱼组织脂质过氧化的影响.浙江大学学报:农业与生命科学版.2003,29(3):325-328.
    孔祥会,刘占才,郭彦玲等.汞暴露对草鱼器官组织中碱性磷酸酶活性的影响.中国水产科学.2007,14(2):270-274.
    匡少平,徐倩.铅对泥鳅的致毒效应.环境科学技术.2003,2(6):11-12,32.
    梁涛,陶澍,曹军.铜铅被鱼吸收过程中的相互作用.应用生态学报.2000,11(4):621-624.
    梁启荣,廖瑞庆,苏素花.铅对作业工人甲状腺功能的影响.中华劳动卫生职业病杂志.2003,21(2):111-113.
    连灵君,吴晨,徐进等.铅染毒导致小鼠DNA损伤与氧化损伤.环境科学学报.2006,26(1):137—141.
    李登好,周伟.微波活化膨润土对重金属离子吸附性能的研究.淮阴工学院学报.2007,16(1):52-55.
    李东阳,周艳,刘清国.铅作业工人机体中某些微量元素含量变化的分析.微量元素与健康研究.20,06,23(4):16-18.
    李芳红,杨臻,林建东等.单细胞凝胶电法检测混苯作业工人遗传损伤.中华劳动职业病杂志.1998,16(6):355-356.
    李谷,程晓莉,陈丹等.鱼微核试验筛检水体诱变物的应用与研究.水生生物学报.2002,26(1):74-81.
    李国清,陈绛云.镁铝交联膨润土处理含重金属有机废水的研究.泉州师范学院学报.2006,24(4):43-47.
    李虎杰,田煦,易发成.活化沸石对Pb2+的吸附性能研究.非金属矿.2001,24(2):49-51.
    李虎杰,易发成,田煦.粘土矿物的物化性能及其在环境保护中的应用.中国矿业.1998,7(4):80-83.
    李明德,童潜明,汤海涛等.海泡石对镉污染土壤改良效果的研究.土壤肥料.2005,(1):42-44.
    李少菁,王桂忠,翁卫华等.重金属对日本对虾仔虾存活及代谢酶活力的影响.台湾海峡.1998,17(2):115-120.
    刘博林,闫景辉,惠博然.改性膨润土吸附重金属离子.长春理工大学学报.2005,28(1):84-86.
    刘长发,李杭,陶澍.金鱼Carassiusauratusvar.对水中游离态铅的吸收积累及鳃分泌粘液的自身保护作用.环境科学学报.1999,19(4):438-442.
    刘珺,秦善.层状硅酸盐矿物对重金属污染的防治.岩石矿物学杂志.2001,20(4):461-466.
    李伟,范广勤,熊华宏.铅染毒对大鼠体内铜元素的影响研究.现代预防医学.2006,33(10):1878-1879.
    刘志.重金属离子对褐牙鲆毒性效应的研究.中国海洋大学硕士论文.山东青岛.2005,6.
    刘勇,肖丹,郭灵虹等.天然蛭石对金属离子的吸附性能研究.四川大学学报(工程科学版).2006,38(3):92-96.
    罗成玉,司友斌,刘小红等.改性膨润土对废水中Cu2+、Zn2+去除效果的研究.安徽农业大学学报.2007,34(1):34-39.
    马龙江.铅砷汞镉在鸭肉中的含量调查.中国兽医杂志.1997,23(8):58.
    马万山,许春营,郭鹏.多孔质天然沸石颗粒吸附剂对镉离子的吸附性能及再生研究.非金属矿.2002,25(3):46-47.
    马玉龙,郭彤,许梓荣.纳米载铜蒙脱石对断奶仔猪腹泻、肠道菌群及肠粘膜形态的影响.中国兽医学报.2007,27(2):279-283.
    马玉龙,许梓荣.纳米载铜蒙脱石对肉鸡生长、肠黏膜形态和消化酶活性的影响.中国兽医 学报.2006,26(3):333-336,346.
    梅景良,黄一帆.中药保肝解毒汤对实验性铜中毒欧鳗鳃、肝、肾组织中Na+-K+-ATPase活性的影响.农业环境科学学报.2006,25(6):1436-1440.
    孟春红,赵冰.汉江水质污染分析与治理措施.人民长江.2007,38(1):86-88.
    潘鲁青,吴众望,张红霞.重金属离子对凡纳滨对虾组织转氨酶活力的影响.中国海洋大学学报.2005,35(2):195-198,282.
    朴丰源,万伯健.铅对胎鼠甲状腺功能及仔鼠行为发育影响的研究.中国医科大学学报.1992,21(5):349-353.
    乔胜英,蒋敬业,向武等.武市湖泊中重金属污染状况.水资源保护.2007,23(1):45-48.
    任加云,潘鲁青,姜令绪.3种重金属离子对中华绒螯蟹鳃丝Na+-K+-ATPase活性的影响.中国水产科学.2004,11(4):291-295.
    申锐莉,鲍征宇,周更等.洞庭湖湿地水相中重金属的地球化学评价.人民长江.2007,38(11):121-123.
    施惠生,刘艳红.改性沸石对Cr(Ⅵ)的吸附作用研究.建筑材料学报.2006,9(4):408-411.
    史荧华.纳米级硅酸盐结构微粒(NSP)吸附猪饲粮中黄曲霉毒素的研究.浙江大学博士学位论文.浙江杭州.2005,5.
    史增奎.重金属离子对鱼类血液指标影响的研究.渔业经济研究.2006,6:45-48.
    宋保强,孙海香,夏枚生等.纳米硒对肉鸡肝脏谷胱甘肽过氧化物酶mRNA表达和酶活的诱导作用.中国畜牧杂志.2004,40(11):13-15.
    汤鸿,李少菁,王桂忠等.铜、锌、镉对锯缘青蟹仔蟹代谢酶活力影响的实验研究.厦门大学学报(自然科学版).2000,39(4):521-525.
    田宏,刘忠良,焦宏等.铅中毒儿童矿物质和微量元素的变化.中国儿童保健杂志.2004,12(3):232-234.
    田相迪,朱风华,孙金全等.纳米氧化铜和纳米铜对肉仔鸡铜表观消化率的影响.安徽农业科学.2007,35(20):6122-6124.
    王丙莲, 张迎梅,侯亚妮等.镉铅对泥鳅组织转氨酶活性的影响.兰州大学学报:自然科学版.2006,42(3):67-70.
    王峰,梁成华,杜丽宇等.天然蛭石和沸石吸附铜和锌的特性研究.沈阳农业大学学报.2007,38(4):531-534.
    王敏奇.纳米粒径化处理三价铬对杜长大肥育猪胴体组成、肉质和组织铬沉积的影响及其机理研究.浙江大学博士学位论文.浙江杭州.2004,5.
    王艳华.纳米铜和硫酸铜对断奶仔猪生长、腹泻和消化的影响及作用机理探讨.浙江大学硕士学位论文.浙江杭州.2002,5.
    王章敬,陈华,李锋平.铅暴露对机体钙锌水平的影响.福建医科大学学报.2005,39(4):435-440.
    万谦,张洪渊.3种淡水育珠蚌碱性磷酸酶(ALP)比较酶学的初步研究.四川大学学报:自然科学版.1994,31(2):264-268.
    项翠琴,刘春芳,张云英等.铅对大鼠睾丸钙调素、ATP酶的抑制作用.环境与职业医学.2002,19(3):132-133.
    胥保华.纳米硒对Avian肉鸡的生物学效应及其分子机理的研究.浙江大学博士学位论文.浙江杭州.2005,5.
    许培斌,郭洪新,王梅等.儿童血钙铁锌含量变化与铅中毒关系探讨.微量元素与健康研究.2006,23(3):12-13.
    许梓荣.介观动物营养学.浙江大学"985工程”二期建设项目申报书.2002,12.
    许梓荣.介观动物营养学阶段性研究汇报与评估.浙江大学“985工程”研究成果.2003,2.
    杨万喜,应雪萍,卢建平等.铅对日本沼虾精子超微结构的影响.东海海洋.2000,18(3):47-52.
    杨志彪,赵云龙,周忠良等.水体铜对中华绒螯蟹(Eriocheir sinensis)代谢酶活力的影响海洋与湖沼.2006,37(2):118-124.
    余东游,杨晓刚,许梓荣.微粒蒙脱石对猪组织铅水平、红细胞生成和肝脏ALAD酶活性及铅诱导的脂质过氧化的影响.中国兽医学报.2006,26(6):28-30.
    张春玲,林岚,陈力等.儿童血铅与其它微量元素水平的关系.广东微量元素科学.2004,11(5):26-30.
    张春丹,黄福勇,李明云等.镉胁迫条件下大弹涂鱼(Boleophthalm us pectinirostris)外周血微核标记及肝脏过氧化物酶标记的变化.海洋与湖沼.2006,37(1):7-13.
    张红忠,宋玫.铅中毒儿童血清锌、铜、铁、钙等元索吉量变化.临床实用儿科临床杂志.2005,20(5):466-467.
    张荣,牛玉杰,杨辉等.铅对大鼠脑组织神经生长因子表达的影响及甲状腺激素的调节作用.中华劳动卫生职业病杂志.2003,21(6):408-412.
    湛毅,徐芳,徐实等.Zeolite-A沸石分子筛去除水体中重金属污染物.理化检验-化学分册.2008,44:55-57,60.
    赵磊,董发勤,杨玉山.层状硅酸盐矿物在污水处理和净化中的应用.中国矿业.2007, 16(4):89-91.
    赵兴杰,刘秀珍,郭莉娜.膨润土对石灰性镉污染土壤中镉形态转化的影响.山西农业大学学报(自然科学版).2006,4:387-390.
    赵欣平,舒畅,杨芳等.多种金属离子对白蜡虫碱性磷酸酶活性的影响.四川大学学报(自然科学版).2002,39(1):132-135.
    赵维信,魏华贾.镉对罗氏沼虾组织转氨酶活性及组织结构的影响.水产学报.1995,9(1):21-27.
    周怀东,彭文启,杜霞等.中国地表水水质评价.中国水利水电科学研究院学报.2004,2(4):255-264.
    朱长才,张绪忠,夏瑞明.铅吸收者血清铅锌铜镉铬硒锰水平分析.微量元素与健康研究.1996,13(3):41-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700